mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-11 05:42:58 +00:00
c5de15cbc8
Freescale's SEC block has built-in Blob Protocol which provides a method for protecting user-defined data across system power cycles. SEC block protects data in a data structure called a Blob, which provides both confidentiality and integrity protection. Encapsulating data as a blob Each time that the Blob Protocol is used to protect data, a different randomly generated key is used to encrypt the data. This random key is itself encrypted using a key which is derived from SoC's non volatile secret key and a 16 bit Key identifier. The resulting encrypted key along with encrypted data is called a blob. The non volatile secure key is available for use only during secure boot. During decapsulation, the reverse process is performed to get back the original data. Commands added -------------- blob enc - encapsulating data as a cryptgraphic blob blob dec - decapsulating cryptgraphic blob to get the data Commands Syntax --------------- blob enc src dst len km Encapsulate and create blob of data $len bytes long at address $src and store the result at address $dst. $km is the 16 byte key modifier is also required for generation/use as key for cryptographic operation. Key modifier should be 16 byte long. blob dec src dst len km Decapsulate the blob of data at address $src and store result of $len byte at addr $dst. $km is the 16 byte key modifier is also required for generation/use as key for cryptographic operation. Key modifier should be 16 byte long. Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com> Reviewed-by: York Sun <yorksun@freescale.com>
125 lines
3.4 KiB
C
125 lines
3.4 KiB
C
/*
|
|
* SEC Descriptor Construction Library
|
|
* Basic job descriptor construction
|
|
*
|
|
* Copyright 2014 Freescale Semiconductor, Inc.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include "desc_constr.h"
|
|
#include "jobdesc.h"
|
|
|
|
#define KEY_BLOB_SIZE 32
|
|
#define MAC_SIZE 16
|
|
|
|
void inline_cnstr_jobdesc_hash(uint32_t *desc,
|
|
const uint8_t *msg, uint32_t msgsz, uint8_t *digest,
|
|
u32 alg_type, uint32_t alg_size, int sg_tbl)
|
|
{
|
|
/* SHA 256 , output is of length 32 words */
|
|
uint32_t storelen = alg_size;
|
|
u32 options;
|
|
dma_addr_t dma_addr_in, dma_addr_out;
|
|
|
|
dma_addr_in = virt_to_phys((void *)msg);
|
|
dma_addr_out = virt_to_phys((void *)digest);
|
|
|
|
init_job_desc(desc, 0);
|
|
append_operation(desc, OP_TYPE_CLASS2_ALG |
|
|
OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL |
|
|
OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type);
|
|
|
|
options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2;
|
|
if (sg_tbl)
|
|
options |= FIFOLDST_SGF;
|
|
if (msgsz > 0xffff) {
|
|
options |= FIFOLDST_EXT;
|
|
append_fifo_load(desc, dma_addr_in, 0, options);
|
|
append_cmd(desc, msgsz);
|
|
} else {
|
|
append_fifo_load(desc, dma_addr_in, msgsz, options);
|
|
}
|
|
|
|
append_store(desc, dma_addr_out, storelen,
|
|
LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT);
|
|
}
|
|
|
|
void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr,
|
|
uint8_t *plain_txt, uint8_t *enc_blob,
|
|
uint32_t in_sz)
|
|
{
|
|
dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
|
|
uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
|
|
/* output blob will have 32 bytes key blob in beginning and
|
|
* 16 byte HMAC identifier at end of data blob */
|
|
uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
|
|
|
|
dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
|
|
dma_addr_in = virt_to_phys((void *)plain_txt);
|
|
dma_addr_out = virt_to_phys((void *)enc_blob);
|
|
|
|
init_job_desc(desc, 0);
|
|
|
|
append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
|
|
|
|
append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
|
|
|
|
append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
|
|
|
|
append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB);
|
|
}
|
|
|
|
void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr,
|
|
uint8_t *enc_blob, uint8_t *plain_txt,
|
|
uint32_t out_sz)
|
|
{
|
|
dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
|
|
uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
|
|
uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE;
|
|
|
|
dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
|
|
dma_addr_in = virt_to_phys((void *)enc_blob);
|
|
dma_addr_out = virt_to_phys((void *)plain_txt);
|
|
|
|
init_job_desc(desc, 0);
|
|
|
|
append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
|
|
|
|
append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
|
|
|
|
append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
|
|
|
|
append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB);
|
|
}
|
|
|
|
/*
|
|
* Descriptor to instantiate RNG State Handle 0 in normal mode and
|
|
* load the JDKEK, TDKEK and TDSK registers
|
|
*/
|
|
void inline_cnstr_jobdesc_rng_instantiation(uint32_t *desc)
|
|
{
|
|
u32 *jump_cmd;
|
|
|
|
init_job_desc(desc, 0);
|
|
|
|
/* INIT RNG in non-test mode */
|
|
append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
|
|
OP_ALG_AS_INIT);
|
|
|
|
/* wait for done */
|
|
jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1);
|
|
set_jump_tgt_here(desc, jump_cmd);
|
|
|
|
/*
|
|
* load 1 to clear written reg:
|
|
* resets the done interrrupt and returns the RNG to idle.
|
|
*/
|
|
append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW);
|
|
|
|
/* generate secure keys (non-test) */
|
|
append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
|
|
OP_ALG_RNG4_SK);
|
|
}
|