u-boot/drivers/spi/rockchip_sfc.c
Jonas Karlman f02cbff67d spi: rockchip_sfc: Use linux rockchip,sfc-no-dma prop
Use the same prop as linux to control the use of fifo or dma mode. Also
add a u-boot,spl-sfc-no-dma prop to control the same in SPL.

Signed-off-by: Jonas Karlman <jonas@kwiboo.se>
Reviewed-by: Kever Yang <kever.yang@rock-chips.com>
2023-05-18 08:44:04 +08:00

646 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Rockchip Serial Flash Controller Driver
*
* Copyright (c) 2017-2021, Rockchip Inc.
* Author: Shawn Lin <shawn.lin@rock-chips.com>
* Chris Morgan <macromorgan@hotmail.com>
* Jon Lin <Jon.lin@rock-chips.com>
*/
#include <asm/io.h>
#include <bouncebuf.h>
#include <clk.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <spi.h>
#include <spi-mem.h>
/* System control */
#define SFC_CTRL 0x0
#define SFC_CTRL_PHASE_SEL_NEGETIVE BIT(1)
#define SFC_CTRL_CMD_BITS_SHIFT 8
#define SFC_CTRL_ADDR_BITS_SHIFT 10
#define SFC_CTRL_DATA_BITS_SHIFT 12
/* Interrupt mask */
#define SFC_IMR 0x4
#define SFC_IMR_RX_FULL BIT(0)
#define SFC_IMR_RX_UFLOW BIT(1)
#define SFC_IMR_TX_OFLOW BIT(2)
#define SFC_IMR_TX_EMPTY BIT(3)
#define SFC_IMR_TRAN_FINISH BIT(4)
#define SFC_IMR_BUS_ERR BIT(5)
#define SFC_IMR_NSPI_ERR BIT(6)
#define SFC_IMR_DMA BIT(7)
/* Interrupt clear */
#define SFC_ICLR 0x8
#define SFC_ICLR_RX_FULL BIT(0)
#define SFC_ICLR_RX_UFLOW BIT(1)
#define SFC_ICLR_TX_OFLOW BIT(2)
#define SFC_ICLR_TX_EMPTY BIT(3)
#define SFC_ICLR_TRAN_FINISH BIT(4)
#define SFC_ICLR_BUS_ERR BIT(5)
#define SFC_ICLR_NSPI_ERR BIT(6)
#define SFC_ICLR_DMA BIT(7)
/* FIFO threshold level */
#define SFC_FTLR 0xc
#define SFC_FTLR_TX_SHIFT 0
#define SFC_FTLR_TX_MASK 0x1f
#define SFC_FTLR_RX_SHIFT 8
#define SFC_FTLR_RX_MASK 0x1f
/* Reset FSM and FIFO */
#define SFC_RCVR 0x10
#define SFC_RCVR_RESET BIT(0)
/* Enhanced mode */
#define SFC_AX 0x14
/* Address Bit number */
#define SFC_ABIT 0x18
/* Interrupt status */
#define SFC_ISR 0x1c
#define SFC_ISR_RX_FULL_SHIFT BIT(0)
#define SFC_ISR_RX_UFLOW_SHIFT BIT(1)
#define SFC_ISR_TX_OFLOW_SHIFT BIT(2)
#define SFC_ISR_TX_EMPTY_SHIFT BIT(3)
#define SFC_ISR_TX_FINISH_SHIFT BIT(4)
#define SFC_ISR_BUS_ERR_SHIFT BIT(5)
#define SFC_ISR_NSPI_ERR_SHIFT BIT(6)
#define SFC_ISR_DMA_SHIFT BIT(7)
/* FIFO status */
#define SFC_FSR 0x20
#define SFC_FSR_TX_IS_FULL BIT(0)
#define SFC_FSR_TX_IS_EMPTY BIT(1)
#define SFC_FSR_RX_IS_EMPTY BIT(2)
#define SFC_FSR_RX_IS_FULL BIT(3)
#define SFC_FSR_TXLV_MASK GENMASK(12, 8)
#define SFC_FSR_TXLV_SHIFT 8
#define SFC_FSR_RXLV_MASK GENMASK(20, 16)
#define SFC_FSR_RXLV_SHIFT 16
/* FSM status */
#define SFC_SR 0x24
#define SFC_SR_IS_IDLE 0x0
#define SFC_SR_IS_BUSY 0x1
/* Raw interrupt status */
#define SFC_RISR 0x28
#define SFC_RISR_RX_FULL BIT(0)
#define SFC_RISR_RX_UNDERFLOW BIT(1)
#define SFC_RISR_TX_OVERFLOW BIT(2)
#define SFC_RISR_TX_EMPTY BIT(3)
#define SFC_RISR_TRAN_FINISH BIT(4)
#define SFC_RISR_BUS_ERR BIT(5)
#define SFC_RISR_NSPI_ERR BIT(6)
#define SFC_RISR_DMA BIT(7)
/* Version */
#define SFC_VER 0x2C
#define SFC_VER_3 0x3
#define SFC_VER_4 0x4
#define SFC_VER_5 0x5
/* Delay line controller resiter */
#define SFC_DLL_CTRL0 0x3C
#define SFC_DLL_CTRL0_SCLK_SMP_DLL BIT(15)
#define SFC_DLL_CTRL0_DLL_MAX_VER4 0xFFU
#define SFC_DLL_CTRL0_DLL_MAX_VER5 0x1FFU
/* Master trigger */
#define SFC_DMA_TRIGGER 0x80
#define SFC_DMA_TRIGGER_START 1
/* Src or Dst addr for master */
#define SFC_DMA_ADDR 0x84
/* Length control register extension 32GB */
#define SFC_LEN_CTRL 0x88
#define SFC_LEN_CTRL_TRB_SEL 1
#define SFC_LEN_EXT 0x8C
/* Command */
#define SFC_CMD 0x100
#define SFC_CMD_IDX_SHIFT 0
#define SFC_CMD_DUMMY_SHIFT 8
#define SFC_CMD_DIR_SHIFT 12
#define SFC_CMD_DIR_RD 0
#define SFC_CMD_DIR_WR 1
#define SFC_CMD_ADDR_SHIFT 14
#define SFC_CMD_ADDR_0BITS 0
#define SFC_CMD_ADDR_24BITS 1
#define SFC_CMD_ADDR_32BITS 2
#define SFC_CMD_ADDR_XBITS 3
#define SFC_CMD_TRAN_BYTES_SHIFT 16
#define SFC_CMD_CS_SHIFT 30
/* Address */
#define SFC_ADDR 0x104
/* Data */
#define SFC_DATA 0x108
/* The controller and documentation reports that it supports up to 4 CS
* devices (0-3), however I have only been able to test a single CS (CS 0)
* due to the configuration of my device.
*/
#define SFC_MAX_CHIPSELECT_NUM 4
/* The SFC can transfer max 16KB - 1 at one time
* we set it to 15.5KB here for alignment.
*/
#define SFC_MAX_IOSIZE_VER3 (512 * 31)
#define SFC_MAX_IOSIZE_VER4 (0xFFFFFFFFU)
/* DMA is only enabled for large data transmission */
#define SFC_DMA_TRANS_THRETHOLD (0x40)
/* Maximum clock values from datasheet suggest keeping clock value under
* 150MHz. No minimum or average value is suggested.
*/
#define SFC_MAX_SPEED (150 * 1000 * 1000)
struct rockchip_sfc {
struct udevice *dev;
void __iomem *regbase;
struct clk hclk;
struct clk clk;
u32 max_freq;
u32 speed;
bool use_dma;
u32 max_iosize;
u16 version;
};
static int rockchip_sfc_reset(struct rockchip_sfc *sfc)
{
int err;
u32 status;
writel(SFC_RCVR_RESET, sfc->regbase + SFC_RCVR);
err = readl_poll_timeout(sfc->regbase + SFC_RCVR, status,
!(status & SFC_RCVR_RESET),
1000000);
if (err)
printf("SFC reset never finished\n");
/* Still need to clear the masked interrupt from RISR */
writel(0xFFFFFFFF, sfc->regbase + SFC_ICLR);
return err;
}
static u16 rockchip_sfc_get_version(struct rockchip_sfc *sfc)
{
return (u16)(readl(sfc->regbase + SFC_VER) & 0xffff);
}
static u32 rockchip_sfc_get_max_iosize(struct rockchip_sfc *sfc)
{
if (rockchip_sfc_get_version(sfc) >= SFC_VER_4)
return SFC_MAX_IOSIZE_VER4;
return SFC_MAX_IOSIZE_VER3;
}
static int rockchip_sfc_init(struct rockchip_sfc *sfc)
{
writel(0, sfc->regbase + SFC_CTRL);
if (rockchip_sfc_get_version(sfc) >= SFC_VER_4)
writel(SFC_LEN_CTRL_TRB_SEL, sfc->regbase + SFC_LEN_CTRL);
return 0;
}
static int rockchip_sfc_ofdata_to_platdata(struct udevice *bus)
{
struct rockchip_sfc *sfc = dev_get_plat(bus);
sfc->regbase = dev_read_addr_ptr(bus);
sfc->use_dma = !dev_read_bool(bus, "rockchip,sfc-no-dma");
if (IS_ENABLED(CONFIG_SPL_BUILD) && sfc->use_dma)
sfc->use_dma = !dev_read_bool(bus, "u-boot,spl-sfc-no-dma");
#if CONFIG_IS_ENABLED(CLK)
int ret;
ret = clk_get_by_index(bus, 0, &sfc->clk);
if (ret < 0) {
printf("Could not get clock for %s: %d\n", bus->name, ret);
return ret;
}
ret = clk_get_by_index(bus, 1, &sfc->hclk);
if (ret < 0) {
printf("Could not get ahb clock for %s: %d\n", bus->name, ret);
return ret;
}
#endif
return 0;
}
static int rockchip_sfc_probe(struct udevice *bus)
{
struct rockchip_sfc *sfc = dev_get_plat(bus);
int ret;
#if CONFIG_IS_ENABLED(CLK)
ret = clk_enable(&sfc->hclk);
if (ret)
dev_dbg(sfc->dev, "sfc Enable ahb clock fail %s: %d\n", bus->name, ret);
ret = clk_enable(&sfc->clk);
if (ret)
dev_dbg(sfc->dev, "sfc Enable clock fail for %s: %d\n", bus->name, ret);
#endif
ret = rockchip_sfc_init(sfc);
if (ret)
goto err_init;
sfc->max_iosize = rockchip_sfc_get_max_iosize(sfc);
sfc->version = rockchip_sfc_get_version(sfc);
sfc->max_freq = SFC_MAX_SPEED;
sfc->dev = bus;
return 0;
err_init:
#if CONFIG_IS_ENABLED(CLK)
clk_disable(&sfc->clk);
clk_disable(&sfc->hclk);
#endif
return ret;
}
static int rockchip_sfc_wait_txfifo_ready(struct rockchip_sfc *sfc, u32 timeout_us)
{
int ret = 0;
u32 status;
ret = readl_poll_timeout(sfc->regbase + SFC_FSR, status,
status & SFC_FSR_TXLV_MASK,
timeout_us);
if (ret) {
dev_dbg(sfc->dev, "sfc wait tx fifo timeout\n");
return -ETIMEDOUT;
}
return (status & SFC_FSR_TXLV_MASK) >> SFC_FSR_TXLV_SHIFT;
}
static int rockchip_sfc_wait_rxfifo_ready(struct rockchip_sfc *sfc, u32 timeout_us)
{
int ret = 0;
u32 status;
ret = readl_poll_timeout(sfc->regbase + SFC_FSR, status,
status & SFC_FSR_RXLV_MASK,
timeout_us);
if (ret) {
dev_dbg(sfc->dev, "sfc wait rx fifo timeout\n");
return -ETIMEDOUT;
}
return (status & SFC_FSR_RXLV_MASK) >> SFC_FSR_RXLV_SHIFT;
}
static void rockchip_sfc_adjust_op_work(struct spi_mem_op *op)
{
if (unlikely(op->dummy.nbytes && !op->addr.nbytes)) {
/*
* SFC not support output DUMMY cycles right after CMD cycles, so
* treat it as ADDR cycles.
*/
op->addr.nbytes = op->dummy.nbytes;
op->addr.buswidth = op->dummy.buswidth;
op->addr.val = 0xFFFFFFFFF;
op->dummy.nbytes = 0;
}
}
static int rockchip_sfc_wait_for_dma_finished(struct rockchip_sfc *sfc, int timeout)
{
unsigned long tbase;
/* Wait for the DMA interrupt status */
tbase = get_timer(0);
while (!(readl(sfc->regbase + SFC_RISR) & SFC_RISR_DMA)) {
if (get_timer(tbase) > timeout) {
printf("dma timeout\n");
rockchip_sfc_reset(sfc);
return -ETIMEDOUT;
}
udelay(1);
}
writel(0xFFFFFFFF, sfc->regbase + SFC_ICLR);
return 0;
}
static int rockchip_sfc_xfer_setup(struct rockchip_sfc *sfc,
struct spi_slave *mem,
const struct spi_mem_op *op,
u32 len)
{
struct dm_spi_slave_plat *plat = dev_get_parent_plat(mem->dev);
u32 ctrl = 0, cmd = 0;
/* set CMD */
cmd = op->cmd.opcode;
ctrl |= ((op->cmd.buswidth >> 1) << SFC_CTRL_CMD_BITS_SHIFT);
/* set ADDR */
if (op->addr.nbytes) {
if (op->addr.nbytes == 4) {
cmd |= SFC_CMD_ADDR_32BITS << SFC_CMD_ADDR_SHIFT;
} else if (op->addr.nbytes == 3) {
cmd |= SFC_CMD_ADDR_24BITS << SFC_CMD_ADDR_SHIFT;
} else {
cmd |= SFC_CMD_ADDR_XBITS << SFC_CMD_ADDR_SHIFT;
writel(op->addr.nbytes * 8 - 1, sfc->regbase + SFC_ABIT);
}
ctrl |= ((op->addr.buswidth >> 1) << SFC_CTRL_ADDR_BITS_SHIFT);
}
/* set DUMMY */
if (op->dummy.nbytes) {
if (op->dummy.buswidth == 4)
cmd |= op->dummy.nbytes * 2 << SFC_CMD_DUMMY_SHIFT;
else if (op->dummy.buswidth == 2)
cmd |= op->dummy.nbytes * 4 << SFC_CMD_DUMMY_SHIFT;
else
cmd |= op->dummy.nbytes * 8 << SFC_CMD_DUMMY_SHIFT;
}
/* set DATA */
if (sfc->version >= SFC_VER_4) /* Clear it if no data to transfer */
writel(len, sfc->regbase + SFC_LEN_EXT);
else
cmd |= len << SFC_CMD_TRAN_BYTES_SHIFT;
if (len) {
if (op->data.dir == SPI_MEM_DATA_OUT)
cmd |= SFC_CMD_DIR_WR << SFC_CMD_DIR_SHIFT;
ctrl |= ((op->data.buswidth >> 1) << SFC_CTRL_DATA_BITS_SHIFT);
}
if (!len && op->addr.nbytes)
cmd |= SFC_CMD_DIR_WR << SFC_CMD_DIR_SHIFT;
/* set the Controller */
ctrl |= SFC_CTRL_PHASE_SEL_NEGETIVE;
cmd |= plat->cs << SFC_CMD_CS_SHIFT;
dev_dbg(sfc->dev, "sfc addr.nbytes=%x(x%d) dummy.nbytes=%x(x%d)\n",
op->addr.nbytes, op->addr.buswidth,
op->dummy.nbytes, op->dummy.buswidth);
dev_dbg(sfc->dev, "sfc ctrl=%x cmd=%x addr=%llx len=%x\n",
ctrl, cmd, op->addr.val, len);
writel(ctrl, sfc->regbase + SFC_CTRL);
writel(cmd, sfc->regbase + SFC_CMD);
if (op->addr.nbytes)
writel(op->addr.val, sfc->regbase + SFC_ADDR);
return 0;
}
static int rockchip_sfc_write_fifo(struct rockchip_sfc *sfc, const u8 *buf, int len)
{
u8 bytes = len & 0x3;
u32 dwords;
int tx_level;
u32 write_words;
u32 tmp = 0;
dwords = len >> 2;
while (dwords) {
tx_level = rockchip_sfc_wait_txfifo_ready(sfc, 1000);
if (tx_level < 0)
return tx_level;
write_words = min_t(u32, tx_level, dwords);
writesl(sfc->regbase + SFC_DATA, buf, write_words);
buf += write_words << 2;
dwords -= write_words;
}
/* write the rest non word aligned bytes */
if (bytes) {
tx_level = rockchip_sfc_wait_txfifo_ready(sfc, 1000);
if (tx_level < 0)
return tx_level;
memcpy(&tmp, buf, bytes);
writel(tmp, sfc->regbase + SFC_DATA);
}
return len;
}
static int rockchip_sfc_read_fifo(struct rockchip_sfc *sfc, u8 *buf, int len)
{
u8 bytes = len & 0x3;
u32 dwords;
u8 read_words;
int rx_level;
int tmp;
/* word aligned access only */
dwords = len >> 2;
while (dwords) {
rx_level = rockchip_sfc_wait_rxfifo_ready(sfc, 1000);
if (rx_level < 0)
return rx_level;
read_words = min_t(u32, rx_level, dwords);
readsl(sfc->regbase + SFC_DATA, buf, read_words);
buf += read_words << 2;
dwords -= read_words;
}
/* read the rest non word aligned bytes */
if (bytes) {
rx_level = rockchip_sfc_wait_rxfifo_ready(sfc, 1000);
if (rx_level < 0)
return rx_level;
tmp = readl(sfc->regbase + SFC_DATA);
memcpy(buf, &tmp, bytes);
}
return len;
}
static int rockchip_sfc_fifo_transfer_dma(struct rockchip_sfc *sfc, dma_addr_t dma_buf, size_t len)
{
writel(0xFFFFFFFF, sfc->regbase + SFC_ICLR);
writel((u32)dma_buf, sfc->regbase + SFC_DMA_ADDR);
writel(SFC_DMA_TRIGGER_START, sfc->regbase + SFC_DMA_TRIGGER);
return len;
}
static int rockchip_sfc_xfer_data_poll(struct rockchip_sfc *sfc,
const struct spi_mem_op *op, u32 len)
{
dev_dbg(sfc->dev, "sfc xfer_poll len=%x\n", len);
if (op->data.dir == SPI_MEM_DATA_OUT)
return rockchip_sfc_write_fifo(sfc, op->data.buf.out, len);
else
return rockchip_sfc_read_fifo(sfc, op->data.buf.in, len);
}
static int rockchip_sfc_xfer_data_dma(struct rockchip_sfc *sfc,
const struct spi_mem_op *op, u32 len)
{
struct bounce_buffer bb;
unsigned int bb_flags;
void *dma_buf;
int ret;
dev_dbg(sfc->dev, "sfc xfer_dma len=%x\n", len);
if (op->data.dir == SPI_MEM_DATA_OUT) {
dma_buf = (void *)op->data.buf.out;
bb_flags = GEN_BB_READ;
} else {
dma_buf = (void *)op->data.buf.in;
bb_flags = GEN_BB_WRITE;
}
ret = bounce_buffer_start(&bb, dma_buf, len, bb_flags);
if (ret)
return ret;
ret = rockchip_sfc_fifo_transfer_dma(sfc, (dma_addr_t)bb.bounce_buffer, len);
rockchip_sfc_wait_for_dma_finished(sfc, len * 10);
bounce_buffer_stop(&bb);
return ret;
}
static int rockchip_sfc_xfer_done(struct rockchip_sfc *sfc, u32 timeout_us)
{
int ret = 0;
u32 status;
ret = readl_poll_timeout(sfc->regbase + SFC_SR, status,
!(status & SFC_SR_IS_BUSY),
timeout_us);
if (ret) {
dev_err(sfc->dev, "wait sfc idle timeout\n");
rockchip_sfc_reset(sfc);
ret = -EIO;
}
return ret;
}
static int rockchip_sfc_exec_op(struct spi_slave *mem,
const struct spi_mem_op *op)
{
struct rockchip_sfc *sfc = dev_get_plat(mem->dev->parent);
u32 len = min_t(u32, op->data.nbytes, sfc->max_iosize);
int ret;
rockchip_sfc_adjust_op_work((struct spi_mem_op *)op);
rockchip_sfc_xfer_setup(sfc, mem, op, len);
if (len) {
if (likely(sfc->use_dma) && len >= SFC_DMA_TRANS_THRETHOLD)
ret = rockchip_sfc_xfer_data_dma(sfc, op, len);
else
ret = rockchip_sfc_xfer_data_poll(sfc, op, len);
if (ret != len) {
dev_err(sfc->dev, "xfer data failed ret %d dir %d\n", ret, op->data.dir);
return -EIO;
}
}
return rockchip_sfc_xfer_done(sfc, 100000);
}
static int rockchip_sfc_adjust_op_size(struct spi_slave *mem, struct spi_mem_op *op)
{
struct rockchip_sfc *sfc = dev_get_plat(mem->dev->parent);
op->data.nbytes = min(op->data.nbytes, sfc->max_iosize);
return 0;
}
static int rockchip_sfc_set_speed(struct udevice *bus, uint speed)
{
struct rockchip_sfc *sfc = dev_get_plat(bus);
if (speed > sfc->max_freq)
speed = sfc->max_freq;
if (speed == sfc->speed)
return 0;
#if CONFIG_IS_ENABLED(CLK)
int ret = clk_set_rate(&sfc->clk, speed);
if (ret < 0) {
dev_err(sfc->dev, "set_freq=%dHz fail, check if it's the cru support level\n",
speed);
return ret;
}
sfc->speed = speed;
#else
dev_dbg(sfc->dev, "sfc failed, CLK not support\n");
#endif
return 0;
}
static int rockchip_sfc_set_mode(struct udevice *bus, uint mode)
{
return 0;
}
static const struct spi_controller_mem_ops rockchip_sfc_mem_ops = {
.adjust_op_size = rockchip_sfc_adjust_op_size,
.exec_op = rockchip_sfc_exec_op,
};
static const struct dm_spi_ops rockchip_sfc_ops = {
.mem_ops = &rockchip_sfc_mem_ops,
.set_speed = rockchip_sfc_set_speed,
.set_mode = rockchip_sfc_set_mode,
};
static const struct udevice_id rockchip_sfc_ids[] = {
{ .compatible = "rockchip,sfc"},
{},
};
U_BOOT_DRIVER(rockchip_sfc_driver) = {
.name = "rockchip_sfc",
.id = UCLASS_SPI,
.of_match = rockchip_sfc_ids,
.ops = &rockchip_sfc_ops,
.of_to_plat = rockchip_sfc_ofdata_to_platdata,
.plat_auto = sizeof(struct rockchip_sfc),
.probe = rockchip_sfc_probe,
};