mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-18 10:48:51 +00:00
d424e6786f
Reduce the delay after BIST delay, from 1ms to 10us which is enough accoriding datasheet. Signed-off-by: Patrick Delaunay <patrick.delaunay@st.com> Acked-by: Patrice Chotard <patrice.chotard@st.com>
1535 lines
43 KiB
C
1535 lines
43 KiB
C
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
|
|
/*
|
|
* Copyright (C) 2019, STMicroelectronics - All Rights Reserved
|
|
*/
|
|
#include <common.h>
|
|
#include <console.h>
|
|
#include <clk.h>
|
|
#include <ram.h>
|
|
#include <reset.h>
|
|
#include <asm/io.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/iopoll.h>
|
|
|
|
#include "stm32mp1_ddr_regs.h"
|
|
#include "stm32mp1_ddr.h"
|
|
#include "stm32mp1_tests.h"
|
|
|
|
#define MAX_DQS_PHASE_IDX _144deg
|
|
#define MAX_DQS_UNIT_IDX 7
|
|
#define MAX_GSL_IDX 5
|
|
#define MAX_GPS_IDX 3
|
|
|
|
/* Number of bytes used in this SW. ( min 1--> max 4). */
|
|
#define NUM_BYTES 4
|
|
|
|
enum dqs_phase_enum {
|
|
_36deg = 0,
|
|
_54deg = 1,
|
|
_72deg = 2,
|
|
_90deg = 3,
|
|
_108deg = 4,
|
|
_126deg = 5,
|
|
_144deg = 6
|
|
};
|
|
|
|
/* BIST Result struct */
|
|
struct BIST_result {
|
|
/* Overall test result:
|
|
* 0 Fail (any bit failed) ,
|
|
* 1 Success (All bits success)
|
|
*/
|
|
bool test_result;
|
|
/* 1: true, all fail / 0: False, not all bits fail */
|
|
bool all_bits_fail;
|
|
bool bit_i_test_result[8]; /* 0 fail / 1 success */
|
|
};
|
|
|
|
/* a struct that defines tuning parameters of a byte. */
|
|
struct tuning_position {
|
|
u8 phase; /* DQS phase */
|
|
u8 unit; /* DQS unit delay */
|
|
u32 bits_delay; /* Bits deskew in this byte */
|
|
};
|
|
|
|
/* 36deg, 54deg, 72deg, 90deg, 108deg, 126deg, 144deg */
|
|
const u8 dx_dll_phase[7] = {3, 2, 1, 0, 14, 13, 12};
|
|
|
|
static u8 BIST_error_max = 1;
|
|
static u32 BIST_seed = 0x1234ABCD;
|
|
|
|
static u8 get_nb_bytes(struct stm32mp1_ddrctl *ctl)
|
|
{
|
|
u32 data_bus = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK;
|
|
u8 nb_bytes = NUM_BYTES;
|
|
|
|
switch (data_bus) {
|
|
case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF:
|
|
nb_bytes /= 2;
|
|
break;
|
|
case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER:
|
|
nb_bytes /= 4;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return nb_bytes;
|
|
}
|
|
|
|
static u8 get_nb_bank(struct stm32mp1_ddrctl *ctl)
|
|
{
|
|
/* Count bank address bits */
|
|
u8 bits = 0;
|
|
u32 reg, val;
|
|
|
|
reg = readl(&ctl->addrmap1);
|
|
/* addrmap1.addrmap_bank_b1 */
|
|
val = (reg & GENMASK(5, 0)) >> 0;
|
|
if (val <= 31)
|
|
bits++;
|
|
/* addrmap1.addrmap_bank_b2 */
|
|
val = (reg & GENMASK(13, 8)) >> 8;
|
|
if (val <= 31)
|
|
bits++;
|
|
/* addrmap1.addrmap_bank_b3 */
|
|
val = (reg & GENMASK(21, 16)) >> 16;
|
|
if (val <= 31)
|
|
bits++;
|
|
|
|
return bits;
|
|
}
|
|
|
|
static u8 get_nb_col(struct stm32mp1_ddrctl *ctl)
|
|
{
|
|
u8 bits;
|
|
u32 reg, val;
|
|
|
|
/* Count column address bits, start at 2 for b0 and b1 (fixed) */
|
|
bits = 2;
|
|
|
|
reg = readl(&ctl->addrmap2);
|
|
/* addrmap2.addrmap_col_b2 */
|
|
val = (reg & GENMASK(3, 0)) >> 0;
|
|
if (val <= 7)
|
|
bits++;
|
|
/* addrmap2.addrmap_col_b3 */
|
|
val = (reg & GENMASK(11, 8)) >> 8;
|
|
if (val <= 7)
|
|
bits++;
|
|
/* addrmap2.addrmap_col_b4 */
|
|
val = (reg & GENMASK(19, 16)) >> 16;
|
|
if (val <= 7)
|
|
bits++;
|
|
/* addrmap2.addrmap_col_b5 */
|
|
val = (reg & GENMASK(27, 24)) >> 24;
|
|
if (val <= 7)
|
|
bits++;
|
|
|
|
reg = readl(&ctl->addrmap3);
|
|
/* addrmap3.addrmap_col_b6 */
|
|
val = (reg & GENMASK(3, 0)) >> 0;
|
|
if (val <= 7)
|
|
bits++;
|
|
/* addrmap3.addrmap_col_b7 */
|
|
val = (reg & GENMASK(11, 8)) >> 8;
|
|
if (val <= 7)
|
|
bits++;
|
|
/* addrmap3.addrmap_col_b8 */
|
|
val = (reg & GENMASK(19, 16)) >> 16;
|
|
if (val <= 7)
|
|
bits++;
|
|
/* addrmap3.addrmap_col_b9 */
|
|
val = (reg & GENMASK(27, 24)) >> 24;
|
|
if (val <= 7)
|
|
bits++;
|
|
|
|
reg = readl(&ctl->addrmap4);
|
|
/* addrmap4.addrmap_col_b10 */
|
|
val = (reg & GENMASK(3, 0)) >> 0;
|
|
if (val <= 7)
|
|
bits++;
|
|
/* addrmap4.addrmap_col_b11 */
|
|
val = (reg & GENMASK(11, 8)) >> 8;
|
|
if (val <= 7)
|
|
bits++;
|
|
|
|
return bits;
|
|
}
|
|
|
|
static u8 get_nb_row(struct stm32mp1_ddrctl *ctl)
|
|
{
|
|
/* Count row address bits */
|
|
u8 bits = 0;
|
|
u32 reg, val;
|
|
|
|
reg = readl(&ctl->addrmap5);
|
|
/* addrmap5.addrmap_row_b0 */
|
|
val = (reg & GENMASK(3, 0)) >> 0;
|
|
if (val <= 11)
|
|
bits++;
|
|
/* addrmap5.addrmap_row_b1 */
|
|
val = (reg & GENMASK(11, 8)) >> 8;
|
|
if (val <= 11)
|
|
bits++;
|
|
/* addrmap5.addrmap_row_b2_10 */
|
|
val = (reg & GENMASK(19, 16)) >> 16;
|
|
if (val <= 11)
|
|
bits += 9;
|
|
else
|
|
printf("warning: addrmap5.addrmap_row_b2_10 not supported\n");
|
|
/* addrmap5.addrmap_row_b11 */
|
|
val = (reg & GENMASK(27, 24)) >> 24;
|
|
if (val <= 11)
|
|
bits++;
|
|
|
|
reg = readl(&ctl->addrmap6);
|
|
/* addrmap6.addrmap_row_b12 */
|
|
val = (reg & GENMASK(3, 0)) >> 0;
|
|
if (val <= 7)
|
|
bits++;
|
|
/* addrmap6.addrmap_row_b13 */
|
|
val = (reg & GENMASK(11, 8)) >> 8;
|
|
if (val <= 7)
|
|
bits++;
|
|
/* addrmap6.addrmap_row_b14 */
|
|
val = (reg & GENMASK(19, 16)) >> 16;
|
|
if (val <= 7)
|
|
bits++;
|
|
/* addrmap6.addrmap_row_b15 */
|
|
val = (reg & GENMASK(27, 24)) >> 24;
|
|
if (val <= 7)
|
|
bits++;
|
|
|
|
return bits;
|
|
}
|
|
|
|
static void itm_soft_reset(struct stm32mp1_ddrphy *phy)
|
|
{
|
|
stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
|
|
}
|
|
|
|
/* Read DQ unit delay register and provides the retrieved value for DQS
|
|
* We are assuming that we have the same delay when clocking
|
|
* by DQS and when clocking by DQSN
|
|
*/
|
|
static u8 DQ_unit_index(struct stm32mp1_ddrphy *phy, u8 byte, u8 bit)
|
|
{
|
|
u32 index;
|
|
u32 addr = DXNDQTR(phy, byte);
|
|
|
|
/* We are assuming that we have the same delay when clocking by DQS
|
|
* and when clocking by DQSN : use only the low bits
|
|
*/
|
|
index = (readl(addr) >> DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit))
|
|
& DDRPHYC_DXNDQTR_DQDLY_LOW_MASK;
|
|
|
|
pr_debug("%s: [%x]: %x => DQ unit index = %x\n",
|
|
__func__, addr, readl(addr), index);
|
|
|
|
return index;
|
|
}
|
|
|
|
/* Sets the DQS phase delay for a byte lane.
|
|
*phase delay is specified by giving the index of the desired delay
|
|
* in the dx_dll_phase array.
|
|
*/
|
|
static void DQS_phase_delay(struct stm32mp1_ddrphy *phy, u8 byte, u8 phase_idx)
|
|
{
|
|
u8 sdphase_val = 0;
|
|
|
|
/* Write DXNDLLCR.SDPHASE = dx_dll_phase(phase_index); */
|
|
sdphase_val = dx_dll_phase[phase_idx];
|
|
clrsetbits_le32(DXNDLLCR(phy, byte),
|
|
DDRPHYC_DXNDLLCR_SDPHASE_MASK,
|
|
sdphase_val << DDRPHYC_DXNDLLCR_SDPHASE_SHIFT);
|
|
}
|
|
|
|
/* Sets the DQS unit delay for a byte lane.
|
|
* unit delay is specified by giving the index of the desired delay
|
|
* for dgsdly and dqsndly (same value).
|
|
*/
|
|
static void DQS_unit_delay(struct stm32mp1_ddrphy *phy,
|
|
u8 byte, u8 unit_dly_idx)
|
|
{
|
|
/* Write the same value in DXNDQSTR.DQSDLY and DXNDQSTR.DQSNDLY */
|
|
clrsetbits_le32(DXNDQSTR(phy, byte),
|
|
DDRPHYC_DXNDQSTR_DQSDLY_MASK |
|
|
DDRPHYC_DXNDQSTR_DQSNDLY_MASK,
|
|
(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSDLY_SHIFT) |
|
|
(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSNDLY_SHIFT));
|
|
|
|
/* After changing this value, an ITM soft reset (PIR.ITMSRST=1,
|
|
* plus PIR.INIT=1) must be issued.
|
|
*/
|
|
stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
|
|
}
|
|
|
|
/* Sets the DQ unit delay for a bit line in particular byte lane.
|
|
* unit delay is specified by giving the desired delay
|
|
*/
|
|
static void set_DQ_unit_delay(struct stm32mp1_ddrphy *phy,
|
|
u8 byte, u8 bit,
|
|
u8 dq_delay_index)
|
|
{
|
|
u8 dq_bit_delay_val = dq_delay_index | (dq_delay_index << 2);
|
|
|
|
/* same value on delay for clock DQ an DQS_b */
|
|
clrsetbits_le32(DXNDQTR(phy, byte),
|
|
DDRPHYC_DXNDQTR_DQDLY_MASK
|
|
<< DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit),
|
|
dq_bit_delay_val << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit));
|
|
}
|
|
|
|
static void set_r0dgsl_delay(struct stm32mp1_ddrphy *phy,
|
|
u8 byte, u8 r0dgsl_idx)
|
|
{
|
|
clrsetbits_le32(DXNDQSTR(phy, byte),
|
|
DDRPHYC_DXNDQSTR_R0DGSL_MASK,
|
|
r0dgsl_idx << DDRPHYC_DXNDQSTR_R0DGSL_SHIFT);
|
|
}
|
|
|
|
static void set_r0dgps_delay(struct stm32mp1_ddrphy *phy,
|
|
u8 byte, u8 r0dgps_idx)
|
|
{
|
|
clrsetbits_le32(DXNDQSTR(phy, byte),
|
|
DDRPHYC_DXNDQSTR_R0DGPS_MASK,
|
|
r0dgps_idx << DDRPHYC_DXNDQSTR_R0DGPS_SHIFT);
|
|
}
|
|
|
|
/* Basic BIST configuration for data lane tests. */
|
|
static void config_BIST(struct stm32mp1_ddrctl *ctl,
|
|
struct stm32mp1_ddrphy *phy)
|
|
{
|
|
u8 nb_bank = get_nb_bank(ctl);
|
|
u8 nb_row = get_nb_row(ctl);
|
|
u8 nb_col = get_nb_col(ctl);
|
|
|
|
/* Selects the SDRAM bank address to be used during BIST. */
|
|
u32 bbank = 0;
|
|
/* Selects the SDRAM row address to be used during BIST. */
|
|
u32 brow = 0;
|
|
/* Selects the SDRAM column address to be used during BIST. */
|
|
u32 bcol = 0;
|
|
/* Selects the value by which the SDRAM address is incremented
|
|
* for each write/read access.
|
|
*/
|
|
u32 bainc = 0x00000008;
|
|
/* Specifies the maximum SDRAM rank to be used during BIST.
|
|
* The default value is set to maximum ranks minus 1.
|
|
* must be 0 with single rank
|
|
*/
|
|
u32 bmrank = 0;
|
|
/* Selects the SDRAM rank to be used during BIST.
|
|
* must be 0 with single rank
|
|
*/
|
|
u32 brank = 0;
|
|
|
|
/* Specifies the maximum SDRAM bank address to be used during
|
|
* BIST before the address & increments to the next rank.
|
|
*/
|
|
u32 bmbank = (1 << nb_bank) - 1;
|
|
/* Specifies the maximum SDRAM row address to be used during
|
|
* BIST before the address & increments to the next bank.
|
|
*/
|
|
u32 bmrow = (1 << nb_row) - 1;
|
|
/* Specifies the maximum SDRAM column address to be used during
|
|
* BIST before the address & increments to the next row.
|
|
*/
|
|
u32 bmcol = (1 << nb_col) - 1;
|
|
|
|
u32 bmode_conf = 0x00000001; /* DRam mode */
|
|
u32 bdxen_conf = 0x00000001; /* BIST on Data byte */
|
|
u32 bdpat_conf = 0x00000002; /* Select LFSR pattern */
|
|
|
|
/*Setup BIST for DRAM mode, and LFSR-random data pattern.*/
|
|
/*Write BISTRR.BMODE = 1?b1;*/
|
|
/*Write BISTRR.BDXEN = 1?b1;*/
|
|
/*Write BISTRR.BDPAT = 2?b10;*/
|
|
|
|
/* reset BIST */
|
|
writel(0x3, &phy->bistrr);
|
|
|
|
writel((bmode_conf << 3) | (bdxen_conf << 14) | (bdpat_conf << 17),
|
|
&phy->bistrr);
|
|
|
|
/*Setup BIST Word Count*/
|
|
/*Write BISTWCR.BWCNT = 16?b0008;*/
|
|
writel(0x00000200, &phy->bistwcr); /* A multiple of BL/2 */
|
|
|
|
writel(bcol | (brow << 12) | (bbank << 28), &phy->bistar0);
|
|
writel(brank | (bmrank << 2) | (bainc << 4), &phy->bistar1);
|
|
writel(bmcol | (bmrow << 12) | (bmbank << 28), &phy->bistar2);
|
|
}
|
|
|
|
/* Select the Byte lane to be tested by BIST. */
|
|
static void BIST_datx8_sel(struct stm32mp1_ddrphy *phy, u8 datx8)
|
|
{
|
|
clrsetbits_le32(&phy->bistrr,
|
|
DDRPHYC_BISTRR_BDXSEL_MASK,
|
|
datx8 << DDRPHYC_BISTRR_BDXSEL_SHIFT);
|
|
|
|
/*(For example, selecting Byte Lane 3, BISTRR.BDXSEL = 4?b0011)*/
|
|
/* Write BISTRR.BDXSEL = datx8; */
|
|
}
|
|
|
|
/* Perform BIST Write_Read test on a byte lane and return test result. */
|
|
static void BIST_test(struct stm32mp1_ddrphy *phy, u8 byte,
|
|
struct BIST_result *bist)
|
|
{
|
|
bool result = true; /* BIST_SUCCESS */
|
|
u32 cnt = 0;
|
|
u32 error = 0;
|
|
u32 val;
|
|
int ret;
|
|
|
|
bist->test_result = true;
|
|
|
|
run:
|
|
itm_soft_reset(phy);
|
|
|
|
/*Perform BIST Reset*/
|
|
/* Write BISTRR.BINST = 3?b011; */
|
|
clrsetbits_le32(&phy->bistrr,
|
|
0x00000007,
|
|
0x00000003);
|
|
|
|
/*Re-seed LFSR*/
|
|
/* Write BISTLSR.SEED = 32'h1234ABCD; */
|
|
if (BIST_seed)
|
|
writel(BIST_seed, &phy->bistlsr);
|
|
else
|
|
writel(rand(), &phy->bistlsr);
|
|
|
|
/* some delay to reset BIST */
|
|
udelay(10);
|
|
|
|
/*Perform BIST Run*/
|
|
clrsetbits_le32(&phy->bistrr,
|
|
0x00000007,
|
|
0x00000001);
|
|
/* Write BISTRR.BINST = 3?b001; */
|
|
|
|
/* poll on BISTGSR.BDONE and wait max 1000 us */
|
|
ret = readl_poll_timeout(&phy->bistgsr, val,
|
|
val & DDRPHYC_BISTGSR_BDDONE, 1000);
|
|
|
|
if (ret < 0) {
|
|
printf("warning: BIST timeout\n");
|
|
result = false; /* BIST_FAIL; */
|
|
/*Perform BIST Stop */
|
|
clrsetbits_le32(&phy->bistrr, 0x00000007, 0x00000002);
|
|
} else {
|
|
/*Check if received correct number of words*/
|
|
/* if (Read BISTWCSR.DXWCNT = Read BISTWCR.BWCNT) */
|
|
if (((readl(&phy->bistwcsr)) >> DDRPHYC_BISTWCSR_DXWCNT_SHIFT)
|
|
== readl(&phy->bistwcr)) {
|
|
/*Determine if there is a data comparison error*/
|
|
/* if (Read BISTGSR.BDXERR = 1?b0) */
|
|
if (readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDXERR)
|
|
result = false; /* BIST_FAIL; */
|
|
else
|
|
result = true; /* BIST_SUCCESS; */
|
|
} else {
|
|
result = false; /* BIST_FAIL; */
|
|
}
|
|
}
|
|
|
|
/* loop while success */
|
|
cnt++;
|
|
if (result && cnt != 1000)
|
|
goto run;
|
|
|
|
if (!result)
|
|
error++;
|
|
|
|
if (error < BIST_error_max) {
|
|
if (cnt != 1000)
|
|
goto run;
|
|
bist->test_result = true;
|
|
} else {
|
|
bist->test_result = false;
|
|
}
|
|
}
|
|
|
|
/* After running the deskew algo, this function applies the new DQ delays
|
|
* by reading them from the array "deskew_delay"and writing in PHY registers.
|
|
* The bits that are not deskewed parfectly (too much skew on them,
|
|
* or data eye very wide) are marked in the array deskew_non_converge.
|
|
*/
|
|
static void apply_deskew_results(struct stm32mp1_ddrphy *phy, u8 byte,
|
|
u8 deskew_delay[NUM_BYTES][8],
|
|
u8 deskew_non_converge[NUM_BYTES][8])
|
|
{
|
|
u8 bit_i;
|
|
u8 index;
|
|
|
|
for (bit_i = 0; bit_i < 8; bit_i++) {
|
|
set_DQ_unit_delay(phy, byte, bit_i, deskew_delay[byte][bit_i]);
|
|
index = DQ_unit_index(phy, byte, bit_i);
|
|
pr_debug("Byte %d ; bit %d : The new DQ delay (%d) index=%d [delta=%d, 3 is the default]",
|
|
byte, bit_i, deskew_delay[byte][bit_i],
|
|
index, index - 3);
|
|
printf("Byte %d, bit %d, DQ delay = %d",
|
|
byte, bit_i, deskew_delay[byte][bit_i]);
|
|
if (deskew_non_converge[byte][bit_i] == 1)
|
|
pr_debug(" - not converged : still more skew");
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
/* DQ Bit de-skew algorithm.
|
|
* Deskews data lines as much as possible.
|
|
* 1. Add delay to DQS line until finding the failure
|
|
* (normally a hold time violation)
|
|
* 2. Reduce DQS line by small steps until finding the very first time
|
|
* we go back to "Pass" condition.
|
|
* 3. For each DQ line, Reduce DQ delay until finding the very first failure
|
|
* (normally a hold time fail)
|
|
* 4. When all bits are at their first failure delay, we can consider them
|
|
* aligned.
|
|
* Handle conrer situation (Can't find Pass-fail, or fail-pass transitions
|
|
* at any step)
|
|
* TODO Provide a return Status. Improve doc
|
|
*/
|
|
static enum test_result bit_deskew(struct stm32mp1_ddrctl *ctl,
|
|
struct stm32mp1_ddrphy *phy, char *string)
|
|
{
|
|
/* New DQ delay value (index), set during Deskew algo */
|
|
u8 deskew_delay[NUM_BYTES][8];
|
|
/*If there is still skew on a bit, mark this bit. */
|
|
u8 deskew_non_converge[NUM_BYTES][8];
|
|
struct BIST_result result;
|
|
s8 dqs_unit_delay_index = 0;
|
|
u8 datx8 = 0;
|
|
u8 bit_i = 0;
|
|
s8 phase_idx = 0;
|
|
s8 bit_i_delay_index = 0;
|
|
u8 success = 0;
|
|
struct tuning_position last_right_ok;
|
|
u8 force_stop = 0;
|
|
u8 fail_found;
|
|
u8 error = 0;
|
|
u8 nb_bytes = get_nb_bytes(ctl);
|
|
/* u8 last_pass_dqs_unit = 0; */
|
|
|
|
memset(deskew_delay, 0, sizeof(deskew_delay));
|
|
memset(deskew_non_converge, 0, sizeof(deskew_non_converge));
|
|
|
|
/*Disable DQS Drift Compensation*/
|
|
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
|
|
/*Disable all bytes*/
|
|
/* Disable automatic power down of DLL and IOs when disabling
|
|
* a byte (To avoid having to add programming and delay
|
|
* for a DLL re-lock when later re-enabling a disabled Byte Lane)
|
|
*/
|
|
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
|
|
|
|
/* Disable all data bytes */
|
|
clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
|
|
clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
|
|
clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
|
|
clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
|
|
|
|
/* Config the BIST block */
|
|
config_BIST(ctl, phy);
|
|
pr_debug("BIST Config done.\n");
|
|
|
|
/* Train each byte */
|
|
for (datx8 = 0; datx8 < nb_bytes; datx8++) {
|
|
if (ctrlc()) {
|
|
sprintf(string, "interrupted at byte %d/%d, error=%d",
|
|
datx8 + 1, nb_bytes, error);
|
|
return TEST_FAILED;
|
|
}
|
|
pr_debug("\n======================\n");
|
|
pr_debug("Start deskew byte %d .\n", datx8);
|
|
pr_debug("======================\n");
|
|
/* Enable Byte (DXNGCR, bit DXEN) */
|
|
setbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
|
|
|
|
/* Select the byte lane for comparison of read data */
|
|
BIST_datx8_sel(phy, datx8);
|
|
|
|
/* Set all DQDLYn to maximum value. All bits within the byte
|
|
* will be delayed with DQSTR = 2 instead of max = 3
|
|
* to avoid inter bits fail influence
|
|
*/
|
|
writel(0xAAAAAAAA, DXNDQTR(phy, datx8));
|
|
|
|
/* Set the DQS phase delay to 90 DEG (default).
|
|
* What is defined here is the index of the desired config
|
|
* in the PHASE array.
|
|
*/
|
|
phase_idx = _90deg;
|
|
|
|
/* Set DQS unit delay to the max value. */
|
|
dqs_unit_delay_index = MAX_DQS_UNIT_IDX;
|
|
DQS_unit_delay(phy, datx8, dqs_unit_delay_index);
|
|
DQS_phase_delay(phy, datx8, phase_idx);
|
|
|
|
/* Issue a DLL soft reset */
|
|
clrbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
|
|
setbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
|
|
|
|
/* Test this typical init condition */
|
|
BIST_test(phy, datx8, &result);
|
|
success = result.test_result;
|
|
|
|
/* If the test pass in this typical condition,
|
|
* start the algo with it.
|
|
* Else, look for Pass init condition
|
|
*/
|
|
if (!success) {
|
|
pr_debug("Fail at init condtion. Let's look for a good init condition.\n");
|
|
success = 0; /* init */
|
|
/* Make sure we start with a PASS condition before
|
|
* looking for a fail condition.
|
|
* Find the first PASS PHASE condition
|
|
*/
|
|
|
|
/* escape if we find a PASS */
|
|
pr_debug("increase Phase idx\n");
|
|
while (!success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
|
|
DQS_phase_delay(phy, datx8, phase_idx);
|
|
BIST_test(phy, datx8, &result);
|
|
success = result.test_result;
|
|
phase_idx++;
|
|
}
|
|
/* if ended with success
|
|
* ==>> Restore the fist success condition
|
|
*/
|
|
if (success)
|
|
phase_idx--; /* because it ended with ++ */
|
|
}
|
|
if (ctrlc()) {
|
|
sprintf(string, "interrupted at byte %d/%d, error=%d",
|
|
datx8 + 1, nb_bytes, error);
|
|
return TEST_FAILED;
|
|
}
|
|
/* We couldn't find a successful condition, its seems
|
|
* we have hold violation, lets try reduce DQS_unit Delay
|
|
*/
|
|
if (!success) {
|
|
/* We couldn't find a successful condition, its seems
|
|
* we have hold violation, lets try reduce DQS_unit
|
|
* Delay
|
|
*/
|
|
pr_debug("Still fail. Try decrease DQS Unit delay\n");
|
|
|
|
phase_idx = 0;
|
|
dqs_unit_delay_index = 0;
|
|
DQS_phase_delay(phy, datx8, phase_idx);
|
|
|
|
/* escape if we find a PASS */
|
|
while (!success &&
|
|
(dqs_unit_delay_index <=
|
|
MAX_DQS_UNIT_IDX)) {
|
|
DQS_unit_delay(phy, datx8,
|
|
dqs_unit_delay_index);
|
|
BIST_test(phy, datx8, &result);
|
|
success = result.test_result;
|
|
dqs_unit_delay_index++;
|
|
}
|
|
if (success) {
|
|
/* Restore the first success condition*/
|
|
dqs_unit_delay_index--;
|
|
/* last_pass_dqs_unit = dqs_unit_delay_index;*/
|
|
DQS_unit_delay(phy, datx8,
|
|
dqs_unit_delay_index);
|
|
} else {
|
|
/* No need to continue,
|
|
* there is no pass region.
|
|
*/
|
|
force_stop = 1;
|
|
}
|
|
}
|
|
|
|
/* There is an initial PASS condition
|
|
* Look for the first failing condition by PHASE stepping.
|
|
* This part of the algo can finish without converging.
|
|
*/
|
|
if (force_stop) {
|
|
printf("Result: Failed ");
|
|
printf("[Cannot Deskew lines, ");
|
|
printf("there is no PASS region]\n");
|
|
error++;
|
|
continue;
|
|
}
|
|
if (ctrlc()) {
|
|
sprintf(string, "interrupted at byte %d/%d, error=%d",
|
|
datx8 + 1, nb_bytes, error);
|
|
return TEST_FAILED;
|
|
}
|
|
|
|
pr_debug("there is a pass region for phase idx %d\n",
|
|
phase_idx);
|
|
pr_debug("Step1: Find the first failing condition\n");
|
|
/* Look for the first failing condition by PHASE stepping.
|
|
* This part of the algo can finish without converging.
|
|
*/
|
|
|
|
/* escape if we find a fail (hold time violation)
|
|
* condition at any bit or if out of delay range.
|
|
*/
|
|
while (success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
|
|
DQS_phase_delay(phy, datx8, phase_idx);
|
|
BIST_test(phy, datx8, &result);
|
|
success = result.test_result;
|
|
phase_idx++;
|
|
}
|
|
if (ctrlc()) {
|
|
sprintf(string, "interrupted at byte %d/%d, error=%d",
|
|
datx8 + 1, nb_bytes, error);
|
|
return TEST_FAILED;
|
|
}
|
|
|
|
/* if the loop ended with a failing condition at any bit,
|
|
* lets look for the first previous success condition by unit
|
|
* stepping (minimal delay)
|
|
*/
|
|
if (!success) {
|
|
pr_debug("Fail region (PHASE) found phase idx %d\n",
|
|
phase_idx);
|
|
pr_debug("Let's look for first success by DQS Unit steps\n");
|
|
/* This part, the algo always converge */
|
|
phase_idx--;
|
|
|
|
/* escape if we find a success condition
|
|
* or if out of delay range.
|
|
*/
|
|
while (!success && dqs_unit_delay_index >= 0) {
|
|
DQS_unit_delay(phy, datx8,
|
|
dqs_unit_delay_index);
|
|
BIST_test(phy, datx8, &result);
|
|
success = result.test_result;
|
|
dqs_unit_delay_index--;
|
|
}
|
|
/* if the loop ended with a success condition,
|
|
* the last delay Right OK (before hold violation)
|
|
* condition is then defined as following:
|
|
*/
|
|
if (success) {
|
|
/* Hold the dely parameters of the the last
|
|
* delay Right OK condition.
|
|
* -1 to get back to current condition
|
|
*/
|
|
last_right_ok.phase = phase_idx;
|
|
/*+1 to get back to current condition */
|
|
last_right_ok.unit = dqs_unit_delay_index + 1;
|
|
last_right_ok.bits_delay = 0xFFFFFFFF;
|
|
pr_debug("Found %d\n", dqs_unit_delay_index);
|
|
} else {
|
|
/* the last OK condition is then with the
|
|
* previous phase_idx.
|
|
* -2 instead of -1 because at the last
|
|
* iteration of the while(),
|
|
* we incremented phase_idx
|
|
*/
|
|
last_right_ok.phase = phase_idx - 1;
|
|
/* Nominal+1. Because we want the previous
|
|
* delay after reducing the phase delay.
|
|
*/
|
|
last_right_ok.unit = 1;
|
|
last_right_ok.bits_delay = 0xFFFFFFFF;
|
|
pr_debug("Not Found : try previous phase %d\n",
|
|
phase_idx - 1);
|
|
|
|
DQS_phase_delay(phy, datx8, phase_idx - 1);
|
|
dqs_unit_delay_index = 0;
|
|
success = true;
|
|
while (success &&
|
|
(dqs_unit_delay_index <
|
|
MAX_DQS_UNIT_IDX)) {
|
|
DQS_unit_delay(phy, datx8,
|
|
dqs_unit_delay_index);
|
|
BIST_test(phy, datx8, &result);
|
|
success = result.test_result;
|
|
dqs_unit_delay_index++;
|
|
pr_debug("dqs_unit_delay_index = %d, result = %d\n",
|
|
dqs_unit_delay_index, success);
|
|
}
|
|
|
|
if (!success) {
|
|
last_right_ok.unit =
|
|
dqs_unit_delay_index - 1;
|
|
} else {
|
|
last_right_ok.unit = 0;
|
|
pr_debug("ERROR: failed region not FOUND");
|
|
}
|
|
}
|
|
} else {
|
|
/* we can't find a failing condition at all bits
|
|
* ==> Just hold the last test condition
|
|
* (the max DQS delay)
|
|
* which is the most likely,
|
|
* the closest to a hold violation
|
|
* If we can't find a Fail condition after
|
|
* the Pass region, stick at this position
|
|
* In order to have max chances to find a fail
|
|
* when reducing DQ delays.
|
|
*/
|
|
last_right_ok.phase = MAX_DQS_PHASE_IDX;
|
|
last_right_ok.unit = MAX_DQS_UNIT_IDX;
|
|
last_right_ok.bits_delay = 0xFFFFFFFF;
|
|
pr_debug("Can't find the a fail condition\n");
|
|
}
|
|
|
|
/* step 2:
|
|
* if we arrive at this stage, it means that we found the last
|
|
* Right OK condition (by tweeking the DQS delay). Or we simply
|
|
* pushed DQS delay to the max
|
|
* This means that by reducing the delay on some DQ bits,
|
|
* we should find a failing condition.
|
|
*/
|
|
printf("Byte %d, DQS unit = %d, phase = %d\n",
|
|
datx8, last_right_ok.unit, last_right_ok.phase);
|
|
pr_debug("Step2, unit = %d, phase = %d, bits delay=%x\n",
|
|
last_right_ok.unit, last_right_ok.phase,
|
|
last_right_ok.bits_delay);
|
|
|
|
/* Restore the last_right_ok condtion. */
|
|
DQS_unit_delay(phy, datx8, last_right_ok.unit);
|
|
DQS_phase_delay(phy, datx8, last_right_ok.phase);
|
|
writel(last_right_ok.bits_delay, DXNDQTR(phy, datx8));
|
|
|
|
/* train each bit
|
|
* reduce delay on each bit, and perform a write/read test
|
|
* and stop at the very first time it fails.
|
|
* the goal is the find the first failing condition
|
|
* for each bit.
|
|
* When we achieve this condition< for all the bits,
|
|
* we are sure they are aligned (+/- step resolution)
|
|
*/
|
|
fail_found = 0;
|
|
for (bit_i = 0; bit_i < 8; bit_i++) {
|
|
if (ctrlc()) {
|
|
sprintf(string,
|
|
"interrupted at byte %d/%d, error=%d",
|
|
datx8 + 1, nb_bytes, error);
|
|
return error;
|
|
}
|
|
pr_debug("deskewing bit %d:\n", bit_i);
|
|
success = 1; /* init */
|
|
/* Set all DQDLYn to maximum value.
|
|
* Only bit_i will be down-delayed
|
|
* ==> if we have a fail, it will be definitely
|
|
* from bit_i
|
|
*/
|
|
writel(0xFFFFFFFF, DXNDQTR(phy, datx8));
|
|
/* Arriving at this stage,
|
|
* we have a success condition with delay = 3;
|
|
*/
|
|
bit_i_delay_index = 3;
|
|
|
|
/* escape if bit delay is out of range or
|
|
* if a fatil occurs
|
|
*/
|
|
while ((bit_i_delay_index >= 0) && success) {
|
|
set_DQ_unit_delay(phy, datx8,
|
|
bit_i,
|
|
bit_i_delay_index);
|
|
BIST_test(phy, datx8, &result);
|
|
success = result.test_result;
|
|
bit_i_delay_index--;
|
|
}
|
|
|
|
/* if escape with a fail condition
|
|
* ==> save this position for bit_i
|
|
*/
|
|
if (!success) {
|
|
/* save the delay position.
|
|
* Add 1 because the while loop ended with a --,
|
|
* and that we need to hold the last success
|
|
* delay
|
|
*/
|
|
deskew_delay[datx8][bit_i] =
|
|
bit_i_delay_index + 2;
|
|
if (deskew_delay[datx8][bit_i] > 3)
|
|
deskew_delay[datx8][bit_i] = 3;
|
|
|
|
/* A flag that states we found at least a fail
|
|
* at one bit.
|
|
*/
|
|
fail_found = 1;
|
|
pr_debug("Fail found on bit %d, for delay = %d => deskew[%d][%d] = %d\n",
|
|
bit_i, bit_i_delay_index + 1,
|
|
datx8, bit_i,
|
|
deskew_delay[datx8][bit_i]);
|
|
} else {
|
|
/* if we can find a success condition by
|
|
* back-delaying this bit, just set the delay
|
|
* to 0 (the best deskew
|
|
* possible) and mark the bit.
|
|
*/
|
|
deskew_delay[datx8][bit_i] = 0;
|
|
/* set a flag that will be used later
|
|
* in the report.
|
|
*/
|
|
deskew_non_converge[datx8][bit_i] = 1;
|
|
pr_debug("Fail not found on bit %d => deskew[%d][%d] = %d\n",
|
|
bit_i, datx8, bit_i,
|
|
deskew_delay[datx8][bit_i]);
|
|
}
|
|
}
|
|
pr_debug("**********byte %d tuning complete************\n",
|
|
datx8);
|
|
/* If we can't find any failure by back delaying DQ lines,
|
|
* hold the default values
|
|
*/
|
|
if (!fail_found) {
|
|
for (bit_i = 0; bit_i < 8; bit_i++)
|
|
deskew_delay[datx8][bit_i] = 0;
|
|
pr_debug("The Deskew algorithm can't converge, there is too much margin in your design. Good job!\n");
|
|
}
|
|
|
|
apply_deskew_results(phy, datx8, deskew_delay,
|
|
deskew_non_converge);
|
|
/* Restore nominal value for DQS delay */
|
|
DQS_phase_delay(phy, datx8, 3);
|
|
DQS_unit_delay(phy, datx8, 3);
|
|
/* disable byte after byte bits deskew */
|
|
clrbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
|
|
} /* end of byte deskew */
|
|
|
|
/* re-enable all data bytes */
|
|
setbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
|
|
setbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
|
|
setbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
|
|
setbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
|
|
|
|
if (error) {
|
|
sprintf(string, "error = %d", error);
|
|
return TEST_FAILED;
|
|
}
|
|
|
|
return TEST_PASSED;
|
|
} /* end function */
|
|
|
|
/* Trim DQS timings and set it in the centre of data eye.
|
|
* Look for a PPPPF region, then look for a FPPP region and finally select
|
|
* the mid of the FPPPPPF region
|
|
*/
|
|
static enum test_result eye_training(struct stm32mp1_ddrctl *ctl,
|
|
struct stm32mp1_ddrphy *phy, char *string)
|
|
{
|
|
/*Stores the DQS trim values (PHASE index, unit index) */
|
|
u8 eye_training_val[NUM_BYTES][2];
|
|
u8 byte = 0;
|
|
struct BIST_result result;
|
|
s8 dqs_unit_delay_index = 0;
|
|
s8 phase_idx = 0;
|
|
s8 dqs_unit_delay_index_pass = 0;
|
|
s8 phase_idx_pass = 0;
|
|
u8 success = 0;
|
|
u8 left_phase_bound_found, right_phase_bound_found;
|
|
u8 left_unit_bound_found, right_unit_bound_found;
|
|
u8 left_bound_found, right_bound_found;
|
|
struct tuning_position left_bound, right_bound;
|
|
u8 error = 0;
|
|
u8 nb_bytes = get_nb_bytes(ctl);
|
|
|
|
/*Disable DQS Drift Compensation*/
|
|
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
|
|
/*Disable all bytes*/
|
|
/* Disable automatic power down of DLL and IOs when disabling a byte
|
|
* (To avoid having to add programming and delay
|
|
* for a DLL re-lock when later re-enabling a disabled Byte Lane)
|
|
*/
|
|
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
|
|
|
|
/*Disable all data bytes */
|
|
clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
|
|
clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
|
|
clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
|
|
clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
|
|
|
|
/* Config the BIST block */
|
|
config_BIST(ctl, phy);
|
|
|
|
for (byte = 0; byte < nb_bytes; byte++) {
|
|
if (ctrlc()) {
|
|
sprintf(string, "interrupted at byte %d/%d, error=%d",
|
|
byte + 1, nb_bytes, error);
|
|
return TEST_FAILED;
|
|
}
|
|
right_bound.phase = 0;
|
|
right_bound.unit = 0;
|
|
|
|
left_bound.phase = 0;
|
|
left_bound.unit = 0;
|
|
|
|
left_phase_bound_found = 0;
|
|
right_phase_bound_found = 0;
|
|
|
|
left_unit_bound_found = 0;
|
|
right_unit_bound_found = 0;
|
|
|
|
left_bound_found = 0;
|
|
right_bound_found = 0;
|
|
|
|
/* Enable Byte (DXNGCR, bit DXEN) */
|
|
setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
|
|
|
|
/* Select the byte lane for comparison of read data */
|
|
BIST_datx8_sel(phy, byte);
|
|
|
|
/* Set DQS phase delay to the nominal value. */
|
|
phase_idx = _90deg;
|
|
phase_idx_pass = phase_idx;
|
|
|
|
/* Set DQS unit delay to the nominal value. */
|
|
dqs_unit_delay_index = 3;
|
|
dqs_unit_delay_index_pass = dqs_unit_delay_index;
|
|
success = 0;
|
|
|
|
pr_debug("STEP0: Find Init delay\n");
|
|
/* STEP0: Find Init delay: a delay that put the system
|
|
* in a "Pass" condition then (TODO) update
|
|
* dqs_unit_delay_index_pass & phase_idx_pass
|
|
*/
|
|
DQS_unit_delay(phy, byte, dqs_unit_delay_index);
|
|
DQS_phase_delay(phy, byte, phase_idx);
|
|
BIST_test(phy, byte, &result);
|
|
success = result.test_result;
|
|
/* If we have a fail in the nominal condition */
|
|
if (!success) {
|
|
/* Look at the left */
|
|
while (phase_idx >= 0 && !success) {
|
|
phase_idx--;
|
|
DQS_phase_delay(phy, byte, phase_idx);
|
|
BIST_test(phy, byte, &result);
|
|
success = result.test_result;
|
|
}
|
|
}
|
|
if (!success) {
|
|
/* if we can't find pass condition,
|
|
* then look at the right
|
|
*/
|
|
phase_idx = _90deg;
|
|
while (phase_idx <= MAX_DQS_PHASE_IDX &&
|
|
!success) {
|
|
phase_idx++;
|
|
DQS_phase_delay(phy, byte,
|
|
phase_idx);
|
|
BIST_test(phy, byte, &result);
|
|
success = result.test_result;
|
|
}
|
|
}
|
|
/* save the pass condition */
|
|
if (success) {
|
|
phase_idx_pass = phase_idx;
|
|
} else {
|
|
printf("Result: Failed ");
|
|
printf("[Cannot DQS timings, ");
|
|
printf("there is no PASS region]\n");
|
|
error++;
|
|
continue;
|
|
}
|
|
|
|
if (ctrlc()) {
|
|
sprintf(string, "interrupted at byte %d/%d, error=%d",
|
|
byte + 1, nb_bytes, error);
|
|
return TEST_FAILED;
|
|
}
|
|
pr_debug("STEP1: Find LEFT PHASE DQS Bound\n");
|
|
/* STEP1: Find LEFT PHASE DQS Bound */
|
|
while ((phase_idx >= 0) &&
|
|
(phase_idx <= MAX_DQS_PHASE_IDX) &&
|
|
!left_phase_bound_found) {
|
|
DQS_unit_delay(phy, byte,
|
|
dqs_unit_delay_index);
|
|
DQS_phase_delay(phy, byte,
|
|
phase_idx);
|
|
BIST_test(phy, byte, &result);
|
|
success = result.test_result;
|
|
|
|
/*TODO: Manage the case were at the beginning
|
|
* there is already a fail
|
|
*/
|
|
if (!success) {
|
|
/* the last pass condition */
|
|
left_bound.phase = ++phase_idx;
|
|
left_phase_bound_found = 1;
|
|
} else if (success) {
|
|
phase_idx--;
|
|
}
|
|
}
|
|
if (!left_phase_bound_found) {
|
|
left_bound.phase = 0;
|
|
phase_idx = 0;
|
|
}
|
|
/* If not found, lets take 0 */
|
|
|
|
if (ctrlc()) {
|
|
sprintf(string, "interrupted at byte %d/%d, error=%d",
|
|
byte + 1, nb_bytes, error);
|
|
return TEST_FAILED;
|
|
}
|
|
pr_debug("STEP2: Find UNIT left bound\n");
|
|
/* STEP2: Find UNIT left bound */
|
|
while ((dqs_unit_delay_index >= 0) &&
|
|
!left_unit_bound_found) {
|
|
DQS_unit_delay(phy, byte,
|
|
dqs_unit_delay_index);
|
|
DQS_phase_delay(phy, byte, phase_idx);
|
|
BIST_test(phy, byte, &result);
|
|
success = result.test_result;
|
|
if (!success) {
|
|
left_bound.unit =
|
|
++dqs_unit_delay_index;
|
|
left_unit_bound_found = 1;
|
|
left_bound_found = 1;
|
|
} else if (success) {
|
|
dqs_unit_delay_index--;
|
|
}
|
|
}
|
|
|
|
/* If not found, lets take 0 */
|
|
if (!left_unit_bound_found)
|
|
left_bound.unit = 0;
|
|
|
|
if (ctrlc()) {
|
|
sprintf(string, "interrupted at byte %d/%d, error=%d",
|
|
byte + 1, nb_bytes, error);
|
|
return TEST_FAILED;
|
|
}
|
|
pr_debug("STEP3: Find PHase right bound\n");
|
|
/* STEP3: Find PHase right bound, start with "pass"
|
|
* condition
|
|
*/
|
|
|
|
/* Set DQS phase delay to the pass value. */
|
|
phase_idx = phase_idx_pass;
|
|
|
|
/* Set DQS unit delay to the pass value. */
|
|
dqs_unit_delay_index = dqs_unit_delay_index_pass;
|
|
|
|
while ((phase_idx <= MAX_DQS_PHASE_IDX) &&
|
|
!right_phase_bound_found) {
|
|
DQS_unit_delay(phy, byte,
|
|
dqs_unit_delay_index);
|
|
DQS_phase_delay(phy, byte, phase_idx);
|
|
BIST_test(phy, byte, &result);
|
|
success = result.test_result;
|
|
if (!success) {
|
|
/* the last pass condition */
|
|
right_bound.phase = --phase_idx;
|
|
right_phase_bound_found = 1;
|
|
} else if (success) {
|
|
phase_idx++;
|
|
}
|
|
}
|
|
|
|
/* If not found, lets take the max value */
|
|
if (!right_phase_bound_found) {
|
|
right_bound.phase = MAX_DQS_PHASE_IDX;
|
|
phase_idx = MAX_DQS_PHASE_IDX;
|
|
}
|
|
|
|
if (ctrlc()) {
|
|
sprintf(string, "interrupted at byte %d/%d, error=%d",
|
|
byte + 1, nb_bytes, error);
|
|
return TEST_FAILED;
|
|
}
|
|
pr_debug("STEP4: Find UNIT right bound\n");
|
|
/* STEP4: Find UNIT right bound */
|
|
while ((dqs_unit_delay_index <= MAX_DQS_UNIT_IDX) &&
|
|
!right_unit_bound_found) {
|
|
DQS_unit_delay(phy, byte,
|
|
dqs_unit_delay_index);
|
|
DQS_phase_delay(phy, byte, phase_idx);
|
|
BIST_test(phy, byte, &result);
|
|
success = result.test_result;
|
|
if (!success) {
|
|
right_bound.unit =
|
|
--dqs_unit_delay_index;
|
|
right_unit_bound_found = 1;
|
|
right_bound_found = 1;
|
|
} else if (success) {
|
|
dqs_unit_delay_index++;
|
|
}
|
|
}
|
|
/* If not found, lets take the max value */
|
|
if (!right_unit_bound_found)
|
|
right_bound.unit = MAX_DQS_UNIT_IDX;
|
|
|
|
/* If we found a regular FAil Pass FAil pattern
|
|
* FFPPPPPPFF
|
|
* OR PPPPPFF Or FFPPPPP
|
|
*/
|
|
|
|
if (left_bound_found || right_bound_found) {
|
|
eye_training_val[byte][0] = (right_bound.phase +
|
|
left_bound.phase) / 2;
|
|
eye_training_val[byte][1] = (right_bound.unit +
|
|
left_bound.unit) / 2;
|
|
|
|
/* If we already lost 1/2PHASE Tuning,
|
|
* let's try to recover by ++ on unit
|
|
*/
|
|
if (((right_bound.phase + left_bound.phase) % 2 == 1) &&
|
|
eye_training_val[byte][1] != MAX_DQS_UNIT_IDX)
|
|
eye_training_val[byte][1]++;
|
|
pr_debug("** found phase : %d - %d & unit %d - %d\n",
|
|
right_bound.phase, left_bound.phase,
|
|
right_bound.unit, left_bound.unit);
|
|
pr_debug("** calculating mid region: phase: %d unit: %d (nominal is 3)\n",
|
|
eye_training_val[byte][0],
|
|
eye_training_val[byte][1]);
|
|
} else {
|
|
/* PPPPPPPPPP, we're already good.
|
|
* Set nominal values.
|
|
*/
|
|
eye_training_val[byte][0] = 3;
|
|
eye_training_val[byte][1] = 3;
|
|
}
|
|
DQS_phase_delay(phy, byte, eye_training_val[byte][0]);
|
|
DQS_unit_delay(phy, byte, eye_training_val[byte][1]);
|
|
|
|
printf("Byte %d, DQS unit = %d, phase = %d\n",
|
|
byte,
|
|
eye_training_val[byte][1],
|
|
eye_training_val[byte][0]);
|
|
}
|
|
|
|
if (error) {
|
|
sprintf(string, "error = %d", error);
|
|
return TEST_FAILED;
|
|
}
|
|
|
|
return TEST_PASSED;
|
|
}
|
|
|
|
static void display_reg_results(struct stm32mp1_ddrphy *phy, u8 byte)
|
|
{
|
|
u8 i = 0;
|
|
|
|
printf("Byte %d Dekew result, bit0 delay, bit1 delay...bit8 delay\n ",
|
|
byte);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
printf("%d ", DQ_unit_index(phy, byte, i));
|
|
printf("\n");
|
|
|
|
printf("dxndllcr: [%08x] val:%08x\n",
|
|
DXNDLLCR(phy, byte),
|
|
readl(DXNDLLCR(phy, byte)));
|
|
printf("dxnqdstr: [%08x] val:%08x\n",
|
|
DXNDQSTR(phy, byte),
|
|
readl(DXNDQSTR(phy, byte)));
|
|
printf("dxndqtr: [%08x] val:%08x\n",
|
|
DXNDQTR(phy, byte),
|
|
readl(DXNDQTR(phy, byte)));
|
|
}
|
|
|
|
/* analyse the dgs gating log table, and determine the midpoint.*/
|
|
static u8 set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy *phy, u8 byte,
|
|
u8 dqs_gating[NUM_BYTES]
|
|
[MAX_GSL_IDX + 1]
|
|
[MAX_GPS_IDX + 1])
|
|
{
|
|
/* stores the dqs gate values (gsl index, gps index) */
|
|
u8 dqs_gate_values[NUM_BYTES][2];
|
|
u8 gsl_idx, gps_idx = 0;
|
|
u8 left_bound_idx[2] = {0, 0};
|
|
u8 right_bound_idx[2] = {0, 0};
|
|
u8 left_bound_found = 0;
|
|
u8 right_bound_found = 0;
|
|
u8 intermittent = 0;
|
|
u8 value;
|
|
|
|
for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
|
|
for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
|
|
value = dqs_gating[byte][gsl_idx][gps_idx];
|
|
if (value == 1 && left_bound_found == 0) {
|
|
left_bound_idx[0] = gsl_idx;
|
|
left_bound_idx[1] = gps_idx;
|
|
left_bound_found = 1;
|
|
} else if (value == 0 &&
|
|
left_bound_found == 1 &&
|
|
!right_bound_found) {
|
|
if (gps_idx == 0) {
|
|
right_bound_idx[0] = gsl_idx - 1;
|
|
right_bound_idx[1] = MAX_GPS_IDX;
|
|
} else {
|
|
right_bound_idx[0] = gsl_idx;
|
|
right_bound_idx[1] = gps_idx - 1;
|
|
}
|
|
right_bound_found = 1;
|
|
} else if (value == 1 &&
|
|
right_bound_found == 1) {
|
|
intermittent = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if only ppppppp is found, there is no mid region. */
|
|
if (left_bound_idx[0] == 0 && left_bound_idx[1] == 0 &&
|
|
right_bound_idx[0] == 0 && right_bound_idx[1] == 0)
|
|
intermittent = 1;
|
|
|
|
/*if we found a regular fail pass fail pattern ffppppppff
|
|
* or pppppff or ffppppp
|
|
*/
|
|
if (!intermittent) {
|
|
/*if we found a regular fail pass fail pattern ffppppppff
|
|
* or pppppff or ffppppp
|
|
*/
|
|
if (left_bound_found || right_bound_found) {
|
|
pr_debug("idx0(%d): %d %d idx1(%d) : %d %d\n",
|
|
left_bound_found,
|
|
right_bound_idx[0], left_bound_idx[0],
|
|
right_bound_found,
|
|
right_bound_idx[1], left_bound_idx[1]);
|
|
dqs_gate_values[byte][0] =
|
|
(right_bound_idx[0] + left_bound_idx[0]) / 2;
|
|
dqs_gate_values[byte][1] =
|
|
(right_bound_idx[1] + left_bound_idx[1]) / 2;
|
|
/* if we already lost 1/2gsl tuning,
|
|
* let's try to recover by ++ on gps
|
|
*/
|
|
if (((right_bound_idx[0] +
|
|
left_bound_idx[0]) % 2 == 1) &&
|
|
dqs_gate_values[byte][1] != MAX_GPS_IDX)
|
|
dqs_gate_values[byte][1]++;
|
|
/* if we already lost 1/2gsl tuning and gps is on max*/
|
|
else if (((right_bound_idx[0] +
|
|
left_bound_idx[0]) % 2 == 1) &&
|
|
dqs_gate_values[byte][1] == MAX_GPS_IDX) {
|
|
dqs_gate_values[byte][1] = 0;
|
|
dqs_gate_values[byte][0]++;
|
|
}
|
|
/* if we have gsl left and write limit too close
|
|
* (difference=1)
|
|
*/
|
|
if (((right_bound_idx[0] - left_bound_idx[0]) == 1)) {
|
|
dqs_gate_values[byte][1] = (left_bound_idx[1] +
|
|
right_bound_idx[1] +
|
|
4) / 2;
|
|
if (dqs_gate_values[byte][1] >= 4) {
|
|
dqs_gate_values[byte][0] =
|
|
right_bound_idx[0];
|
|
dqs_gate_values[byte][1] -= 4;
|
|
} else {
|
|
dqs_gate_values[byte][0] =
|
|
left_bound_idx[0];
|
|
}
|
|
}
|
|
pr_debug("*******calculating mid region: system latency: %d phase: %d********\n",
|
|
dqs_gate_values[byte][0],
|
|
dqs_gate_values[byte][1]);
|
|
pr_debug("*******the nominal values were system latency: 0 phase: 2*******\n");
|
|
}
|
|
} else {
|
|
/* if intermitant, restore defaut values */
|
|
pr_debug("dqs gating:no regular fail/pass/fail found. defaults values restored.\n");
|
|
dqs_gate_values[byte][0] = 0;
|
|
dqs_gate_values[byte][1] = 2;
|
|
}
|
|
set_r0dgsl_delay(phy, byte, dqs_gate_values[byte][0]);
|
|
set_r0dgps_delay(phy, byte, dqs_gate_values[byte][1]);
|
|
printf("Byte %d, R0DGSL = %d, R0DGPS = %d\n",
|
|
byte, dqs_gate_values[byte][0], dqs_gate_values[byte][1]);
|
|
|
|
/* return 0 if intermittent or if both left_bound
|
|
* and right_bound are not found
|
|
*/
|
|
return !(intermittent || (left_bound_found && right_bound_found));
|
|
}
|
|
|
|
static enum test_result read_dqs_gating(struct stm32mp1_ddrctl *ctl,
|
|
struct stm32mp1_ddrphy *phy,
|
|
char *string)
|
|
{
|
|
/* stores the log of pass/fail */
|
|
u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX + 1][MAX_GPS_IDX + 1];
|
|
u8 byte, gsl_idx, gps_idx = 0;
|
|
struct BIST_result result;
|
|
u8 success = 0;
|
|
u8 nb_bytes = get_nb_bytes(ctl);
|
|
|
|
memset(dqs_gating, 0x0, sizeof(dqs_gating));
|
|
|
|
/*disable dqs drift compensation*/
|
|
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
|
|
/*disable all bytes*/
|
|
/* disable automatic power down of dll and ios when disabling a byte
|
|
* (to avoid having to add programming and delay
|
|
* for a dll re-lock when later re-enabling a disabled byte lane)
|
|
*/
|
|
clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
|
|
|
|
/* disable all data bytes */
|
|
clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
|
|
clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
|
|
clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
|
|
clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
|
|
|
|
/* config the bist block */
|
|
config_BIST(ctl, phy);
|
|
|
|
for (byte = 0; byte < nb_bytes; byte++) {
|
|
if (ctrlc()) {
|
|
sprintf(string, "interrupted at byte %d/%d",
|
|
byte + 1, nb_bytes);
|
|
return TEST_FAILED;
|
|
}
|
|
/* enable byte x (dxngcr, bit dxen) */
|
|
setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
|
|
|
|
/* select the byte lane for comparison of read data */
|
|
BIST_datx8_sel(phy, byte);
|
|
for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
|
|
for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
|
|
if (ctrlc()) {
|
|
sprintf(string,
|
|
"interrupted at byte %d/%d",
|
|
byte + 1, nb_bytes);
|
|
return TEST_FAILED;
|
|
}
|
|
/* write cfg to dxndqstr */
|
|
set_r0dgsl_delay(phy, byte, gsl_idx);
|
|
set_r0dgps_delay(phy, byte, gps_idx);
|
|
|
|
BIST_test(phy, byte, &result);
|
|
success = result.test_result;
|
|
if (success)
|
|
dqs_gating[byte][gsl_idx][gps_idx] = 1;
|
|
itm_soft_reset(phy);
|
|
}
|
|
}
|
|
set_midpoint_read_dqs_gating(phy, byte, dqs_gating);
|
|
/* dummy reads */
|
|
readl(0xc0000000);
|
|
readl(0xc0000000);
|
|
}
|
|
|
|
/* re-enable drift compensation */
|
|
/* setbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); */
|
|
return TEST_PASSED;
|
|
}
|
|
|
|
/****************************************************************
|
|
* TEST
|
|
****************************************************************
|
|
*/
|
|
static enum test_result do_read_dqs_gating(struct stm32mp1_ddrctl *ctl,
|
|
struct stm32mp1_ddrphy *phy,
|
|
char *string, int argc,
|
|
char *argv[])
|
|
{
|
|
u32 rfshctl3 = readl(&ctl->rfshctl3);
|
|
u32 pwrctl = readl(&ctl->pwrctl);
|
|
u32 derateen = readl(&ctl->derateen);
|
|
enum test_result res;
|
|
|
|
writel(0x0, &ctl->derateen);
|
|
stm32mp1_refresh_disable(ctl);
|
|
|
|
res = read_dqs_gating(ctl, phy, string);
|
|
|
|
stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
|
|
writel(derateen, &ctl->derateen);
|
|
|
|
return res;
|
|
}
|
|
|
|
static enum test_result do_bit_deskew(struct stm32mp1_ddrctl *ctl,
|
|
struct stm32mp1_ddrphy *phy,
|
|
char *string, int argc, char *argv[])
|
|
{
|
|
u32 rfshctl3 = readl(&ctl->rfshctl3);
|
|
u32 pwrctl = readl(&ctl->pwrctl);
|
|
u32 derateen = readl(&ctl->derateen);
|
|
enum test_result res;
|
|
|
|
writel(0x0, &ctl->derateen);
|
|
stm32mp1_refresh_disable(ctl);
|
|
|
|
res = bit_deskew(ctl, phy, string);
|
|
|
|
stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
|
|
writel(derateen, &ctl->derateen);
|
|
|
|
return res;
|
|
}
|
|
|
|
static enum test_result do_eye_training(struct stm32mp1_ddrctl *ctl,
|
|
struct stm32mp1_ddrphy *phy,
|
|
char *string, int argc, char *argv[])
|
|
{
|
|
u32 rfshctl3 = readl(&ctl->rfshctl3);
|
|
u32 pwrctl = readl(&ctl->pwrctl);
|
|
u32 derateen = readl(&ctl->derateen);
|
|
enum test_result res;
|
|
|
|
writel(0x0, &ctl->derateen);
|
|
stm32mp1_refresh_disable(ctl);
|
|
|
|
res = eye_training(ctl, phy, string);
|
|
|
|
stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
|
|
writel(derateen, &ctl->derateen);
|
|
|
|
return res;
|
|
}
|
|
|
|
static enum test_result do_display(struct stm32mp1_ddrctl *ctl,
|
|
struct stm32mp1_ddrphy *phy,
|
|
char *string, int argc, char *argv[])
|
|
{
|
|
int byte;
|
|
u8 nb_bytes = get_nb_bytes(ctl);
|
|
|
|
for (byte = 0; byte < nb_bytes; byte++)
|
|
display_reg_results(phy, byte);
|
|
|
|
return TEST_PASSED;
|
|
}
|
|
|
|
static enum test_result do_bist_config(struct stm32mp1_ddrctl *ctl,
|
|
struct stm32mp1_ddrphy *phy,
|
|
char *string, int argc, char *argv[])
|
|
{
|
|
unsigned long value;
|
|
|
|
if (argc > 0) {
|
|
if (strict_strtoul(argv[0], 0, &value) < 0) {
|
|
sprintf(string, "invalid nbErr %s", argv[0]);
|
|
return TEST_FAILED;
|
|
}
|
|
BIST_error_max = value;
|
|
}
|
|
if (argc > 1) {
|
|
if (strict_strtoul(argv[1], 0, &value) < 0) {
|
|
sprintf(string, "invalid Seed %s", argv[1]);
|
|
return TEST_FAILED;
|
|
}
|
|
BIST_seed = value;
|
|
}
|
|
printf("Bist.nbErr = %d\n", BIST_error_max);
|
|
if (BIST_seed)
|
|
printf("Bist.Seed = 0x%x\n", BIST_seed);
|
|
else
|
|
printf("Bist.Seed = random\n");
|
|
|
|
return TEST_PASSED;
|
|
}
|
|
|
|
/****************************************************************
|
|
* TEST Description
|
|
****************************************************************
|
|
*/
|
|
|
|
const struct test_desc tuning[] = {
|
|
{do_read_dqs_gating, "Read DQS gating",
|
|
"software read DQS Gating", "", 0 },
|
|
{do_bit_deskew, "Bit de-skew", "", "", 0 },
|
|
{do_eye_training, "Eye Training", "or DQS training", "", 0 },
|
|
{do_display, "Display registers", "", "", 0 },
|
|
{do_bist_config, "Bist config", "[nbErr] [seed]",
|
|
"configure Bist test", 2},
|
|
};
|
|
|
|
const int tuning_nb = ARRAY_SIZE(tuning);
|