u-boot/drivers/net/dc2114x.c
Simon Glass 41575d8e4c dm: treewide: Rename auto_alloc_size members to be shorter
This construct is quite long-winded. In earlier days it made some sense
since auto-allocation was a strange concept. But with driver model now
used pretty universally, we can shorten this to 'auto'. This reduces
verbosity and makes it easier to read.

Coincidentally it also ensures that every declaration is on one line,
thus making dtoc's job easier.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-12-13 08:00:25 -07:00

759 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0+
#include <common.h>
#include <asm/io.h>
#include <dm.h>
#include <malloc.h>
#include <net.h>
#include <netdev.h>
#include <pci.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#define SROM_DLEVEL 0
/* PCI Registers. */
#define PCI_CFDA_PSM 0x43
#define CFRV_RN 0x000000f0 /* Revision Number */
#define WAKEUP 0x00 /* Power Saving Wakeup */
#define SLEEP 0x80 /* Power Saving Sleep Mode */
#define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
/* Ethernet chip registers. */
#define DE4X5_BMR 0x000 /* Bus Mode Register */
#define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
#define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
#define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
#define DE4X5_STS 0x028 /* Status Register */
#define DE4X5_OMR 0x030 /* Operation Mode Register */
#define DE4X5_SICR 0x068 /* SIA Connectivity Register */
#define DE4X5_APROM 0x048 /* Ethernet Address PROM */
/* Register bits. */
#define BMR_SWR 0x00000001 /* Software Reset */
#define STS_TS 0x00700000 /* Transmit Process State */
#define STS_RS 0x000e0000 /* Receive Process State */
#define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
#define OMR_SR 0x00000002 /* Start/Stop Receive */
#define OMR_PS 0x00040000 /* Port Select */
#define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
#define OMR_PM 0x00000080 /* Pass All Multicast */
/* Descriptor bits. */
#define R_OWN 0x80000000 /* Own Bit */
#define RD_RER 0x02000000 /* Receive End Of Ring */
#define RD_LS 0x00000100 /* Last Descriptor */
#define RD_ES 0x00008000 /* Error Summary */
#define TD_TER 0x02000000 /* Transmit End Of Ring */
#define T_OWN 0x80000000 /* Own Bit */
#define TD_LS 0x40000000 /* Last Segment */
#define TD_FS 0x20000000 /* First Segment */
#define TD_ES 0x00008000 /* Error Summary */
#define TD_SET 0x08000000 /* Setup Packet */
/* The EEPROM commands include the alway-set leading bit. */
#define SROM_WRITE_CMD 5
#define SROM_READ_CMD 6
#define SROM_ERASE_CMD 7
#define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
#define SROM_RD 0x00004000 /* Read from Boot ROM */
#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
#define EE_WRITE_0 0x4801
#define EE_WRITE_1 0x4805
#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
#define SROM_SR 0x00000800 /* Select Serial ROM when set */
#define DT_IN 0x00000004 /* Serial Data In */
#define DT_CLK 0x00000002 /* Serial ROM Clock */
#define DT_CS 0x00000001 /* Serial ROM Chip Select */
#define POLL_DEMAND 1
#if defined(CONFIG_DM_ETH)
#define phys_to_bus(dev, a) dm_pci_phys_to_mem((dev), (a))
#elif defined(CONFIG_E500)
#define phys_to_bus(dev, a) (a)
#else
#define phys_to_bus(dev, a) pci_phys_to_mem((dev), (a))
#endif
#define NUM_RX_DESC PKTBUFSRX
#define NUM_TX_DESC 1 /* Number of TX descriptors */
#define RX_BUFF_SZ PKTSIZE_ALIGN
#define TOUT_LOOP 1000000
#define SETUP_FRAME_LEN 192
struct de4x5_desc {
volatile s32 status;
u32 des1;
u32 buf;
u32 next;
};
struct dc2114x_priv {
struct de4x5_desc rx_ring[NUM_RX_DESC] __aligned(32);
struct de4x5_desc tx_ring[NUM_TX_DESC] __aligned(32);
int rx_new; /* RX descriptor ring pointer */
int tx_new; /* TX descriptor ring pointer */
char rx_ring_size;
char tx_ring_size;
#ifdef CONFIG_DM_ETH
struct udevice *devno;
#else
struct eth_device dev;
pci_dev_t devno;
#endif
char *name;
void __iomem *iobase;
u8 *enetaddr;
};
/* RX and TX descriptor ring */
static u32 dc2114x_inl(struct dc2114x_priv *priv, u32 addr)
{
return le32_to_cpu(readl(priv->iobase + addr));
}
static void dc2114x_outl(struct dc2114x_priv *priv, u32 command, u32 addr)
{
writel(cpu_to_le32(command), priv->iobase + addr);
}
static void reset_de4x5(struct dc2114x_priv *priv)
{
u32 i;
i = dc2114x_inl(priv, DE4X5_BMR);
mdelay(1);
dc2114x_outl(priv, i | BMR_SWR, DE4X5_BMR);
mdelay(1);
dc2114x_outl(priv, i, DE4X5_BMR);
mdelay(1);
for (i = 0; i < 5; i++) {
dc2114x_inl(priv, DE4X5_BMR);
mdelay(10);
}
mdelay(1);
}
static void start_de4x5(struct dc2114x_priv *priv)
{
u32 omr;
omr = dc2114x_inl(priv, DE4X5_OMR);
omr |= OMR_ST | OMR_SR;
dc2114x_outl(priv, omr, DE4X5_OMR); /* Enable the TX and/or RX */
}
static void stop_de4x5(struct dc2114x_priv *priv)
{
u32 omr;
omr = dc2114x_inl(priv, DE4X5_OMR);
omr &= ~(OMR_ST | OMR_SR);
dc2114x_outl(priv, omr, DE4X5_OMR); /* Disable the TX and/or RX */
}
/* SROM Read and write routines. */
static void sendto_srom(struct dc2114x_priv *priv, u_int command, u_long addr)
{
dc2114x_outl(priv, command, addr);
udelay(1);
}
static int getfrom_srom(struct dc2114x_priv *priv, u_long addr)
{
u32 tmp = dc2114x_inl(priv, addr);
udelay(1);
return tmp;
}
/* Note: this routine returns extra data bits for size detection. */
static int do_read_eeprom(struct dc2114x_priv *priv, u_long ioaddr, int location,
int addr_len)
{
int read_cmd = location | (SROM_READ_CMD << addr_len);
unsigned int retval = 0;
int i;
sendto_srom(priv, SROM_RD | SROM_SR, ioaddr);
sendto_srom(priv, SROM_RD | SROM_SR | DT_CS, ioaddr);
debug_cond(SROM_DLEVEL >= 1, " EEPROM read at %d ", location);
/* Shift the read command bits out. */
for (i = 4 + addr_len; i >= 0; i--) {
short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
sendto_srom(priv, SROM_RD | SROM_SR | DT_CS | dataval,
ioaddr);
udelay(10);
sendto_srom(priv, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK,
ioaddr);
udelay(10);
debug_cond(SROM_DLEVEL >= 2, "%X",
getfrom_srom(priv, ioaddr) & 15);
retval = (retval << 1) |
!!(getfrom_srom(priv, ioaddr) & EE_DATA_READ);
}
sendto_srom(priv, SROM_RD | SROM_SR | DT_CS, ioaddr);
debug_cond(SROM_DLEVEL >= 2, " :%X:", getfrom_srom(priv, ioaddr) & 15);
for (i = 16; i > 0; i--) {
sendto_srom(priv, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
udelay(10);
debug_cond(SROM_DLEVEL >= 2, "%X",
getfrom_srom(priv, ioaddr) & 15);
retval = (retval << 1) |
!!(getfrom_srom(priv, ioaddr) & EE_DATA_READ);
sendto_srom(priv, SROM_RD | SROM_SR | DT_CS, ioaddr);
udelay(10);
}
/* Terminate the EEPROM access. */
sendto_srom(priv, SROM_RD | SROM_SR, ioaddr);
debug_cond(SROM_DLEVEL >= 2, " EEPROM value at %d is %5.5x.\n",
location, retval);
return retval;
}
/*
* This executes a generic EEPROM command, typically a write or write
* enable. It returns the data output from the EEPROM, and thus may
* also be used for reads.
*/
static int do_eeprom_cmd(struct dc2114x_priv *priv, u_long ioaddr, int cmd,
int cmd_len)
{
unsigned int retval = 0;
debug_cond(SROM_DLEVEL >= 1, " EEPROM op 0x%x: ", cmd);
sendto_srom(priv, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
/* Shift the command bits out. */
do {
short dataval = (cmd & BIT(cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
sendto_srom(priv, dataval, ioaddr);
udelay(10);
debug_cond(SROM_DLEVEL >= 2, "%X",
getfrom_srom(priv, ioaddr) & 15);
sendto_srom(priv, dataval | DT_CLK, ioaddr);
udelay(10);
retval = (retval << 1) |
!!(getfrom_srom(priv, ioaddr) & EE_DATA_READ);
} while (--cmd_len >= 0);
sendto_srom(priv, SROM_RD | SROM_SR | DT_CS, ioaddr);
/* Terminate the EEPROM access. */
sendto_srom(priv, SROM_RD | SROM_SR, ioaddr);
debug_cond(SROM_DLEVEL >= 1, " EEPROM result is 0x%5.5x.\n", retval);
return retval;
}
static int read_srom(struct dc2114x_priv *priv, u_long ioaddr, int index)
{
int ee_addr_size;
ee_addr_size = (do_read_eeprom(priv, ioaddr, 0xff, 8) & BIT(18)) ? 8 : 6;
return do_eeprom_cmd(priv, ioaddr, 0xffff |
(((SROM_READ_CMD << ee_addr_size) | index) << 16),
3 + ee_addr_size + 16);
}
static void send_setup_frame(struct dc2114x_priv *priv)
{
char setup_frame[SETUP_FRAME_LEN];
char *pa = &setup_frame[0];
int i;
memset(pa, 0xff, SETUP_FRAME_LEN);
for (i = 0; i < ETH_ALEN; i++) {
*(pa + (i & 1)) = priv->enetaddr[i];
if (i & 0x01)
pa += 4;
}
for (i = 0; priv->tx_ring[priv->tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i < TOUT_LOOP)
continue;
printf("%s: tx error buffer not ready\n", priv->name);
return;
}
priv->tx_ring[priv->tx_new].buf = cpu_to_le32(phys_to_bus(priv->devno,
(u32)&setup_frame[0]));
priv->tx_ring[priv->tx_new].des1 = cpu_to_le32(TD_TER | TD_SET | SETUP_FRAME_LEN);
priv->tx_ring[priv->tx_new].status = cpu_to_le32(T_OWN);
dc2114x_outl(priv, POLL_DEMAND, DE4X5_TPD);
for (i = 0; priv->tx_ring[priv->tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i < TOUT_LOOP)
continue;
printf("%s: tx buffer not ready\n", priv->name);
return;
}
if (le32_to_cpu(priv->tx_ring[priv->tx_new].status) != 0x7FFFFFFF) {
printf("TX error status2 = 0x%08X\n",
le32_to_cpu(priv->tx_ring[priv->tx_new].status));
}
priv->tx_new = (priv->tx_new + 1) % NUM_TX_DESC;
}
static int dc21x4x_send_common(struct dc2114x_priv *priv, void *packet, int length)
{
int status = -1;
int i;
if (length <= 0) {
printf("%s: bad packet size: %d\n", priv->name, length);
goto done;
}
for (i = 0; priv->tx_ring[priv->tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i < TOUT_LOOP)
continue;
printf("%s: tx error buffer not ready\n", priv->name);
goto done;
}
priv->tx_ring[priv->tx_new].buf = cpu_to_le32(phys_to_bus(priv->devno,
(u32)packet));
priv->tx_ring[priv->tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
priv->tx_ring[priv->tx_new].status = cpu_to_le32(T_OWN);
dc2114x_outl(priv, POLL_DEMAND, DE4X5_TPD);
for (i = 0; priv->tx_ring[priv->tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i < TOUT_LOOP)
continue;
printf(".%s: tx buffer not ready\n", priv->name);
goto done;
}
if (le32_to_cpu(priv->tx_ring[priv->tx_new].status) & TD_ES) {
priv->tx_ring[priv->tx_new].status = 0x0;
goto done;
}
status = length;
done:
priv->tx_new = (priv->tx_new + 1) % NUM_TX_DESC;
return status;
}
static int dc21x4x_recv_check(struct dc2114x_priv *priv)
{
int length = 0;
u32 status;
status = le32_to_cpu(priv->rx_ring[priv->rx_new].status);
if (status & R_OWN)
return 0;
if (status & RD_LS) {
/* Valid frame status. */
if (status & RD_ES) {
/* There was an error. */
printf("RX error status = 0x%08X\n", status);
return -EINVAL;
} else {
/* A valid frame received. */
length = (le32_to_cpu(priv->rx_ring[priv->rx_new].status)
>> 16);
return length;
}
}
return -EAGAIN;
}
static int dc21x4x_init_common(struct dc2114x_priv *priv)
{
int i;
reset_de4x5(priv);
if (dc2114x_inl(priv, DE4X5_STS) & (STS_TS | STS_RS)) {
printf("Error: Cannot reset ethernet controller.\n");
return -1;
}
dc2114x_outl(priv, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
for (i = 0; i < NUM_RX_DESC; i++) {
priv->rx_ring[i].status = cpu_to_le32(R_OWN);
priv->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
priv->rx_ring[i].buf = cpu_to_le32(phys_to_bus(priv->devno,
(u32)net_rx_packets[i]));
priv->rx_ring[i].next = 0;
}
for (i = 0; i < NUM_TX_DESC; i++) {
priv->tx_ring[i].status = 0;
priv->tx_ring[i].des1 = 0;
priv->tx_ring[i].buf = 0;
priv->tx_ring[i].next = 0;
}
priv->rx_ring_size = NUM_RX_DESC;
priv->tx_ring_size = NUM_TX_DESC;
/* Write the end of list marker to the descriptor lists. */
priv->rx_ring[priv->rx_ring_size - 1].des1 |= cpu_to_le32(RD_RER);
priv->tx_ring[priv->tx_ring_size - 1].des1 |= cpu_to_le32(TD_TER);
/* Tell the adapter where the TX/RX rings are located. */
dc2114x_outl(priv, phys_to_bus(priv->devno, (u32)&priv->rx_ring),
DE4X5_RRBA);
dc2114x_outl(priv, phys_to_bus(priv->devno, (u32)&priv->tx_ring),
DE4X5_TRBA);
start_de4x5(priv);
priv->tx_new = 0;
priv->rx_new = 0;
send_setup_frame(priv);
return 0;
}
static void dc21x4x_halt_common(struct dc2114x_priv *priv)
{
stop_de4x5(priv);
dc2114x_outl(priv, 0, DE4X5_SICR);
}
static void read_hw_addr(struct dc2114x_priv *priv)
{
u_short tmp, *p = (u_short *)(&priv->enetaddr[0]);
int i, j = 0;
for (i = 0; i < (ETH_ALEN >> 1); i++) {
tmp = read_srom(priv, DE4X5_APROM, (SROM_HWADD >> 1) + i);
*p = le16_to_cpu(tmp);
j += *p++;
}
if (!j || j == 0x2fffd) {
memset(priv->enetaddr, 0, ETH_ALEN);
debug("Warning: can't read HW address from SROM.\n");
}
}
static struct pci_device_id supported[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST) },
{ PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142) },
{ }
};
#ifndef CONFIG_DM_ETH
static int dc21x4x_init(struct eth_device *dev, struct bd_info *bis)
{
struct dc2114x_priv *priv =
container_of(dev, struct dc2114x_priv, dev);
/* Ensure we're not sleeping. */
pci_write_config_byte(priv->devno, PCI_CFDA_PSM, WAKEUP);
return dc21x4x_init_common(priv);
}
static void dc21x4x_halt(struct eth_device *dev)
{
struct dc2114x_priv *priv =
container_of(dev, struct dc2114x_priv, dev);
dc21x4x_halt_common(priv);
pci_write_config_byte(priv->devno, PCI_CFDA_PSM, SLEEP);
}
static int dc21x4x_send(struct eth_device *dev, void *packet, int length)
{
struct dc2114x_priv *priv =
container_of(dev, struct dc2114x_priv, dev);
return dc21x4x_send_common(priv, packet, length);
}
static int dc21x4x_recv(struct eth_device *dev)
{
struct dc2114x_priv *priv =
container_of(dev, struct dc2114x_priv, dev);
int length = 0;
int ret;
while (true) {
ret = dc21x4x_recv_check(priv);
if (!ret)
break;
if (ret > 0) {
length = ret;
/* Pass the packet up to the protocol layers */
net_process_received_packet
(net_rx_packets[priv->rx_new], length - 4);
}
/*
* Change buffer ownership for this frame,
* back to the adapter.
*/
if (ret != -EAGAIN)
priv->rx_ring[priv->rx_new].status = cpu_to_le32(R_OWN);
/* Update entry information. */
priv->rx_new = (priv->rx_new + 1) % priv->rx_ring_size;
}
return length;
}
int dc21x4x_initialize(struct bd_info *bis)
{
struct dc2114x_priv *priv;
struct eth_device *dev;
unsigned short status;
unsigned char timer;
unsigned int iobase;
int card_number = 0;
pci_dev_t devbusfn;
int idx = 0;
while (1) {
devbusfn = pci_find_devices(supported, idx++);
if (devbusfn == -1)
break;
pci_read_config_word(devbusfn, PCI_COMMAND, &status);
status |= PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
pci_write_config_word(devbusfn, PCI_COMMAND, status);
pci_read_config_word(devbusfn, PCI_COMMAND, &status);
if (!(status & PCI_COMMAND_MEMORY)) {
printf("Error: Can not enable MEMORY access.\n");
continue;
}
if (!(status & PCI_COMMAND_MASTER)) {
printf("Error: Can not enable Bus Mastering.\n");
continue;
}
/* Check the latency timer for values >= 0x60. */
pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
if (timer < 0x60) {
pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER,
0x60);
}
/* read BAR for memory space access */
pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
iobase &= PCI_BASE_ADDRESS_MEM_MASK;
debug("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
priv = memalign(32, sizeof(*priv));
if (!priv) {
printf("Can not allocalte memory of dc21x4x\n");
break;
}
memset(priv, 0, sizeof(*priv));
dev = &priv->dev;
sprintf(dev->name, "dc21x4x#%d", card_number);
priv->devno = devbusfn;
priv->name = dev->name;
priv->enetaddr = dev->enetaddr;
dev->iobase = pci_mem_to_phys(devbusfn, iobase);
dev->priv = (void *)devbusfn;
dev->init = dc21x4x_init;
dev->halt = dc21x4x_halt;
dev->send = dc21x4x_send;
dev->recv = dc21x4x_recv;
/* Ensure we're not sleeping. */
pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
udelay(10 * 1000);
read_hw_addr(priv);
eth_register(dev);
card_number++;
}
return card_number;
}
#else /* DM_ETH */
static int dc2114x_start(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_platdata(dev);
struct dc2114x_priv *priv = dev_get_priv(dev);
memcpy(priv->enetaddr, plat->enetaddr, sizeof(plat->enetaddr));
/* Ensure we're not sleeping. */
dm_pci_write_config8(dev, PCI_CFDA_PSM, WAKEUP);
return dc21x4x_init_common(priv);
}
static void dc2114x_stop(struct udevice *dev)
{
struct dc2114x_priv *priv = dev_get_priv(dev);
dc21x4x_halt_common(priv);
dm_pci_write_config8(dev, PCI_CFDA_PSM, SLEEP);
}
static int dc2114x_send(struct udevice *dev, void *packet, int length)
{
struct dc2114x_priv *priv = dev_get_priv(dev);
int ret;
ret = dc21x4x_send_common(priv, packet, length);
return ret ? 0 : -ETIMEDOUT;
}
static int dc2114x_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct dc2114x_priv *priv = dev_get_priv(dev);
int ret;
ret = dc21x4x_recv_check(priv);
if (ret < 0) {
/* Update entry information. */
priv->rx_new = (priv->rx_new + 1) % priv->rx_ring_size;
ret = 0;
}
if (!ret)
return 0;
*packetp = net_rx_packets[priv->rx_new];
return ret - 4;
}
static int dc2114x_free_pkt(struct udevice *dev, uchar *packet, int length)
{
struct dc2114x_priv *priv = dev_get_priv(dev);
priv->rx_ring[priv->rx_new].status = cpu_to_le32(R_OWN);
/* Update entry information. */
priv->rx_new = (priv->rx_new + 1) % priv->rx_ring_size;
return 0;
}
static int dc2114x_read_rom_hwaddr(struct udevice *dev)
{
struct dc2114x_priv *priv = dev_get_priv(dev);
read_hw_addr(priv);
return 0;
}
static int dc2114x_bind(struct udevice *dev)
{
static int card_number;
char name[16];
sprintf(name, "dc2114x#%u", card_number++);
return device_set_name(dev, name);
}
static int dc2114x_probe(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_platdata(dev);
struct dc2114x_priv *priv = dev_get_priv(dev);
u16 command, status;
u32 iobase;
dm_pci_read_config32(dev, PCI_BASE_ADDRESS_1, &iobase);
iobase &= ~0xf;
debug("dc2114x: DEC 2114x PCI Device @0x%x\n", iobase);
priv->devno = dev;
priv->enetaddr = plat->enetaddr;
priv->iobase = (void __iomem *)dm_pci_mem_to_phys(dev, iobase);
command = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
dm_pci_write_config16(dev, PCI_COMMAND, command);
dm_pci_read_config16(dev, PCI_COMMAND, &status);
if ((status & command) != command) {
printf("dc2114x: Couldn't enable IO access or Bus Mastering\n");
return -EINVAL;
}
dm_pci_write_config8(dev, PCI_LATENCY_TIMER, 0x60);
return 0;
}
static const struct eth_ops dc2114x_ops = {
.start = dc2114x_start,
.send = dc2114x_send,
.recv = dc2114x_recv,
.stop = dc2114x_stop,
.free_pkt = dc2114x_free_pkt,
.read_rom_hwaddr = dc2114x_read_rom_hwaddr,
};
U_BOOT_DRIVER(eth_dc2114x) = {
.name = "eth_dc2114x",
.id = UCLASS_ETH,
.bind = dc2114x_bind,
.probe = dc2114x_probe,
.ops = &dc2114x_ops,
.priv_auto = sizeof(struct dc2114x_priv),
.platdata_auto = sizeof(struct eth_pdata),
};
U_BOOT_PCI_DEVICE(eth_dc2114x, supported);
#endif