mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-30 00:21:06 +00:00
d3963721d9
Update the NAND code to match Linux v4.1. The previous sync was
from Linux v3.15 in commit 4e67c57125
.
CONFIG_SYS_NAND_RESET_CNT is removed, as the upstream Linux code now
has its own timeout. Plus, CONFIG_SYS_NAND_RESET_CNT was undocumented
and not selected by any board.
Signed-off-by: Scott Wood <scottwood@freescale.com>
1292 lines
35 KiB
C
1292 lines
35 KiB
C
/*
|
|
* Copyright (C) 2014 Panasonic Corporation
|
|
* Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
|
|
* Copyright (C) 2009-2010, Intel Corporation and its suppliers.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <malloc.h>
|
|
#include <nand.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/io.h>
|
|
|
|
#include "denali.h"
|
|
|
|
#define NAND_DEFAULT_TIMINGS -1
|
|
|
|
static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
|
|
|
|
/*
|
|
* We define a macro here that combines all interrupts this driver uses into
|
|
* a single constant value, for convenience.
|
|
*/
|
|
#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
|
|
INTR_STATUS__ECC_TRANSACTION_DONE | \
|
|
INTR_STATUS__ECC_ERR | \
|
|
INTR_STATUS__PROGRAM_FAIL | \
|
|
INTR_STATUS__LOAD_COMP | \
|
|
INTR_STATUS__PROGRAM_COMP | \
|
|
INTR_STATUS__TIME_OUT | \
|
|
INTR_STATUS__ERASE_FAIL | \
|
|
INTR_STATUS__RST_COMP | \
|
|
INTR_STATUS__ERASE_COMP | \
|
|
INTR_STATUS__ECC_UNCOR_ERR | \
|
|
INTR_STATUS__INT_ACT | \
|
|
INTR_STATUS__LOCKED_BLK)
|
|
|
|
/*
|
|
* indicates whether or not the internal value for the flash bank is
|
|
* valid or not
|
|
*/
|
|
#define CHIP_SELECT_INVALID -1
|
|
|
|
#define SUPPORT_8BITECC 1
|
|
|
|
/*
|
|
* this macro allows us to convert from an MTD structure to our own
|
|
* device context (denali) structure.
|
|
*/
|
|
#define mtd_to_denali(m) container_of(m->priv, struct denali_nand_info, nand)
|
|
|
|
/*
|
|
* These constants are defined by the driver to enable common driver
|
|
* configuration options.
|
|
*/
|
|
#define SPARE_ACCESS 0x41
|
|
#define MAIN_ACCESS 0x42
|
|
#define MAIN_SPARE_ACCESS 0x43
|
|
#define PIPELINE_ACCESS 0x2000
|
|
|
|
#define DENALI_UNLOCK_START 0x10
|
|
#define DENALI_UNLOCK_END 0x11
|
|
#define DENALI_LOCK 0x21
|
|
#define DENALI_LOCK_TIGHT 0x31
|
|
#define DENALI_BUFFER_LOAD 0x60
|
|
#define DENALI_BUFFER_WRITE 0x62
|
|
|
|
#define DENALI_READ 0
|
|
#define DENALI_WRITE 0x100
|
|
|
|
/* types of device accesses. We can issue commands and get status */
|
|
#define COMMAND_CYCLE 0
|
|
#define ADDR_CYCLE 1
|
|
#define STATUS_CYCLE 2
|
|
|
|
/*
|
|
* this is a helper macro that allows us to
|
|
* format the bank into the proper bits for the controller
|
|
*/
|
|
#define BANK(x) ((x) << 24)
|
|
|
|
/* Interrupts are cleared by writing a 1 to the appropriate status bit */
|
|
static inline void clear_interrupt(struct denali_nand_info *denali,
|
|
uint32_t irq_mask)
|
|
{
|
|
uint32_t intr_status_reg;
|
|
|
|
intr_status_reg = INTR_STATUS(denali->flash_bank);
|
|
|
|
writel(irq_mask, denali->flash_reg + intr_status_reg);
|
|
}
|
|
|
|
static uint32_t read_interrupt_status(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t intr_status_reg;
|
|
|
|
intr_status_reg = INTR_STATUS(denali->flash_bank);
|
|
|
|
return readl(denali->flash_reg + intr_status_reg);
|
|
}
|
|
|
|
static void clear_interrupts(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t status;
|
|
|
|
status = read_interrupt_status(denali);
|
|
clear_interrupt(denali, status);
|
|
|
|
denali->irq_status = 0;
|
|
}
|
|
|
|
static void denali_irq_enable(struct denali_nand_info *denali,
|
|
uint32_t int_mask)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < denali->max_banks; ++i)
|
|
writel(int_mask, denali->flash_reg + INTR_EN(i));
|
|
}
|
|
|
|
static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
|
|
{
|
|
unsigned long timeout = 1000000;
|
|
uint32_t intr_status;
|
|
|
|
do {
|
|
intr_status = read_interrupt_status(denali) & DENALI_IRQ_ALL;
|
|
if (intr_status & irq_mask) {
|
|
denali->irq_status &= ~irq_mask;
|
|
/* our interrupt was detected */
|
|
break;
|
|
}
|
|
udelay(1);
|
|
timeout--;
|
|
} while (timeout != 0);
|
|
|
|
if (timeout == 0) {
|
|
/* timeout */
|
|
printf("Denali timeout with interrupt status %08x\n",
|
|
read_interrupt_status(denali));
|
|
intr_status = 0;
|
|
}
|
|
return intr_status;
|
|
}
|
|
|
|
/*
|
|
* Certain operations for the denali NAND controller use an indexed mode to
|
|
* read/write data. The operation is performed by writing the address value
|
|
* of the command to the device memory followed by the data. This function
|
|
* abstracts this common operation.
|
|
*/
|
|
static void index_addr(struct denali_nand_info *denali,
|
|
uint32_t address, uint32_t data)
|
|
{
|
|
writel(address, denali->flash_mem + INDEX_CTRL_REG);
|
|
writel(data, denali->flash_mem + INDEX_DATA_REG);
|
|
}
|
|
|
|
/* Perform an indexed read of the device */
|
|
static void index_addr_read_data(struct denali_nand_info *denali,
|
|
uint32_t address, uint32_t *pdata)
|
|
{
|
|
writel(address, denali->flash_mem + INDEX_CTRL_REG);
|
|
*pdata = readl(denali->flash_mem + INDEX_DATA_REG);
|
|
}
|
|
|
|
/*
|
|
* We need to buffer some data for some of the NAND core routines.
|
|
* The operations manage buffering that data.
|
|
*/
|
|
static void reset_buf(struct denali_nand_info *denali)
|
|
{
|
|
denali->buf.head = 0;
|
|
denali->buf.tail = 0;
|
|
}
|
|
|
|
static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
|
|
{
|
|
denali->buf.buf[denali->buf.tail++] = byte;
|
|
}
|
|
|
|
/* resets a specific device connected to the core */
|
|
static void reset_bank(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t irq_status;
|
|
uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
|
|
|
|
clear_interrupts(denali);
|
|
|
|
writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
|
|
|
|
irq_status = wait_for_irq(denali, irq_mask);
|
|
if (irq_status & INTR_STATUS__TIME_OUT)
|
|
debug("reset bank failed.\n");
|
|
}
|
|
|
|
/* Reset the flash controller */
|
|
static uint32_t denali_nand_reset(struct denali_nand_info *denali)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < denali->max_banks; i++)
|
|
writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
|
|
denali->flash_reg + INTR_STATUS(i));
|
|
|
|
for (i = 0; i < denali->max_banks; i++) {
|
|
writel(1 << i, denali->flash_reg + DEVICE_RESET);
|
|
while (!(readl(denali->flash_reg + INTR_STATUS(i)) &
|
|
(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
|
|
if (readl(denali->flash_reg + INTR_STATUS(i)) &
|
|
INTR_STATUS__TIME_OUT)
|
|
debug("NAND Reset operation timed out on bank"
|
|
" %d\n", i);
|
|
}
|
|
|
|
for (i = 0; i < denali->max_banks; i++)
|
|
writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
|
|
denali->flash_reg + INTR_STATUS(i));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this routine calculates the ONFI timing values for a given mode and
|
|
* programs the clocking register accordingly. The mode is determined by
|
|
* the get_onfi_nand_para routine.
|
|
*/
|
|
static void nand_onfi_timing_set(struct denali_nand_info *denali,
|
|
uint16_t mode)
|
|
{
|
|
uint32_t trea[6] = {40, 30, 25, 20, 20, 16};
|
|
uint32_t trp[6] = {50, 25, 17, 15, 12, 10};
|
|
uint32_t treh[6] = {30, 15, 15, 10, 10, 7};
|
|
uint32_t trc[6] = {100, 50, 35, 30, 25, 20};
|
|
uint32_t trhoh[6] = {0, 15, 15, 15, 15, 15};
|
|
uint32_t trloh[6] = {0, 0, 0, 0, 5, 5};
|
|
uint32_t tcea[6] = {100, 45, 30, 25, 25, 25};
|
|
uint32_t tadl[6] = {200, 100, 100, 100, 70, 70};
|
|
uint32_t trhw[6] = {200, 100, 100, 100, 100, 100};
|
|
uint32_t trhz[6] = {200, 100, 100, 100, 100, 100};
|
|
uint32_t twhr[6] = {120, 80, 80, 60, 60, 60};
|
|
uint32_t tcs[6] = {70, 35, 25, 25, 20, 15};
|
|
|
|
uint32_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
|
|
uint32_t dv_window = 0;
|
|
uint32_t en_lo, en_hi;
|
|
uint32_t acc_clks;
|
|
uint32_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
|
|
|
|
en_lo = DIV_ROUND_UP(trp[mode], CLK_X);
|
|
en_hi = DIV_ROUND_UP(treh[mode], CLK_X);
|
|
if ((en_hi * CLK_X) < (treh[mode] + 2))
|
|
en_hi++;
|
|
|
|
if ((en_lo + en_hi) * CLK_X < trc[mode])
|
|
en_lo += DIV_ROUND_UP((trc[mode] - (en_lo + en_hi) * CLK_X),
|
|
CLK_X);
|
|
|
|
if ((en_lo + en_hi) < CLK_MULTI)
|
|
en_lo += CLK_MULTI - en_lo - en_hi;
|
|
|
|
while (dv_window < 8) {
|
|
data_invalid_rhoh = en_lo * CLK_X + trhoh[mode];
|
|
|
|
data_invalid_rloh = (en_lo + en_hi) * CLK_X + trloh[mode];
|
|
|
|
data_invalid = data_invalid_rhoh < data_invalid_rloh ?
|
|
data_invalid_rhoh : data_invalid_rloh;
|
|
|
|
dv_window = data_invalid - trea[mode];
|
|
|
|
if (dv_window < 8)
|
|
en_lo++;
|
|
}
|
|
|
|
acc_clks = DIV_ROUND_UP(trea[mode], CLK_X);
|
|
|
|
while (acc_clks * CLK_X - trea[mode] < 3)
|
|
acc_clks++;
|
|
|
|
if (data_invalid - acc_clks * CLK_X < 2)
|
|
debug("%s, Line %d: Warning!\n", __FILE__, __LINE__);
|
|
|
|
addr_2_data = DIV_ROUND_UP(tadl[mode], CLK_X);
|
|
re_2_we = DIV_ROUND_UP(trhw[mode], CLK_X);
|
|
re_2_re = DIV_ROUND_UP(trhz[mode], CLK_X);
|
|
we_2_re = DIV_ROUND_UP(twhr[mode], CLK_X);
|
|
cs_cnt = DIV_ROUND_UP((tcs[mode] - trp[mode]), CLK_X);
|
|
if (cs_cnt == 0)
|
|
cs_cnt = 1;
|
|
|
|
if (tcea[mode]) {
|
|
while (cs_cnt * CLK_X + trea[mode] < tcea[mode])
|
|
cs_cnt++;
|
|
}
|
|
|
|
/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
|
|
if (readl(denali->flash_reg + MANUFACTURER_ID) == 0 &&
|
|
readl(denali->flash_reg + DEVICE_ID) == 0x88)
|
|
acc_clks = 6;
|
|
|
|
writel(acc_clks, denali->flash_reg + ACC_CLKS);
|
|
writel(re_2_we, denali->flash_reg + RE_2_WE);
|
|
writel(re_2_re, denali->flash_reg + RE_2_RE);
|
|
writel(we_2_re, denali->flash_reg + WE_2_RE);
|
|
writel(addr_2_data, denali->flash_reg + ADDR_2_DATA);
|
|
writel(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
|
|
writel(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
|
|
writel(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
|
|
}
|
|
|
|
/* queries the NAND device to see what ONFI modes it supports. */
|
|
static uint32_t get_onfi_nand_para(struct denali_nand_info *denali)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* we needn't to do a reset here because driver has already
|
|
* reset all the banks before
|
|
*/
|
|
if (!(readl(denali->flash_reg + ONFI_TIMING_MODE) &
|
|
ONFI_TIMING_MODE__VALUE))
|
|
return -EIO;
|
|
|
|
for (i = 5; i > 0; i--) {
|
|
if (readl(denali->flash_reg + ONFI_TIMING_MODE) &
|
|
(0x01 << i))
|
|
break;
|
|
}
|
|
|
|
nand_onfi_timing_set(denali, i);
|
|
|
|
/*
|
|
* By now, all the ONFI devices we know support the page cache
|
|
* rw feature. So here we enable the pipeline_rw_ahead feature
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void get_samsung_nand_para(struct denali_nand_info *denali,
|
|
uint8_t device_id)
|
|
{
|
|
if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
|
|
/* Set timing register values according to datasheet */
|
|
writel(5, denali->flash_reg + ACC_CLKS);
|
|
writel(20, denali->flash_reg + RE_2_WE);
|
|
writel(12, denali->flash_reg + WE_2_RE);
|
|
writel(14, denali->flash_reg + ADDR_2_DATA);
|
|
writel(3, denali->flash_reg + RDWR_EN_LO_CNT);
|
|
writel(2, denali->flash_reg + RDWR_EN_HI_CNT);
|
|
writel(2, denali->flash_reg + CS_SETUP_CNT);
|
|
}
|
|
}
|
|
|
|
static void get_toshiba_nand_para(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
/*
|
|
* Workaround to fix a controller bug which reports a wrong
|
|
* spare area size for some kind of Toshiba NAND device
|
|
*/
|
|
if ((readl(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
|
|
(readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
|
|
writel(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
|
|
tmp = readl(denali->flash_reg + DEVICES_CONNECTED) *
|
|
readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
|
|
writel(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
|
|
}
|
|
}
|
|
|
|
static void get_hynix_nand_para(struct denali_nand_info *denali,
|
|
uint8_t device_id)
|
|
{
|
|
uint32_t main_size, spare_size;
|
|
|
|
switch (device_id) {
|
|
case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
|
|
case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
|
|
writel(128, denali->flash_reg + PAGES_PER_BLOCK);
|
|
writel(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
|
|
writel(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
|
|
main_size = 4096 *
|
|
readl(denali->flash_reg + DEVICES_CONNECTED);
|
|
spare_size = 224 *
|
|
readl(denali->flash_reg + DEVICES_CONNECTED);
|
|
writel(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
|
|
writel(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
|
|
writel(0, denali->flash_reg + DEVICE_WIDTH);
|
|
break;
|
|
default:
|
|
debug("Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
|
|
"Will use default parameter values instead.\n",
|
|
device_id);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* determines how many NAND chips are connected to the controller. Note for
|
|
* Intel CE4100 devices we don't support more than one device.
|
|
*/
|
|
static void find_valid_banks(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t id[denali->max_banks];
|
|
int i;
|
|
|
|
denali->total_used_banks = 1;
|
|
for (i = 0; i < denali->max_banks; i++) {
|
|
index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
|
|
index_addr(denali, MODE_11 | (i << 24) | 1, 0);
|
|
index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
|
|
|
|
if (i == 0) {
|
|
if (!(id[i] & 0x0ff))
|
|
break;
|
|
} else {
|
|
if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
|
|
denali->total_used_banks++;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Use the configuration feature register to determine the maximum number of
|
|
* banks that the hardware supports.
|
|
*/
|
|
static void detect_max_banks(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t features = readl(denali->flash_reg + FEATURES);
|
|
denali->max_banks = 2 << (features & FEATURES__N_BANKS);
|
|
}
|
|
|
|
static void detect_partition_feature(struct denali_nand_info *denali)
|
|
{
|
|
/*
|
|
* For MRST platform, denali->fwblks represent the
|
|
* number of blocks firmware is taken,
|
|
* FW is in protect partition and MTD driver has no
|
|
* permission to access it. So let driver know how many
|
|
* blocks it can't touch.
|
|
*/
|
|
if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
|
|
if ((readl(denali->flash_reg + PERM_SRC_ID(1)) &
|
|
PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
|
|
denali->fwblks =
|
|
((readl(denali->flash_reg + MIN_MAX_BANK(1)) &
|
|
MIN_MAX_BANK__MIN_VALUE) *
|
|
denali->blksperchip)
|
|
+
|
|
(readl(denali->flash_reg + MIN_BLK_ADDR(1)) &
|
|
MIN_BLK_ADDR__VALUE);
|
|
} else {
|
|
denali->fwblks = SPECTRA_START_BLOCK;
|
|
}
|
|
} else {
|
|
denali->fwblks = SPECTRA_START_BLOCK;
|
|
}
|
|
}
|
|
|
|
static uint32_t denali_nand_timing_set(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t id_bytes[8], addr;
|
|
uint8_t maf_id, device_id;
|
|
int i;
|
|
|
|
/*
|
|
* Use read id method to get device ID and other params.
|
|
* For some NAND chips, controller can't report the correct
|
|
* device ID by reading from DEVICE_ID register
|
|
*/
|
|
addr = MODE_11 | BANK(denali->flash_bank);
|
|
index_addr(denali, addr | 0, 0x90);
|
|
index_addr(denali, addr | 1, 0);
|
|
for (i = 0; i < 8; i++)
|
|
index_addr_read_data(denali, addr | 2, &id_bytes[i]);
|
|
maf_id = id_bytes[0];
|
|
device_id = id_bytes[1];
|
|
|
|
if (readl(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
|
|
ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
|
|
if (get_onfi_nand_para(denali))
|
|
return -EIO;
|
|
} else if (maf_id == 0xEC) { /* Samsung NAND */
|
|
get_samsung_nand_para(denali, device_id);
|
|
} else if (maf_id == 0x98) { /* Toshiba NAND */
|
|
get_toshiba_nand_para(denali);
|
|
} else if (maf_id == 0xAD) { /* Hynix NAND */
|
|
get_hynix_nand_para(denali, device_id);
|
|
}
|
|
|
|
find_valid_banks(denali);
|
|
|
|
detect_partition_feature(denali);
|
|
|
|
/*
|
|
* If the user specified to override the default timings
|
|
* with a specific ONFI mode, we apply those changes here.
|
|
*/
|
|
if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
|
|
nand_onfi_timing_set(denali, onfi_timing_mode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* validation function to verify that the controlling software is making
|
|
* a valid request
|
|
*/
|
|
static inline bool is_flash_bank_valid(int flash_bank)
|
|
{
|
|
return flash_bank >= 0 && flash_bank < 4;
|
|
}
|
|
|
|
static void denali_irq_init(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t int_mask;
|
|
int i;
|
|
|
|
/* Disable global interrupts */
|
|
writel(0, denali->flash_reg + GLOBAL_INT_ENABLE);
|
|
|
|
int_mask = DENALI_IRQ_ALL;
|
|
|
|
/* Clear all status bits */
|
|
for (i = 0; i < denali->max_banks; ++i)
|
|
writel(0xFFFF, denali->flash_reg + INTR_STATUS(i));
|
|
|
|
denali_irq_enable(denali, int_mask);
|
|
}
|
|
|
|
/*
|
|
* This helper function setups the registers for ECC and whether or not
|
|
* the spare area will be transferred.
|
|
*/
|
|
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
|
|
bool transfer_spare)
|
|
{
|
|
int ecc_en_flag, transfer_spare_flag;
|
|
|
|
/* set ECC, transfer spare bits if needed */
|
|
ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
|
|
transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
|
|
|
|
/* Enable spare area/ECC per user's request. */
|
|
writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
|
|
/* applicable for MAP01 only */
|
|
writel(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
|
|
}
|
|
|
|
/*
|
|
* sends a pipeline command operation to the controller. See the Denali NAND
|
|
* controller's user guide for more information (section 4.2.3.6).
|
|
*/
|
|
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
|
|
bool ecc_en, bool transfer_spare,
|
|
int access_type, int op)
|
|
{
|
|
uint32_t addr, cmd, irq_status;
|
|
static uint32_t page_count = 1;
|
|
|
|
setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
|
|
|
|
clear_interrupts(denali);
|
|
|
|
addr = BANK(denali->flash_bank) | denali->page;
|
|
|
|
/* setup the acccess type */
|
|
cmd = MODE_10 | addr;
|
|
index_addr(denali, cmd, access_type);
|
|
|
|
/* setup the pipeline command */
|
|
index_addr(denali, cmd, 0x2000 | op | page_count);
|
|
|
|
cmd = MODE_01 | addr;
|
|
writel(cmd, denali->flash_mem + INDEX_CTRL_REG);
|
|
|
|
if (op == DENALI_READ) {
|
|
/* wait for command to be accepted */
|
|
irq_status = wait_for_irq(denali, INTR_STATUS__LOAD_COMP);
|
|
|
|
if (irq_status == 0)
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* helper function that simply writes a buffer to the flash */
|
|
static int write_data_to_flash_mem(struct denali_nand_info *denali,
|
|
const uint8_t *buf, int len)
|
|
{
|
|
uint32_t *buf32;
|
|
int i;
|
|
|
|
/*
|
|
* verify that the len is a multiple of 4.
|
|
* see comment in read_data_from_flash_mem()
|
|
*/
|
|
BUG_ON((len % 4) != 0);
|
|
|
|
/* write the data to the flash memory */
|
|
buf32 = (uint32_t *)buf;
|
|
for (i = 0; i < len / 4; i++)
|
|
writel(*buf32++, denali->flash_mem + INDEX_DATA_REG);
|
|
return i * 4; /* intent is to return the number of bytes read */
|
|
}
|
|
|
|
/* helper function that simply reads a buffer from the flash */
|
|
static int read_data_from_flash_mem(struct denali_nand_info *denali,
|
|
uint8_t *buf, int len)
|
|
{
|
|
uint32_t *buf32;
|
|
int i;
|
|
|
|
/*
|
|
* we assume that len will be a multiple of 4, if not it would be nice
|
|
* to know about it ASAP rather than have random failures...
|
|
* This assumption is based on the fact that this function is designed
|
|
* to be used to read flash pages, which are typically multiples of 4.
|
|
*/
|
|
BUG_ON((len % 4) != 0);
|
|
|
|
/* transfer the data from the flash */
|
|
buf32 = (uint32_t *)buf;
|
|
for (i = 0; i < len / 4; i++)
|
|
*buf32++ = readl(denali->flash_mem + INDEX_DATA_REG);
|
|
|
|
return i * 4; /* intent is to return the number of bytes read */
|
|
}
|
|
|
|
static void denali_mode_main_access(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t addr, cmd;
|
|
|
|
addr = BANK(denali->flash_bank) | denali->page;
|
|
cmd = MODE_10 | addr;
|
|
index_addr(denali, cmd, MAIN_ACCESS);
|
|
}
|
|
|
|
static void denali_mode_main_spare_access(struct denali_nand_info *denali)
|
|
{
|
|
uint32_t addr, cmd;
|
|
|
|
addr = BANK(denali->flash_bank) | denali->page;
|
|
cmd = MODE_10 | addr;
|
|
index_addr(denali, cmd, MAIN_SPARE_ACCESS);
|
|
}
|
|
|
|
/* writes OOB data to the device */
|
|
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t irq_status;
|
|
uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
|
|
INTR_STATUS__PROGRAM_FAIL;
|
|
int status = 0;
|
|
|
|
denali->page = page;
|
|
|
|
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
|
|
DENALI_WRITE) == 0) {
|
|
write_data_to_flash_mem(denali, buf, mtd->oobsize);
|
|
|
|
/* wait for operation to complete */
|
|
irq_status = wait_for_irq(denali, irq_mask);
|
|
|
|
if (irq_status == 0) {
|
|
dev_err(denali->dev, "OOB write failed\n");
|
|
status = -EIO;
|
|
}
|
|
} else {
|
|
printf("unable to send pipeline command\n");
|
|
status = -EIO;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/* reads OOB data from the device */
|
|
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
|
|
uint32_t irq_status, addr, cmd;
|
|
|
|
denali->page = page;
|
|
|
|
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
|
|
DENALI_READ) == 0) {
|
|
read_data_from_flash_mem(denali, buf, mtd->oobsize);
|
|
|
|
/*
|
|
* wait for command to be accepted
|
|
* can always use status0 bit as the
|
|
* mask is identical for each bank.
|
|
*/
|
|
irq_status = wait_for_irq(denali, irq_mask);
|
|
|
|
if (irq_status == 0)
|
|
printf("page on OOB timeout %d\n", denali->page);
|
|
|
|
/*
|
|
* We set the device back to MAIN_ACCESS here as I observed
|
|
* instability with the controller if you do a block erase
|
|
* and the last transaction was a SPARE_ACCESS. Block erase
|
|
* is reliable (according to the MTD test infrastructure)
|
|
* if you are in MAIN_ACCESS.
|
|
*/
|
|
addr = BANK(denali->flash_bank) | denali->page;
|
|
cmd = MODE_10 | addr;
|
|
index_addr(denali, cmd, MAIN_ACCESS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* this function examines buffers to see if they contain data that
|
|
* indicate that the buffer is part of an erased region of flash.
|
|
*/
|
|
static bool is_erased(uint8_t *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
if (buf[i] != 0xFF)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* programs the controller to either enable/disable DMA transfers */
|
|
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
|
|
{
|
|
writel(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
|
|
readl(denali->flash_reg + DMA_ENABLE);
|
|
}
|
|
|
|
/* setups the HW to perform the data DMA */
|
|
static void denali_setup_dma(struct denali_nand_info *denali, int op)
|
|
{
|
|
uint32_t mode;
|
|
const int page_count = 1;
|
|
uint32_t addr = (uint32_t)denali->buf.dma_buf;
|
|
|
|
flush_dcache_range(addr, addr + sizeof(denali->buf.dma_buf));
|
|
|
|
/* For Denali controller that is 64 bit bus IP core */
|
|
#ifdef CONFIG_SYS_NAND_DENALI_64BIT
|
|
mode = MODE_10 | BANK(denali->flash_bank) | denali->page;
|
|
|
|
/* DMA is a three step process */
|
|
|
|
/* 1. setup transfer type, interrupt when complete,
|
|
burst len = 64 bytes, the number of pages */
|
|
index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);
|
|
|
|
/* 2. set memory low address bits 31:0 */
|
|
index_addr(denali, mode, addr);
|
|
|
|
/* 3. set memory high address bits 64:32 */
|
|
index_addr(denali, mode, 0);
|
|
#else
|
|
mode = MODE_10 | BANK(denali->flash_bank);
|
|
|
|
/* DMA is a four step process */
|
|
|
|
/* 1. setup transfer type and # of pages */
|
|
index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
|
|
|
|
/* 2. set memory high address bits 23:8 */
|
|
index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
|
|
|
|
/* 3. set memory low address bits 23:8 */
|
|
index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
|
|
|
|
/* 4. interrupt when complete, burst len = 64 bytes */
|
|
index_addr(denali, mode | 0x14000, 0x2400);
|
|
#endif
|
|
}
|
|
|
|
/* Common DMA function */
|
|
static uint32_t denali_dma_configuration(struct denali_nand_info *denali,
|
|
uint32_t ops, bool raw_xfer,
|
|
uint32_t irq_mask, int oob_required)
|
|
{
|
|
uint32_t irq_status = 0;
|
|
/* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */
|
|
setup_ecc_for_xfer(denali, !raw_xfer, oob_required);
|
|
|
|
/* clear any previous interrupt flags */
|
|
clear_interrupts(denali);
|
|
|
|
/* enable the DMA */
|
|
denali_enable_dma(denali, true);
|
|
|
|
/* setup the DMA */
|
|
denali_setup_dma(denali, ops);
|
|
|
|
/* wait for operation to complete */
|
|
irq_status = wait_for_irq(denali, irq_mask);
|
|
|
|
/* if ECC fault happen, seems we need delay before turning off DMA.
|
|
* If not, the controller will go into non responsive condition */
|
|
if (irq_status & INTR_STATUS__ECC_UNCOR_ERR)
|
|
udelay(100);
|
|
|
|
/* disable the DMA */
|
|
denali_enable_dma(denali, false);
|
|
|
|
return irq_status;
|
|
}
|
|
|
|
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, bool raw_xfer, int oob_required)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
|
|
uint32_t irq_status = 0;
|
|
uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
|
|
|
|
denali->status = 0;
|
|
|
|
/* copy buffer into DMA buffer */
|
|
memcpy(denali->buf.dma_buf, buf, mtd->writesize);
|
|
|
|
/* need extra memcpy for raw transfer */
|
|
if (raw_xfer)
|
|
memcpy(denali->buf.dma_buf + mtd->writesize,
|
|
chip->oob_poi, mtd->oobsize);
|
|
|
|
/* setting up DMA */
|
|
irq_status = denali_dma_configuration(denali, DENALI_WRITE, raw_xfer,
|
|
irq_mask, oob_required);
|
|
|
|
/* if timeout happen, error out */
|
|
if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
|
|
debug("DMA timeout for denali write_page\n");
|
|
denali->status = NAND_STATUS_FAIL;
|
|
return -EIO;
|
|
}
|
|
|
|
if (irq_status & INTR_STATUS__LOCKED_BLK) {
|
|
debug("Failed as write to locked block\n");
|
|
denali->status = NAND_STATUS_FAIL;
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* NAND core entry points */
|
|
|
|
/*
|
|
* this is the callback that the NAND core calls to write a page. Since
|
|
* writing a page with ECC or without is similar, all the work is done
|
|
* by write_page above.
|
|
*/
|
|
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
|
|
/*
|
|
* for regular page writes, we let HW handle all the ECC
|
|
* data written to the device.
|
|
*/
|
|
if (oob_required)
|
|
/* switch to main + spare access */
|
|
denali_mode_main_spare_access(denali);
|
|
else
|
|
/* switch to main access only */
|
|
denali_mode_main_access(denali);
|
|
|
|
return write_page(mtd, chip, buf, false, oob_required);
|
|
}
|
|
|
|
/*
|
|
* This is the callback that the NAND core calls to write a page without ECC.
|
|
* raw access is similar to ECC page writes, so all the work is done in the
|
|
* write_page() function above.
|
|
*/
|
|
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
|
|
/*
|
|
* for raw page writes, we want to disable ECC and simply write
|
|
* whatever data is in the buffer.
|
|
*/
|
|
|
|
if (oob_required)
|
|
/* switch to main + spare access */
|
|
denali_mode_main_spare_access(denali);
|
|
else
|
|
/* switch to main access only */
|
|
denali_mode_main_access(denali);
|
|
|
|
return write_page(mtd, chip, buf, true, oob_required);
|
|
}
|
|
|
|
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
return write_oob_data(mtd, chip->oob_poi, page);
|
|
}
|
|
|
|
/* raw include ECC value and all the spare area */
|
|
static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
|
|
uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
|
|
|
|
if (denali->page != page) {
|
|
debug("Missing NAND_CMD_READ0 command\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (oob_required)
|
|
/* switch to main + spare access */
|
|
denali_mode_main_spare_access(denali);
|
|
else
|
|
/* switch to main access only */
|
|
denali_mode_main_access(denali);
|
|
|
|
/* setting up the DMA where ecc_enable is false */
|
|
irq_status = denali_dma_configuration(denali, DENALI_READ, true,
|
|
irq_mask, oob_required);
|
|
|
|
/* if timeout happen, error out */
|
|
if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
|
|
debug("DMA timeout for denali_read_page_raw\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* splitting the content to destination buffer holder */
|
|
memcpy(chip->oob_poi, (denali->buf.dma_buf + mtd->writesize),
|
|
mtd->oobsize);
|
|
memcpy(buf, denali->buf.dma_buf, mtd->writesize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;
|
|
|
|
if (denali->page != page) {
|
|
debug("Missing NAND_CMD_READ0 command\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (oob_required)
|
|
/* switch to main + spare access */
|
|
denali_mode_main_spare_access(denali);
|
|
else
|
|
/* switch to main access only */
|
|
denali_mode_main_access(denali);
|
|
|
|
/* setting up the DMA where ecc_enable is true */
|
|
irq_status = denali_dma_configuration(denali, DENALI_READ, false,
|
|
irq_mask, oob_required);
|
|
|
|
memcpy(buf, denali->buf.dma_buf, mtd->writesize);
|
|
|
|
/* check whether any ECC error */
|
|
if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) {
|
|
/* is the ECC cause by erase page, check using read_page_raw */
|
|
debug(" Uncorrected ECC detected\n");
|
|
denali_read_page_raw(mtd, chip, buf, oob_required,
|
|
denali->page);
|
|
|
|
if (is_erased(buf, mtd->writesize) == true &&
|
|
is_erased(chip->oob_poi, mtd->oobsize) == true) {
|
|
debug(" ECC error cause by erased block\n");
|
|
/* false alarm, return the 0xFF */
|
|
} else {
|
|
return -EIO;
|
|
}
|
|
}
|
|
memcpy(buf, denali->buf.dma_buf, mtd->writesize);
|
|
return 0;
|
|
}
|
|
|
|
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
read_oob_data(mtd, chip->oob_poi, page);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t denali_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t addr, result;
|
|
|
|
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
|
|
index_addr_read_data(denali, addr | 2, &result);
|
|
return (uint8_t)result & 0xFF;
|
|
}
|
|
|
|
static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t i, addr, result;
|
|
|
|
/* delay for tR (data transfer from Flash array to data register) */
|
|
udelay(25);
|
|
|
|
/* ensure device completed else additional delay and polling */
|
|
wait_for_irq(denali, INTR_STATUS__INT_ACT);
|
|
|
|
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
|
|
for (i = 0; i < len; i++) {
|
|
index_addr_read_data(denali, (uint32_t)addr | 2, &result);
|
|
write_byte_to_buf(denali, result);
|
|
}
|
|
memcpy(buf, denali->buf.buf, len);
|
|
}
|
|
|
|
static void denali_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
|
|
denali->flash_bank = chip;
|
|
}
|
|
|
|
static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
int status = denali->status;
|
|
|
|
denali->status = 0;
|
|
|
|
return status;
|
|
}
|
|
|
|
static int denali_erase(struct mtd_info *mtd, int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
|
|
uint32_t cmd, irq_status;
|
|
|
|
clear_interrupts(denali);
|
|
|
|
/* setup page read request for access type */
|
|
cmd = MODE_10 | BANK(denali->flash_bank) | page;
|
|
index_addr(denali, cmd, 0x1);
|
|
|
|
/* wait for erase to complete or failure to occur */
|
|
irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
|
|
INTR_STATUS__ERASE_FAIL);
|
|
|
|
if (irq_status & INTR_STATUS__ERASE_FAIL ||
|
|
irq_status & INTR_STATUS__LOCKED_BLK)
|
|
return NAND_STATUS_FAIL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
|
|
int page)
|
|
{
|
|
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
|
uint32_t addr;
|
|
|
|
switch (cmd) {
|
|
case NAND_CMD_PAGEPROG:
|
|
break;
|
|
case NAND_CMD_STATUS:
|
|
addr = MODE_11 | BANK(denali->flash_bank);
|
|
index_addr(denali, addr | 0, cmd);
|
|
break;
|
|
case NAND_CMD_READID:
|
|
case NAND_CMD_PARAM:
|
|
reset_buf(denali);
|
|
/*
|
|
* sometimes ManufactureId read from register is not right
|
|
* e.g. some of Micron MT29F32G08QAA MLC NAND chips
|
|
* So here we send READID cmd to NAND insteand
|
|
*/
|
|
addr = MODE_11 | BANK(denali->flash_bank);
|
|
index_addr(denali, addr | 0, cmd);
|
|
index_addr(denali, addr | 1, col & 0xFF);
|
|
if (cmd == NAND_CMD_PARAM)
|
|
udelay(50);
|
|
break;
|
|
case NAND_CMD_RNDOUT:
|
|
addr = MODE_11 | BANK(denali->flash_bank);
|
|
index_addr(denali, addr | 0, cmd);
|
|
index_addr(denali, addr | 1, col & 0xFF);
|
|
index_addr(denali, addr | 1, col >> 8);
|
|
index_addr(denali, addr | 0, NAND_CMD_RNDOUTSTART);
|
|
break;
|
|
case NAND_CMD_READ0:
|
|
case NAND_CMD_SEQIN:
|
|
denali->page = page;
|
|
break;
|
|
case NAND_CMD_RESET:
|
|
reset_bank(denali);
|
|
break;
|
|
case NAND_CMD_READOOB:
|
|
/* TODO: Read OOB data */
|
|
break;
|
|
case NAND_CMD_ERASE1:
|
|
/*
|
|
* supporting block erase only, not multiblock erase as
|
|
* it will cross plane and software need complex calculation
|
|
* to identify the block count for the cross plane
|
|
*/
|
|
denali_erase(mtd, page);
|
|
break;
|
|
case NAND_CMD_ERASE2:
|
|
/* nothing to do here as it was done during NAND_CMD_ERASE1 */
|
|
break;
|
|
case NAND_CMD_UNLOCK1:
|
|
addr = MODE_10 | BANK(denali->flash_bank) | page;
|
|
index_addr(denali, addr | 0, DENALI_UNLOCK_START);
|
|
break;
|
|
case NAND_CMD_UNLOCK2:
|
|
addr = MODE_10 | BANK(denali->flash_bank) | page;
|
|
index_addr(denali, addr | 0, DENALI_UNLOCK_END);
|
|
break;
|
|
case NAND_CMD_LOCK:
|
|
addr = MODE_10 | BANK(denali->flash_bank);
|
|
index_addr(denali, addr | 0, DENALI_LOCK);
|
|
break;
|
|
default:
|
|
printf(": unsupported command received 0x%x\n", cmd);
|
|
break;
|
|
}
|
|
}
|
|
/* end NAND core entry points */
|
|
|
|
/* Initialization code to bring the device up to a known good state */
|
|
static void denali_hw_init(struct denali_nand_info *denali)
|
|
{
|
|
/*
|
|
* tell driver how many bit controller will skip before writing
|
|
* ECC code in OOB. This is normally used for bad block marker
|
|
*/
|
|
writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES,
|
|
denali->flash_reg + SPARE_AREA_SKIP_BYTES);
|
|
detect_max_banks(denali);
|
|
denali_nand_reset(denali);
|
|
writel(0x0F, denali->flash_reg + RB_PIN_ENABLED);
|
|
writel(CHIP_EN_DONT_CARE__FLAG,
|
|
denali->flash_reg + CHIP_ENABLE_DONT_CARE);
|
|
writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
|
|
|
|
/* Should set value for these registers when init */
|
|
writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
|
|
writel(1, denali->flash_reg + ECC_ENABLE);
|
|
denali_nand_timing_set(denali);
|
|
denali_irq_init(denali);
|
|
}
|
|
|
|
static struct nand_ecclayout nand_oob;
|
|
|
|
static int denali_init(struct denali_nand_info *denali)
|
|
{
|
|
int ret;
|
|
|
|
denali_hw_init(denali);
|
|
|
|
denali->mtd->name = "denali-nand";
|
|
denali->mtd->owner = THIS_MODULE;
|
|
denali->mtd->priv = &denali->nand;
|
|
|
|
/* register the driver with the NAND core subsystem */
|
|
denali->nand.select_chip = denali_select_chip;
|
|
denali->nand.cmdfunc = denali_cmdfunc;
|
|
denali->nand.read_byte = denali_read_byte;
|
|
denali->nand.read_buf = denali_read_buf;
|
|
denali->nand.waitfunc = denali_waitfunc;
|
|
|
|
/*
|
|
* scan for NAND devices attached to the controller
|
|
* this is the first stage in a two step process to register
|
|
* with the nand subsystem
|
|
*/
|
|
if (nand_scan_ident(denali->mtd, denali->max_banks, NULL)) {
|
|
ret = -ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
|
|
/* check whether flash got BBT table (located at end of flash). As we
|
|
* use NAND_BBT_NO_OOB, the BBT page will start with
|
|
* bbt_pattern. We will have mirror pattern too */
|
|
denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
|
|
/*
|
|
* We are using main + spare with ECC support. As BBT need ECC support,
|
|
* we need to ensure BBT code don't write to OOB for the BBT pattern.
|
|
* All BBT info will be stored into data area with ECC support.
|
|
*/
|
|
denali->nand.bbt_options |= NAND_BBT_NO_OOB;
|
|
#endif
|
|
|
|
denali->nand.ecc.mode = NAND_ECC_HW;
|
|
denali->nand.ecc.size = CONFIG_NAND_DENALI_ECC_SIZE;
|
|
|
|
/* no subpage writes on denali */
|
|
denali->nand.options |= NAND_NO_SUBPAGE_WRITE;
|
|
|
|
/*
|
|
* Tell driver the ecc strength. This register may be already set
|
|
* correctly. So we read this value out.
|
|
*/
|
|
denali->nand.ecc.strength = readl(denali->flash_reg + ECC_CORRECTION);
|
|
switch (denali->nand.ecc.size) {
|
|
case 512:
|
|
denali->nand.ecc.bytes =
|
|
(denali->nand.ecc.strength * 13 + 15) / 16 * 2;
|
|
break;
|
|
case 1024:
|
|
denali->nand.ecc.bytes =
|
|
(denali->nand.ecc.strength * 14 + 15) / 16 * 2;
|
|
break;
|
|
default:
|
|
pr_err("Unsupported ECC size\n");
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
nand_oob.eccbytes = denali->nand.ecc.bytes;
|
|
denali->nand.ecc.layout = &nand_oob;
|
|
|
|
writel(denali->mtd->erasesize / denali->mtd->writesize,
|
|
denali->flash_reg + PAGES_PER_BLOCK);
|
|
writel(denali->nand.options & NAND_BUSWIDTH_16 ? 1 : 0,
|
|
denali->flash_reg + DEVICE_WIDTH);
|
|
writel(denali->mtd->writesize,
|
|
denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
|
|
writel(denali->mtd->oobsize,
|
|
denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
|
|
if (readl(denali->flash_reg + DEVICES_CONNECTED) == 0)
|
|
writel(1, denali->flash_reg + DEVICES_CONNECTED);
|
|
|
|
/* override the default operations */
|
|
denali->nand.ecc.read_page = denali_read_page;
|
|
denali->nand.ecc.read_page_raw = denali_read_page_raw;
|
|
denali->nand.ecc.write_page = denali_write_page;
|
|
denali->nand.ecc.write_page_raw = denali_write_page_raw;
|
|
denali->nand.ecc.read_oob = denali_read_oob;
|
|
denali->nand.ecc.write_oob = denali_write_oob;
|
|
|
|
if (nand_scan_tail(denali->mtd)) {
|
|
ret = -ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
ret = nand_register(0);
|
|
|
|
fail:
|
|
return ret;
|
|
}
|
|
|
|
static int __board_nand_init(void)
|
|
{
|
|
struct denali_nand_info *denali;
|
|
|
|
denali = kzalloc(sizeof(*denali), GFP_KERNEL);
|
|
if (!denali)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* If CONFIG_SYS_NAND_SELF_INIT is defined, each driver is responsible
|
|
* for instantiating struct nand_chip, while drivers/mtd/nand/nand.c
|
|
* still provides a "struct mtd_info nand_info" instance.
|
|
*/
|
|
denali->mtd = &nand_info[0];
|
|
|
|
/*
|
|
* In the future, these base addresses should be taken from
|
|
* Device Tree or platform data.
|
|
*/
|
|
denali->flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE;
|
|
denali->flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE;
|
|
|
|
return denali_init(denali);
|
|
}
|
|
|
|
void board_nand_init(void)
|
|
{
|
|
if (__board_nand_init() < 0)
|
|
pr_warn("Failed to initialize Denali NAND controller.\n");
|
|
}
|