u-boot/board/dhelectronics/dh_stm32mp1/board.c
Marek Vasut 199537309b ARM: dts: stm32: Add DH Electronics DHCOM SoM and PDK2 board
Add support for DH Electronics DHCOM SoM and PDK2 rev. 400 carrier
board. This is an SoM with STM32MP15xx and an evaluation kit. The
baseboard provides Ethernet, UART, USB, CAN and optional display.

Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Patrick Delaunay <patrick.delaunay@st.com>
Cc: Patrice Chotard <patrice.chotard@st.com>
Reviewed-by: Patrick Delaunay <patrick.delaunay@st.com>
2020-02-12 19:48:39 +01:00

689 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* Copyright (C) 2018, STMicroelectronics - All Rights Reserved
*/
#include <common.h>
#include <adc.h>
#include <asm/arch/stm32.h>
#include <asm/arch/sys_proto.h>
#include <asm/gpio.h>
#include <asm/io.h>
#include <bootm.h>
#include <clk.h>
#include <config.h>
#include <dm.h>
#include <dm/device.h>
#include <dm/uclass.h>
#include <env.h>
#include <env_internal.h>
#include <g_dnl.h>
#include <generic-phy.h>
#include <hang.h>
#include <i2c.h>
#include <i2c_eeprom.h>
#include <init.h>
#include <led.h>
#include <memalign.h>
#include <misc.h>
#include <mtd.h>
#include <mtd_node.h>
#include <netdev.h>
#include <phy.h>
#include <power/regulator.h>
#include <remoteproc.h>
#include <reset.h>
#include <syscon.h>
#include <usb.h>
#include <usb/dwc2_udc.h>
#include <watchdog.h>
/* SYSCFG registers */
#define SYSCFG_BOOTR 0x00
#define SYSCFG_PMCSETR 0x04
#define SYSCFG_IOCTRLSETR 0x18
#define SYSCFG_ICNR 0x1C
#define SYSCFG_CMPCR 0x20
#define SYSCFG_CMPENSETR 0x24
#define SYSCFG_PMCCLRR 0x44
#define SYSCFG_BOOTR_BOOT_MASK GENMASK(2, 0)
#define SYSCFG_BOOTR_BOOTPD_SHIFT 4
#define SYSCFG_IOCTRLSETR_HSLVEN_TRACE BIT(0)
#define SYSCFG_IOCTRLSETR_HSLVEN_QUADSPI BIT(1)
#define SYSCFG_IOCTRLSETR_HSLVEN_ETH BIT(2)
#define SYSCFG_IOCTRLSETR_HSLVEN_SDMMC BIT(3)
#define SYSCFG_IOCTRLSETR_HSLVEN_SPI BIT(4)
#define SYSCFG_CMPCR_SW_CTRL BIT(1)
#define SYSCFG_CMPCR_READY BIT(8)
#define SYSCFG_CMPENSETR_MPU_EN BIT(0)
#define SYSCFG_PMCSETR_ETH_CLK_SEL BIT(16)
#define SYSCFG_PMCSETR_ETH_REF_CLK_SEL BIT(17)
#define SYSCFG_PMCSETR_ETH_SELMII BIT(20)
#define SYSCFG_PMCSETR_ETH_SEL_MASK GENMASK(23, 21)
#define SYSCFG_PMCSETR_ETH_SEL_GMII_MII 0
#define SYSCFG_PMCSETR_ETH_SEL_RGMII BIT(21)
#define SYSCFG_PMCSETR_ETH_SEL_RMII BIT(23)
/*
* Get a global data pointer
*/
DECLARE_GLOBAL_DATA_PTR;
int setup_mac_address(void)
{
struct udevice *dev;
ofnode eeprom;
unsigned char enetaddr[6];
int ret;
ret = eth_env_get_enetaddr("ethaddr", enetaddr);
if (ret) /* ethaddr is already set */
return 0;
eeprom = ofnode_path("/soc/i2c@5c002000/eeprom@50");
if (!ofnode_valid(eeprom)) {
printf("Invalid hardware path to EEPROM!\n");
return -ENODEV;
}
ret = uclass_get_device_by_ofnode(UCLASS_I2C_EEPROM, eeprom, &dev);
if (ret) {
printf("Cannot find EEPROM!\n");
return ret;
}
ret = i2c_eeprom_read(dev, 0xfa, enetaddr, 0x6);
if (ret) {
printf("Error reading configuration EEPROM!\n");
return ret;
}
if (is_valid_ethaddr(enetaddr))
eth_env_set_enetaddr("ethaddr", enetaddr);
return 0;
}
int checkboard(void)
{
char *mode;
const char *fdt_compat;
int fdt_compat_len;
if (IS_ENABLED(CONFIG_STM32MP1_OPTEE))
mode = "trusted with OP-TEE";
else if (IS_ENABLED(CONFIG_STM32MP1_TRUSTED))
mode = "trusted";
else
mode = "basic";
printf("Board: stm32mp1 in %s mode", mode);
fdt_compat = fdt_getprop(gd->fdt_blob, 0, "compatible",
&fdt_compat_len);
if (fdt_compat && fdt_compat_len)
printf(" (%s)", fdt_compat);
puts("\n");
return 0;
}
static void board_key_check(void)
{
#if defined(CONFIG_FASTBOOT) || defined(CONFIG_CMD_STM32PROG)
ofnode node;
struct gpio_desc gpio;
enum forced_boot_mode boot_mode = BOOT_NORMAL;
node = ofnode_path("/config");
if (!ofnode_valid(node)) {
debug("%s: no /config node?\n", __func__);
return;
}
#ifdef CONFIG_FASTBOOT
if (gpio_request_by_name_nodev(node, "st,fastboot-gpios", 0,
&gpio, GPIOD_IS_IN)) {
debug("%s: could not find a /config/st,fastboot-gpios\n",
__func__);
} else {
if (dm_gpio_get_value(&gpio)) {
puts("Fastboot key pressed, ");
boot_mode = BOOT_FASTBOOT;
}
dm_gpio_free(NULL, &gpio);
}
#endif
#ifdef CONFIG_CMD_STM32PROG
if (gpio_request_by_name_nodev(node, "st,stm32prog-gpios", 0,
&gpio, GPIOD_IS_IN)) {
debug("%s: could not find a /config/st,stm32prog-gpios\n",
__func__);
} else {
if (dm_gpio_get_value(&gpio)) {
puts("STM32Programmer key pressed, ");
boot_mode = BOOT_STM32PROG;
}
dm_gpio_free(NULL, &gpio);
}
#endif
if (boot_mode != BOOT_NORMAL) {
puts("entering download mode...\n");
clrsetbits_le32(TAMP_BOOT_CONTEXT,
TAMP_BOOT_FORCED_MASK,
boot_mode);
}
#endif
}
#if defined(CONFIG_USB_GADGET) && defined(CONFIG_USB_GADGET_DWC2_OTG)
#include <usb/dwc2_udc.h>
int g_dnl_board_usb_cable_connected(void)
{
struct udevice *dwc2_udc_otg;
int ret;
ret = uclass_get_device_by_driver(UCLASS_USB_GADGET_GENERIC,
DM_GET_DRIVER(dwc2_udc_otg),
&dwc2_udc_otg);
if (!ret)
debug("dwc2_udc_otg init failed\n");
return dwc2_udc_B_session_valid(dwc2_udc_otg);
}
#define STM32MP1_G_DNL_DFU_PRODUCT_NUM 0xdf11
#define STM32MP1_G_DNL_FASTBOOT_PRODUCT_NUM 0x0afb
int g_dnl_bind_fixup(struct usb_device_descriptor *dev, const char *name)
{
if (!strcmp(name, "usb_dnl_dfu"))
put_unaligned(STM32MP1_G_DNL_DFU_PRODUCT_NUM, &dev->idProduct);
else if (!strcmp(name, "usb_dnl_fastboot"))
put_unaligned(STM32MP1_G_DNL_FASTBOOT_PRODUCT_NUM,
&dev->idProduct);
else
put_unaligned(CONFIG_USB_GADGET_PRODUCT_NUM, &dev->idProduct);
return 0;
}
#endif /* CONFIG_USB_GADGET */
#ifdef CONFIG_LED
static int get_led(struct udevice **dev, char *led_string)
{
char *led_name;
int ret;
led_name = fdtdec_get_config_string(gd->fdt_blob, led_string);
if (!led_name) {
pr_debug("%s: could not find %s config string\n",
__func__, led_string);
return -ENOENT;
}
ret = led_get_by_label(led_name, dev);
if (ret) {
debug("%s: get=%d\n", __func__, ret);
return ret;
}
return 0;
}
static int setup_led(enum led_state_t cmd)
{
struct udevice *dev;
int ret;
ret = get_led(&dev, "u-boot,boot-led");
if (ret)
return ret;
ret = led_set_state(dev, cmd);
return ret;
}
#endif
static void __maybe_unused led_error_blink(u32 nb_blink)
{
#ifdef CONFIG_LED
int ret;
struct udevice *led;
u32 i;
#endif
if (!nb_blink)
return;
#ifdef CONFIG_LED
ret = get_led(&led, "u-boot,error-led");
if (!ret) {
/* make u-boot,error-led blinking */
/* if U32_MAX and 125ms interval, for 17.02 years */
for (i = 0; i < 2 * nb_blink; i++) {
led_set_state(led, LEDST_TOGGLE);
mdelay(125);
WATCHDOG_RESET();
}
}
#endif
/* infinite: the boot process must be stopped */
if (nb_blink == U32_MAX)
hang();
}
static void sysconf_init(void)
{
#ifndef CONFIG_STM32MP1_TRUSTED
u8 *syscfg;
#ifdef CONFIG_DM_REGULATOR
struct udevice *pwr_dev;
struct udevice *pwr_reg;
struct udevice *dev;
int ret;
u32 otp = 0;
#endif
u32 bootr;
syscfg = (u8 *)syscon_get_first_range(STM32MP_SYSCON_SYSCFG);
/* interconnect update : select master using the port 1 */
/* LTDC = AXI_M9 */
/* GPU = AXI_M8 */
/* today information is hardcoded in U-Boot */
writel(BIT(9), syscfg + SYSCFG_ICNR);
/* disable Pull-Down for boot pin connected to VDD */
bootr = readl(syscfg + SYSCFG_BOOTR);
bootr &= ~(SYSCFG_BOOTR_BOOT_MASK << SYSCFG_BOOTR_BOOTPD_SHIFT);
bootr |= (bootr & SYSCFG_BOOTR_BOOT_MASK) << SYSCFG_BOOTR_BOOTPD_SHIFT;
writel(bootr, syscfg + SYSCFG_BOOTR);
#ifdef CONFIG_DM_REGULATOR
/* High Speed Low Voltage Pad mode Enable for SPI, SDMMC, ETH, QSPI
* and TRACE. Needed above ~50MHz and conditioned by AFMUX selection.
* The customer will have to disable this for low frequencies
* or if AFMUX is selected but the function not used, typically for
* TRACE. Otherwise, impact on power consumption.
*
* WARNING:
* enabling High Speed mode while VDD>2.7V
* with the OTP product_below_2v5 (OTP 18, BIT 13)
* erroneously set to 1 can damage the IC!
* => U-Boot set the register only if VDD < 2.7V (in DT)
* but this value need to be consistent with board design
*/
ret = uclass_get_device_by_driver(UCLASS_PMIC,
DM_GET_DRIVER(stm32mp_pwr_pmic),
&pwr_dev);
if (!ret) {
ret = uclass_get_device_by_driver(UCLASS_MISC,
DM_GET_DRIVER(stm32mp_bsec),
&dev);
if (ret) {
pr_err("Can't find stm32mp_bsec driver\n");
return;
}
ret = misc_read(dev, STM32_BSEC_SHADOW(18), &otp, 4);
if (ret > 0)
otp = otp & BIT(13);
/* get VDD = vdd-supply */
ret = device_get_supply_regulator(pwr_dev, "vdd-supply",
&pwr_reg);
/* check if VDD is Low Voltage */
if (!ret) {
if (regulator_get_value(pwr_reg) < 2700000) {
writel(SYSCFG_IOCTRLSETR_HSLVEN_TRACE |
SYSCFG_IOCTRLSETR_HSLVEN_QUADSPI |
SYSCFG_IOCTRLSETR_HSLVEN_ETH |
SYSCFG_IOCTRLSETR_HSLVEN_SDMMC |
SYSCFG_IOCTRLSETR_HSLVEN_SPI,
syscfg + SYSCFG_IOCTRLSETR);
if (!otp)
pr_err("product_below_2v5=0: HSLVEN protected by HW\n");
} else {
if (otp)
pr_err("product_below_2v5=1: HSLVEN update is destructive, no update as VDD>2.7V\n");
}
} else {
debug("VDD unknown");
}
}
#endif
/* activate automatic I/O compensation
* warning: need to ensure CSI enabled and ready in clock driver
*/
writel(SYSCFG_CMPENSETR_MPU_EN, syscfg + SYSCFG_CMPENSETR);
while (!(readl(syscfg + SYSCFG_CMPCR) & SYSCFG_CMPCR_READY))
;
clrbits_le32(syscfg + SYSCFG_CMPCR, SYSCFG_CMPCR_SW_CTRL);
#endif
}
/* board dependent setup after realloc */
int board_init(void)
{
struct udevice *dev;
/* address of boot parameters */
gd->bd->bi_boot_params = STM32_DDR_BASE + 0x100;
/* probe all PINCTRL for hog */
for (uclass_first_device(UCLASS_PINCTRL, &dev);
dev;
uclass_next_device(&dev)) {
pr_debug("probe pincontrol = %s\n", dev->name);
}
board_key_check();
#ifdef CONFIG_DM_REGULATOR
regulators_enable_boot_on(_DEBUG);
#endif
sysconf_init();
if (CONFIG_IS_ENABLED(CONFIG_LED))
led_default_state();
return 0;
}
int board_late_init(void)
{
char *boot_device;
#ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
const void *fdt_compat;
int fdt_compat_len;
fdt_compat = fdt_getprop(gd->fdt_blob, 0, "compatible",
&fdt_compat_len);
if (fdt_compat && fdt_compat_len) {
if (strncmp(fdt_compat, "st,", 3) != 0)
env_set("board_name", fdt_compat);
else
env_set("board_name", fdt_compat + 3);
}
#endif
/* Check the boot-source to disable bootdelay */
boot_device = env_get("boot_device");
if (!strcmp(boot_device, "serial") || !strcmp(boot_device, "usb"))
env_set("bootdelay", "0");
return 0;
}
void board_quiesce_devices(void)
{
#ifdef CONFIG_LED
setup_led(LEDST_OFF);
#endif
}
/* eth init function : weak called in eqos driver */
int board_interface_eth_init(struct udevice *dev,
phy_interface_t interface_type)
{
u8 *syscfg;
u32 value;
bool eth_clk_sel_reg = false;
bool eth_ref_clk_sel_reg = false;
/* Gigabit Ethernet 125MHz clock selection. */
eth_clk_sel_reg = dev_read_bool(dev, "st,eth_clk_sel");
/* Ethernet 50Mhz RMII clock selection */
eth_ref_clk_sel_reg =
dev_read_bool(dev, "st,eth_ref_clk_sel");
syscfg = (u8 *)syscon_get_first_range(STM32MP_SYSCON_SYSCFG);
if (!syscfg)
return -ENODEV;
switch (interface_type) {
case PHY_INTERFACE_MODE_MII:
value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII |
SYSCFG_PMCSETR_ETH_REF_CLK_SEL;
debug("%s: PHY_INTERFACE_MODE_MII\n", __func__);
break;
case PHY_INTERFACE_MODE_GMII:
if (eth_clk_sel_reg)
value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII |
SYSCFG_PMCSETR_ETH_CLK_SEL;
else
value = SYSCFG_PMCSETR_ETH_SEL_GMII_MII;
debug("%s: PHY_INTERFACE_MODE_GMII\n", __func__);
break;
case PHY_INTERFACE_MODE_RMII:
if (eth_ref_clk_sel_reg)
value = SYSCFG_PMCSETR_ETH_SEL_RMII |
SYSCFG_PMCSETR_ETH_REF_CLK_SEL;
else
value = SYSCFG_PMCSETR_ETH_SEL_RMII;
debug("%s: PHY_INTERFACE_MODE_RMII\n", __func__);
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
if (eth_clk_sel_reg)
value = SYSCFG_PMCSETR_ETH_SEL_RGMII |
SYSCFG_PMCSETR_ETH_CLK_SEL;
else
value = SYSCFG_PMCSETR_ETH_SEL_RGMII;
debug("%s: PHY_INTERFACE_MODE_RGMII\n", __func__);
break;
default:
debug("%s: Do not manage %d interface\n",
__func__, interface_type);
/* Do not manage others interfaces */
return -EINVAL;
}
/* clear and set ETH configuration bits */
writel(SYSCFG_PMCSETR_ETH_SEL_MASK | SYSCFG_PMCSETR_ETH_SELMII |
SYSCFG_PMCSETR_ETH_REF_CLK_SEL | SYSCFG_PMCSETR_ETH_CLK_SEL,
syscfg + SYSCFG_PMCCLRR);
writel(value, syscfg + SYSCFG_PMCSETR);
return 0;
}
enum env_location env_get_location(enum env_operation op, int prio)
{
if (prio)
return ENVL_UNKNOWN;
#ifdef CONFIG_ENV_IS_IN_SPI_FLASH
return ENVL_SPI_FLASH;
#else
return ENVL_NOWHERE;
#endif
}
#ifdef CONFIG_SYS_MTDPARTS_RUNTIME
#define MTDPARTS_LEN 256
#define MTDIDS_LEN 128
/**
* The mtdparts_nand0 and mtdparts_nor0 variable tends to be long.
* If we need to access it before the env is relocated, then we need
* to use our own stack buffer. gd->env_buf will be too small.
*
* @param buf temporary buffer pointer MTDPARTS_LEN long
* @return mtdparts variable string, NULL if not found
*/
static const char *env_get_mtdparts(const char *str, char *buf)
{
if (gd->flags & GD_FLG_ENV_READY)
return env_get(str);
if (env_get_f(str, buf, MTDPARTS_LEN) != -1)
return buf;
return NULL;
}
/**
* update the variables "mtdids" and "mtdparts" with content of mtdparts_<dev>
*/
static void board_get_mtdparts(const char *dev,
char *mtdids,
char *mtdparts)
{
char env_name[32] = "mtdparts_";
char tmp_mtdparts[MTDPARTS_LEN];
const char *tmp;
/* name of env variable to read = mtdparts_<dev> */
strcat(env_name, dev);
tmp = env_get_mtdparts(env_name, tmp_mtdparts);
if (tmp) {
/* mtdids: "<dev>=<dev>, ...." */
if (mtdids[0] != '\0')
strcat(mtdids, ",");
strcat(mtdids, dev);
strcat(mtdids, "=");
strcat(mtdids, dev);
/* mtdparts: "mtdparts=<dev>:<mtdparts_<dev>>;..." */
if (mtdparts[0] != '\0')
strncat(mtdparts, ";", MTDPARTS_LEN);
else
strcat(mtdparts, "mtdparts=");
strncat(mtdparts, dev, MTDPARTS_LEN);
strncat(mtdparts, ":", MTDPARTS_LEN);
strncat(mtdparts, tmp, MTDPARTS_LEN);
}
}
void board_mtdparts_default(const char **mtdids, const char **mtdparts)
{
struct udevice *dev;
static char parts[3 * MTDPARTS_LEN + 1];
static char ids[MTDIDS_LEN + 1];
static bool mtd_initialized;
if (mtd_initialized) {
*mtdids = ids;
*mtdparts = parts;
return;
}
memset(parts, 0, sizeof(parts));
memset(ids, 0, sizeof(ids));
/* probe all MTD devices */
for (uclass_first_device(UCLASS_MTD, &dev);
dev;
uclass_next_device(&dev)) {
pr_debug("mtd device = %s\n", dev->name);
}
if (!uclass_get_device(UCLASS_SPI_FLASH, 0, &dev))
board_get_mtdparts("nor0", ids, parts);
mtd_initialized = true;
*mtdids = ids;
*mtdparts = parts;
debug("%s:mtdids=%s & mtdparts=%s\n", __func__, ids, parts);
}
#endif
#if defined(CONFIG_OF_BOARD_SETUP)
int ft_board_setup(void *blob, bd_t *bd)
{
return 0;
}
#endif
#ifdef CONFIG_SET_DFU_ALT_INFO
#define DFU_ALT_BUF_LEN SZ_1K
static void board_get_alt_info(const char *dev, char *buff)
{
char var_name[32] = "dfu_alt_info_";
int ret;
ALLOC_CACHE_ALIGN_BUFFER(char, tmp_alt, DFU_ALT_BUF_LEN);
/* name of env variable to read = dfu_alt_info_<dev> */
strcat(var_name, dev);
ret = env_get_f(var_name, tmp_alt, DFU_ALT_BUF_LEN);
if (ret) {
if (buff[0] != '\0')
strcat(buff, "&");
strncat(buff, tmp_alt, DFU_ALT_BUF_LEN);
}
}
void set_dfu_alt_info(char *interface, char *devstr)
{
struct udevice *dev;
ALLOC_CACHE_ALIGN_BUFFER(char, buf, DFU_ALT_BUF_LEN);
if (env_get("dfu_alt_info"))
return;
memset(buf, 0, sizeof(buf));
/* probe all MTD devices */
mtd_probe_devices();
board_get_alt_info("ram", buf);
if (!uclass_get_device(UCLASS_MMC, 0, &dev))
board_get_alt_info("mmc0", buf);
if (!uclass_get_device(UCLASS_MMC, 1, &dev))
board_get_alt_info("mmc1", buf);
if (!uclass_get_device(UCLASS_SPI_FLASH, 0, &dev))
board_get_alt_info("nor0", buf);
env_set("dfu_alt_info", buf);
puts("DFU alt info setting: done\n");
}
#endif
static void board_copro_image_process(ulong fw_image, size_t fw_size)
{
int ret, id = 0; /* Copro id fixed to 0 as only one coproc on mp1 */
if (!rproc_is_initialized())
if (rproc_init()) {
printf("Remote Processor %d initialization failed\n",
id);
return;
}
ret = rproc_load(id, fw_image, fw_size);
printf("Load Remote Processor %d with data@addr=0x%08lx %u bytes:%s\n",
id, fw_image, fw_size, ret ? " Failed!" : " Success!");
if (!ret) {
rproc_start(id);
env_set("copro_state", "booted");
}
}
U_BOOT_FIT_LOADABLE_HANDLER(IH_TYPE_COPRO, board_copro_image_process);