u-boot/board/kontron/sl-mx6ul/spl.c
Tom Rini 6cc04547cb global: Migrate CONFIG_SYS_FSL* symbols to the CFG_SYS namespace
Migrate all of COFIG_SYS_FSL* to the CFG_SYS namespace.

Signed-off-by: Tom Rini <trini@konsulko.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
2022-11-10 10:08:55 -05:00

382 lines
9.8 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2018 Kontron Electronics GmbH
*/
#include <asm/arch/clock.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/mx6-pins.h>
#include <asm/arch/sys_proto.h>
#include <asm/global_data.h>
#include <asm/gpio.h>
#include <asm/io.h>
#include <asm/mach-imx/iomux-v3.h>
#include <fsl_esdhc_imx.h>
#include <init.h>
#include <linux/delay.h>
#include <linux/sizes.h>
#include <linux/errno.h>
#include <mmc.h>
#include <sl-mx6ul-common.h>
DECLARE_GLOBAL_DATA_PTR;
enum {
BOARD_TYPE_KTN_SL_UL = 1,
BOARD_TYPE_KTN_SL_ULL,
BOARD_TYPE_MAX
};
#define UART_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS)
#define USDHC_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_22K_UP | PAD_CTL_SPEED_LOW | \
PAD_CTL_DSE_80ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS)
#define USDHC_CD_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \
PAD_CTL_PUS_100K_DOWN | PAD_CTL_SPEED_LOW | \
PAD_CTL_DSE_80ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS)
#define SPI_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_SPEED_MED | \
PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST)
#include <spl.h>
#include <asm/arch/mx6-ddr.h>
static iomux_v3_cfg_t const usdhc1_pads[] = {
MX6_PAD_SD1_CLK__USDHC1_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_CMD__USDHC1_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_DATA0__USDHC1_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_DATA1__USDHC1_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_DATA2__USDHC1_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_SD1_DATA3__USDHC1_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
/* CD */
MX6_PAD_UART1_RTS_B__GPIO1_IO19 | MUX_PAD_CTRL(USDHC_CD_PAD_CTRL),
};
#define USDHC1_CD_GPIO IMX_GPIO_NR(1, 19)
static iomux_v3_cfg_t const usdhc2_pads[] = {
MX6_PAD_NAND_RE_B__USDHC2_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_WE_B__USDHC2_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA00__USDHC2_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA01__USDHC2_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA02__USDHC2_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
MX6_PAD_NAND_DATA03__USDHC2_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL),
/* RST */
MX6_PAD_NAND_ALE__GPIO4_IO10 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
#define USDHC2_PWR_GPIO IMX_GPIO_NR(4, 10)
static struct fsl_esdhc_cfg usdhc_cfg[2] = {
{USDHC1_BASE_ADDR, 0, 4},
{USDHC2_BASE_ADDR, 0, 4},
};
int board_mmc_getcd(struct mmc *mmc)
{
struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv;
int ret = 0;
switch (cfg->esdhc_base) {
case USDHC1_BASE_ADDR:
ret = !gpio_get_value(USDHC1_CD_GPIO);
break;
case USDHC2_BASE_ADDR:
// This SDHC interface does not use a CD pin
ret = 1;
break;
}
return ret;
}
int board_mmc_init(struct bd_info *bis)
{
int i, ret;
/*
* According to the board_mmc_init() the following map is done:
* (U-boot device node) (Physical Port)
* mmc0 USDHC1
* mmc1 USDHC2
*/
for (i = 0; i < CFG_SYS_FSL_USDHC_NUM; i++) {
switch (i) {
case 0:
imx_iomux_v3_setup_multiple_pads(usdhc1_pads, ARRAY_SIZE(usdhc1_pads));
gpio_direction_input(USDHC1_CD_GPIO);
usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK);
break;
case 1:
imx_iomux_v3_setup_multiple_pads(usdhc2_pads, ARRAY_SIZE(usdhc2_pads));
gpio_direction_output(USDHC2_PWR_GPIO, 0);
udelay(500);
gpio_direction_output(USDHC2_PWR_GPIO, 1);
usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK);
break;
default:
printf("Warning: you configured more USDHC controllers (%d) than supported by the board\n",
i + 1);
return -EINVAL;
}
ret = fsl_esdhc_initialize(bis, &usdhc_cfg[i]);
if (ret) {
printf("Warning: failed to initialize mmc dev %d\n", i);
return ret;
}
}
return 0;
}
iomux_v3_cfg_t const ecspi2_pads[] = {
MX6_PAD_CSI_DATA00__ECSPI2_SCLK | MUX_PAD_CTRL(SPI_PAD_CTRL),
MX6_PAD_CSI_DATA02__ECSPI2_MOSI | MUX_PAD_CTRL(SPI_PAD_CTRL),
MX6_PAD_CSI_DATA03__ECSPI2_MISO | MUX_PAD_CTRL(SPI_PAD_CTRL),
MX6_PAD_CSI_DATA01__GPIO4_IO22 | MUX_PAD_CTRL(NO_PAD_CTRL),
};
int board_spi_cs_gpio(unsigned int bus, unsigned int cs)
{
return (bus == CONFIG_SF_DEFAULT_BUS && cs == CONFIG_SF_DEFAULT_CS)
? (IMX_GPIO_NR(4, 22)) : -1;
}
static void setup_spi(void)
{
gpio_request(IMX_GPIO_NR(4, 22), "spi2_cs0");
gpio_direction_output(IMX_GPIO_NR(4, 22), 1);
imx_iomux_v3_setup_multiple_pads(ecspi2_pads, ARRAY_SIZE(ecspi2_pads));
enable_spi_clk(true, 1);
}
static iomux_v3_cfg_t const uart4_pads[] = {
MX6_PAD_UART4_TX_DATA__UART4_DCE_TX | MUX_PAD_CTRL(UART_PAD_CTRL),
MX6_PAD_UART4_RX_DATA__UART4_DCE_RX | MUX_PAD_CTRL(UART_PAD_CTRL),
};
static void setup_iomux_uart(void)
{
imx_iomux_v3_setup_multiple_pads(uart4_pads, ARRAY_SIZE(uart4_pads));
}
// DDR 256MB (Hynix H5TQ2G63DFR)
static struct mx6_ddr3_cfg mem_256M_ddr = {
.mem_speed = 800,
.density = 2,
.width = 16,
.banks = 8,
.rowaddr = 14,
.coladdr = 10,
.pagesz = 2,
.trcd = 1350,
.trcmin = 4950,
.trasmin = 3600,
};
static struct mx6_mmdc_calibration mx6_mmcd_256M_calib = {
.p0_mpwldectrl0 = 0x00000000,
.p0_mpdgctrl0 = 0x01340134,
.p0_mprddlctl = 0x40405052,
.p0_mpwrdlctl = 0x40404E48,
};
// DDR 512MB (Hynix H5TQ4G63DFR)
static struct mx6_ddr3_cfg mem_512M_ddr = {
.mem_speed = 800,
.density = 4,
.width = 16,
.banks = 8,
.rowaddr = 15,
.coladdr = 10,
.pagesz = 2,
.trcd = 1350,
.trcmin = 4950,
.trasmin = 3600,
};
static struct mx6_mmdc_calibration mx6_mmcd_512M_calib = {
.p0_mpwldectrl0 = 0x00000000,
.p0_mpdgctrl0 = 0X01440144,
.p0_mprddlctl = 0x40405454,
.p0_mpwrdlctl = 0x40404E4C,
};
// Common DDR parameters (256MB and 512MB)
static struct mx6ul_iomux_grp_regs mx6_grp_ioregs = {
.grp_addds = 0x00000028,
.grp_ddrmode_ctl = 0x00020000,
.grp_b0ds = 0x00000028,
.grp_ctlds = 0x00000028,
.grp_b1ds = 0x00000028,
.grp_ddrpke = 0x00000000,
.grp_ddrmode = 0x00020000,
.grp_ddr_type = 0x000c0000,
};
static struct mx6ul_iomux_ddr_regs mx6_ddr_ioregs = {
.dram_dqm0 = 0x00000028,
.dram_dqm1 = 0x00000028,
.dram_ras = 0x00000028,
.dram_cas = 0x00000028,
.dram_odt0 = 0x00000028,
.dram_odt1 = 0x00000028,
.dram_sdba2 = 0x00000000,
.dram_sdclk_0 = 0x00000028,
.dram_sdqs0 = 0x00000028,
.dram_sdqs1 = 0x00000028,
.dram_reset = 0x00000028,
};
struct mx6_ddr_sysinfo ddr_sysinfo = {
.dsize = 0,
.cs_density = 20,
.ncs = 1,
.cs1_mirror = 0,
.rtt_wr = 2,
.rtt_nom = 1, /* RTT_Nom = RZQ/2 */
.walat = 1, /* Write additional latency */
.ralat = 5, /* Read additional latency */
.mif3_mode = 3, /* Command prediction working mode */
.bi_on = 1, /* Bank interleaving enabled */
.sde_to_rst = 0x10, /* 14 cycles, 200us (JEDEC default) */
.rst_to_cke = 0x23, /* 33 cycles, 500us (JEDEC default) */
.ddr_type = DDR_TYPE_DDR3,
.refsel = 0, /* Refresh cycles at 64KHz */
.refr = 1, /* 2 refresh commands per refresh cycle */
};
static void ccgr_init(void)
{
struct mxc_ccm_reg *ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
writel(0xFFFFFFFF, &ccm->CCGR0);
writel(0xFFFFFFFF, &ccm->CCGR1);
writel(0xFFFFFFFF, &ccm->CCGR2);
writel(0xFFFFFFFF, &ccm->CCGR3);
writel(0xFFFFFFFF, &ccm->CCGR4);
writel(0xFFFFFFFF, &ccm->CCGR5);
writel(0xFFFFFFFF, &ccm->CCGR6);
writel(0xFFFFFFFF, &ccm->CCGR7);
}
static void spl_dram_init(void)
{
unsigned int size;
// DDR RAM connection is always 16 bit wide. Init IOs.
mx6ul_dram_iocfg(16, &mx6_ddr_ioregs, &mx6_grp_ioregs);
// Try to detect the 512MB RAM chip first.
mx6_dram_cfg(&ddr_sysinfo, &mx6_mmcd_512M_calib, &mem_512M_ddr);
// Get the available RAM size
size = get_ram_size((void *)PHYS_SDRAM, SZ_512M);
gd->ram_size = size;
if (size == SZ_512M) {
// 512MB RAM was detected
return;
} else if (size == SZ_256M) {
// 256MB RAM was detected, use correct config and calibration
mx6_dram_cfg(&ddr_sysinfo, &mx6_mmcd_256M_calib, &mem_256M_ddr);
} else {
printf("Invalid DDR RAM size detected: %x\n", size);
}
}
static int do_board_detect(void)
{
if (is_mx6ul())
gd->board_type = BOARD_TYPE_KTN_SL_UL;
else if (is_mx6ull())
gd->board_type = BOARD_TYPE_KTN_SL_ULL;
printf("Kontron SL i.MX6UL%s (N6%s1x) module, %lu MB RAM detected\n",
is_mx6ull() ? "L" : "", is_mx6ull() ? "4" : "3", gd->ram_size / SZ_1M);
return 0;
}
void board_init_f(ulong dummy)
{
ccgr_init();
/* setup AIPS and disable watchdog */
arch_cpu_init();
/* iomux and setup of UART and SPI */
board_early_init_f();
/* setup GP timer */
timer_init();
/* UART clocks enabled and gd valid - init serial console */
preloader_console_init();
/* DDR initialization */
spl_dram_init();
/* Clear the BSS. */
memset(__bss_start, 0, __bss_end - __bss_start);
/* Detect the board type */
do_board_detect();
/* load/boot image from boot device */
board_init_r(NULL, 0);
}
void board_boot_order(u32 *spl_boot_list)
{
u32 bootdev = spl_boot_device();
/*
* The default boot fuse settings use the SD card (MMC1) as primary
* boot device, but allow SPI NOR as a fallback boot device. There
* is no proper way to detect if the fallback was used. Therefore
* we read the ECSPI2_CONREG register and see if it differs from the
* reset value 0x0. If that's the case we can assume that the BootROM
* has successfully probed the SPI NOR.
*/
switch (bootdev) {
case BOOT_DEVICE_MMC1:
case BOOT_DEVICE_MMC2:
if (sl_mx6ul_is_spi_nor_boot()) {
spl_boot_list[0] = BOOT_DEVICE_SPI;
return;
}
break;
}
spl_boot_list[0] = bootdev;
}
int board_early_init_f(void)
{
setup_iomux_uart();
if (sl_mx6ul_is_spi_nor_boot())
setup_spi();
return 0;
}
int board_fit_config_name_match(const char *name)
{
if (gd->board_type == BOARD_TYPE_KTN_SL_UL && is_mx6ul() &&
(!strcmp(name, "imx6ul-kontron-n631x-s") || !strcmp(name, "imx6ul-kontron-bl")))
return 0;
if (gd->board_type == BOARD_TYPE_KTN_SL_ULL && is_mx6ull() &&
(!strcmp(name, "imx6ull-kontron-n641x-s") || !strcmp(name, "imx6ull-kontron-bl")))
return 0;
return -1;
}