u-boot/arch/arm/mach-tegra/clock.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

833 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2010-2015, NVIDIA CORPORATION. All rights reserved.
*/
/* Tegra SoC common clock control functions */
#include <common.h>
#include <div64.h>
#include <dm.h>
#include <errno.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/ap.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/pmc.h>
#include <asm/arch-tegra/timer.h>
/*
* This is our record of the current clock rate of each clock. We don't
* fill all of these in since we are only really interested in clocks which
* we use as parents.
*/
static unsigned pll_rate[CLOCK_ID_COUNT];
/*
* The oscillator frequency is fixed to one of four set values. Based on this
* the other clocks are set up appropriately.
*/
static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
13000000,
19200000,
12000000,
26000000,
38400000,
48000000,
};
/* return 1 if a peripheral ID is in range */
#define clock_type_id_isvalid(id) ((id) >= 0 && \
(id) < CLOCK_TYPE_COUNT)
char pllp_valid = 1; /* PLLP is set up correctly */
/* return 1 if a periphc_internal_id is in range */
#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
(id) < PERIPHC_COUNT)
/* number of clock outputs of a PLL */
static const u8 pll_num_clkouts[] = {
1, /* PLLC */
1, /* PLLM */
4, /* PLLP */
1, /* PLLA */
0, /* PLLU */
0, /* PLLD */
};
int clock_get_osc_bypass(void)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 reg;
reg = readl(&clkrst->crc_osc_ctrl);
return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
}
/* Returns a pointer to the registers of the given pll */
static struct clk_pll *get_pll(enum clock_id clkid)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
assert(clock_id_is_pll(clkid));
if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
debug("%s: Invalid PLL %d\n", __func__, clkid);
return NULL;
}
return &clkrst->crc_pll[clkid];
}
__weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
{
return NULL;
}
int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
u32 *divp, u32 *cpcon, u32 *lfcon)
{
struct clk_pll *pll = get_pll(clkid);
struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
u32 data;
assert(clkid != CLOCK_ID_USB);
/* Safety check, adds to code size but is small */
if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
return -1;
data = readl(&pll->pll_base);
*divm = (data >> pllinfo->m_shift) & pllinfo->m_mask;
*divn = (data >> pllinfo->n_shift) & pllinfo->n_mask;
*divp = (data >> pllinfo->p_shift) & pllinfo->p_mask;
data = readl(&pll->pll_misc);
/* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */
*cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask;
*lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask;
return 0;
}
unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
u32 divp, u32 cpcon, u32 lfcon)
{
struct clk_pll *pll = NULL;
struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
struct clk_pll_simple *simple_pll = NULL;
u32 misc_data, data;
if (clkid < (enum clock_id)TEGRA_CLK_PLLS) {
pll = get_pll(clkid);
} else {
simple_pll = clock_get_simple_pll(clkid);
if (!simple_pll) {
debug("%s: Uknown simple PLL %d\n", __func__, clkid);
return 0;
}
}
/*
* pllinfo has the m/n/p and kcp/kvco mask and shift
* values for all of the PLLs used in U-Boot, with any
* SoC differences accounted for.
*
* Preserve EN_LOCKDET, etc.
*/
if (pll)
misc_data = readl(&pll->pll_misc);
else
misc_data = readl(&simple_pll->pll_misc);
misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
misc_data |= cpcon << pllinfo->kcp_shift;
misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift);
misc_data |= lfcon << pllinfo->kvco_shift;
data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift);
data |= divp << pllinfo->p_shift;
data |= (1 << PLL_ENABLE_SHIFT); /* BYPASS s/b 0 already */
if (pll) {
writel(misc_data, &pll->pll_misc);
writel(data, &pll->pll_base);
} else {
writel(misc_data, &simple_pll->pll_misc);
writel(data, &simple_pll->pll_base);
}
/* calculate the stable time */
return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
}
void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
unsigned divisor)
{
u32 *reg = get_periph_source_reg(periph_id);
u32 value;
value = readl(reg);
value &= ~OUT_CLK_SOURCE_31_30_MASK;
value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
value &= ~OUT_CLK_DIVISOR_MASK;
value |= divisor << OUT_CLK_DIVISOR_SHIFT;
writel(value, reg);
}
int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
unsigned source)
{
u32 *reg = get_periph_source_reg(periph_id);
switch (mux_bits) {
case MASK_BITS_31_30:
clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
source << OUT_CLK_SOURCE_31_30_SHIFT);
break;
case MASK_BITS_31_29:
clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
source << OUT_CLK_SOURCE_31_29_SHIFT);
break;
case MASK_BITS_31_28:
clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
source << OUT_CLK_SOURCE_31_28_SHIFT);
break;
default:
return -1;
}
return 0;
}
static int clock_ll_get_source_bits(enum periph_id periph_id, int mux_bits)
{
u32 *reg = get_periph_source_reg(periph_id);
u32 val = readl(reg);
switch (mux_bits) {
case MASK_BITS_31_30:
val >>= OUT_CLK_SOURCE_31_30_SHIFT;
val &= OUT_CLK_SOURCE_31_30_MASK;
return val;
case MASK_BITS_31_29:
val >>= OUT_CLK_SOURCE_31_29_SHIFT;
val &= OUT_CLK_SOURCE_31_29_MASK;
return val;
case MASK_BITS_31_28:
val >>= OUT_CLK_SOURCE_31_28_SHIFT;
val &= OUT_CLK_SOURCE_31_28_MASK;
return val;
default:
return -1;
}
}
void clock_ll_set_source(enum periph_id periph_id, unsigned source)
{
clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
}
/**
* Given the parent's rate and the required rate for the children, this works
* out the peripheral clock divider to use, in 7.1 binary format.
*
* @param divider_bits number of divider bits (8 or 16)
* @param parent_rate clock rate of parent clock in Hz
* @param rate required clock rate for this clock
* @return divider which should be used
*/
static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
unsigned long rate)
{
u64 divider = parent_rate * 2;
unsigned max_divider = 1 << divider_bits;
divider += rate - 1;
do_div(divider, rate);
if ((s64)divider - 2 < 0)
return 0;
if ((s64)divider - 2 >= max_divider)
return -1;
return divider - 2;
}
int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
{
struct clk_pll *pll = get_pll(clkid);
int data = 0, div = 0, offset = 0;
if (!clock_id_is_pll(clkid))
return -1;
if (pllout + 1 > pll_num_clkouts[clkid])
return -1;
div = clk_get_divider(8, pll_rate[clkid], rate);
if (div < 0)
return -1;
/* out2 and out4 are in the high part of the register */
if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
offset = 16;
data = (div << PLL_OUT_RATIO_SHIFT) |
PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
clrsetbits_le32(&pll->pll_out[pllout >> 1],
PLL_OUT_RATIO_MASK << offset, data << offset);
return 0;
}
/**
* Given the parent's rate and the divider in 7.1 format, this works out the
* resulting peripheral clock rate.
*
* @param parent_rate clock rate of parent clock in Hz
* @param divider which should be used in 7.1 format
* @return effective clock rate of peripheral
*/
static unsigned long get_rate_from_divider(unsigned long parent_rate,
int divider)
{
u64 rate;
rate = (u64)parent_rate * 2;
do_div(rate, divider + 2);
return rate;
}
unsigned long clock_get_periph_rate(enum periph_id periph_id,
enum clock_id parent)
{
u32 *reg = get_periph_source_reg(periph_id);
unsigned parent_rate = pll_rate[parent];
int div = (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT;
switch (periph_id) {
case PERIPH_ID_UART1:
case PERIPH_ID_UART2:
case PERIPH_ID_UART3:
case PERIPH_ID_UART4:
case PERIPH_ID_UART5:
#ifdef CONFIG_TEGRA20
/* There's no divider for these clocks in this SoC. */
return parent_rate;
#else
/*
* This undoes the +2 in get_rate_from_divider() which I
* believe is incorrect. Ideally we would fix
* get_rate_from_divider(), but... Removing the +2 from
* get_rate_from_divider() would probably require remove the -2
* from the tail of clk_get_divider() since I believe that's
* only there to invert get_rate_from_divider()'s +2. Observe
* how find_best_divider() uses those two functions together.
* However, doing so breaks other stuff, such as Seaboard's
* display, likely due to clock_set_pllout()'s call to
* clk_get_divider(). Attempting to fix that by making
* clock_set_pllout() subtract 2 from clk_get_divider()'s
* return value doesn't help. In summary this clock driver is
* quite broken but I'm afraid I have no idea how to fix it
* without completely replacing it.
*
* Be careful to avoid a divide by zero error.
*/
if (div >= 1)
div -= 2;
break;
#endif
default:
break;
}
return get_rate_from_divider(parent_rate, div);
}
/**
* Find the best available 7.1 format divisor given a parent clock rate and
* required child clock rate. This function assumes that a second-stage
* divisor is available which can divide by powers of 2 from 1 to 256.
*
* @param divider_bits number of divider bits (8 or 16)
* @param parent_rate clock rate of parent clock in Hz
* @param rate required clock rate for this clock
* @param extra_div value for the second-stage divisor (not set if this
* function returns -1.
* @return divider which should be used, or -1 if nothing is valid
*
*/
static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
unsigned long rate, int *extra_div)
{
int shift;
int best_divider = -1;
int best_error = rate;
/* try dividers from 1 to 256 and find closest match */
for (shift = 0; shift <= 8 && best_error > 0; shift++) {
unsigned divided_parent = parent_rate >> shift;
int divider = clk_get_divider(divider_bits, divided_parent,
rate);
unsigned effective_rate = get_rate_from_divider(divided_parent,
divider);
int error = rate - effective_rate;
/* Given a valid divider, look for the lowest error */
if (divider != -1 && error < best_error) {
best_error = error;
*extra_div = 1 << shift;
best_divider = divider;
}
}
/* return what we found - *extra_div will already be set */
return best_divider;
}
/**
* Adjust peripheral PLL to use the given divider and source.
*
* @param periph_id peripheral to adjust
* @param source Source number (0-3 or 0-7)
* @param mux_bits Number of mux bits (2 or 4)
* @param divider Required divider in 7.1 or 15.1 format
* @return 0 if ok, -1 on error (requesting a parent clock which is not valid
* for this peripheral)
*/
static int adjust_periph_pll(enum periph_id periph_id, int source,
int mux_bits, unsigned divider)
{
u32 *reg = get_periph_source_reg(periph_id);
clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
divider << OUT_CLK_DIVISOR_SHIFT);
udelay(1);
/* work out the source clock and set it */
if (source < 0)
return -1;
clock_ll_set_source_bits(periph_id, mux_bits, source);
udelay(2);
return 0;
}
enum clock_id clock_get_periph_parent(enum periph_id periph_id)
{
int err, mux_bits, divider_bits, type;
int source;
err = get_periph_clock_info(periph_id, &mux_bits, &divider_bits, &type);
if (err)
return CLOCK_ID_NONE;
source = clock_ll_get_source_bits(periph_id, mux_bits);
return get_periph_clock_id(periph_id, source);
}
unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
enum clock_id parent, unsigned rate, int *extra_div)
{
unsigned effective_rate;
int mux_bits, divider_bits, source;
int divider;
int xdiv = 0;
/* work out the source clock and set it */
source = get_periph_clock_source(periph_id, parent, &mux_bits,
&divider_bits);
divider = find_best_divider(divider_bits, pll_rate[parent],
rate, &xdiv);
if (extra_div)
*extra_div = xdiv;
assert(divider >= 0);
if (adjust_periph_pll(periph_id, source, mux_bits, divider))
return -1U;
debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
get_periph_source_reg(periph_id),
readl(get_periph_source_reg(periph_id)));
/* Check what we ended up with. This shouldn't matter though */
effective_rate = clock_get_periph_rate(periph_id, parent);
if (extra_div)
effective_rate /= *extra_div;
if (rate != effective_rate)
debug("Requested clock rate %u not honored (got %u)\n",
rate, effective_rate);
return effective_rate;
}
unsigned clock_start_periph_pll(enum periph_id periph_id,
enum clock_id parent, unsigned rate)
{
unsigned effective_rate;
reset_set_enable(periph_id, 1);
clock_enable(periph_id);
effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
NULL);
reset_set_enable(periph_id, 0);
return effective_rate;
}
void clock_enable(enum periph_id clkid)
{
clock_set_enable(clkid, 1);
}
void clock_disable(enum periph_id clkid)
{
clock_set_enable(clkid, 0);
}
void reset_periph(enum periph_id periph_id, int us_delay)
{
/* Put peripheral into reset */
reset_set_enable(periph_id, 1);
udelay(us_delay);
/* Remove reset */
reset_set_enable(periph_id, 0);
udelay(us_delay);
}
void reset_cmplx_set_enable(int cpu, int which, int reset)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 mask;
/* Form the mask, which depends on the cpu chosen (2 or 4) */
assert(cpu >= 0 && cpu < MAX_NUM_CPU);
mask = which << cpu;
/* either enable or disable those reset for that CPU */
if (reset)
writel(mask, &clkrst->crc_cpu_cmplx_set);
else
writel(mask, &clkrst->crc_cpu_cmplx_clr);
}
unsigned int __weak clk_m_get_rate(unsigned int parent_rate)
{
return parent_rate;
}
unsigned clock_get_rate(enum clock_id clkid)
{
struct clk_pll *pll;
u32 base, divm;
u64 parent_rate, rate;
struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
parent_rate = osc_freq[clock_get_osc_freq()];
if (clkid == CLOCK_ID_OSC)
return parent_rate;
if (clkid == CLOCK_ID_CLK_M)
return clk_m_get_rate(parent_rate);
pll = get_pll(clkid);
if (!pll)
return 0;
base = readl(&pll->pll_base);
rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask);
divm = (base >> pllinfo->m_shift) & pllinfo->m_mask;
/*
* PLLU uses p_mask/p_shift for VCO on all but T210,
* T210 uses normal DIVP. Handled in pllinfo table.
*/
#ifdef CONFIG_TEGRA210
/*
* PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is
* not applied. pllP_out2 does have divp applied. All other pllP_outN
* are divided down from pllP_out0. We only support pllP_out0 in
* U-Boot at the time of writing this comment.
*/
if (clkid != CLOCK_ID_PERIPH)
#endif
divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask;
do_div(rate, divm);
return rate;
}
/**
* Set the output frequency you want for each PLL clock.
* PLL output frequencies are programmed by setting their N, M and P values.
* The governing equations are:
* VCO = (Fi / m) * n, Fo = VCO / (2^p)
* where Fo is the output frequency from the PLL.
* Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
* 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
* Please see Tegra TRM section 5.3 to get the detail for PLL Programming
*
* @param n PLL feedback divider(DIVN)
* @param m PLL input divider(DIVN)
* @param p post divider(DIVP)
* @param cpcon base PLL charge pump(CPCON)
* @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
* be overridden), 1 if PLL is already correct
*/
int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
{
u32 base_reg, misc_reg;
struct clk_pll *pll;
struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
pll = get_pll(clkid);
base_reg = readl(&pll->pll_base);
/* Set BYPASS, m, n and p to PLL_BASE */
base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift);
base_reg |= m << pllinfo->m_shift;
base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift);
base_reg |= n << pllinfo->n_shift;
base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift);
base_reg |= p << pllinfo->p_shift;
if (clkid == CLOCK_ID_PERIPH) {
/*
* If the PLL is already set up, check that it is correct
* and record this info for clock_verify() to check.
*/
if (base_reg & PLL_BASE_OVRRIDE_MASK) {
base_reg |= PLL_ENABLE_MASK;
if (base_reg != readl(&pll->pll_base))
pllp_valid = 0;
return pllp_valid ? 1 : -1;
}
base_reg |= PLL_BASE_OVRRIDE_MASK;
}
base_reg |= PLL_BYPASS_MASK;
writel(base_reg, &pll->pll_base);
/* Set cpcon (KCP) to PLL_MISC */
misc_reg = readl(&pll->pll_misc);
misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
misc_reg |= cpcon << pllinfo->kcp_shift;
writel(misc_reg, &pll->pll_misc);
/* Enable PLL */
base_reg |= PLL_ENABLE_MASK;
writel(base_reg, &pll->pll_base);
/* Disable BYPASS */
base_reg &= ~PLL_BYPASS_MASK;
writel(base_reg, &pll->pll_base);
return 0;
}
void clock_ll_start_uart(enum periph_id periph_id)
{
/* Assert UART reset and enable clock */
reset_set_enable(periph_id, 1);
clock_enable(periph_id);
clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
/* wait for 2us */
udelay(2);
/* De-assert reset to UART */
reset_set_enable(periph_id, 0);
}
#if CONFIG_IS_ENABLED(OF_CONTROL)
int clock_decode_periph_id(struct udevice *dev)
{
enum periph_id id;
u32 cell[2];
int err;
err = dev_read_u32_array(dev, "clocks", cell, ARRAY_SIZE(cell));
if (err)
return -1;
id = clk_id_to_periph_id(cell[1]);
assert(clock_periph_id_isvalid(id));
return id;
}
#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
int clock_verify(void)
{
struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
u32 reg = readl(&pll->pll_base);
if (!pllp_valid) {
printf("Warning: PLLP %x is not correct\n", reg);
return -1;
}
debug("PLLP %x is correct\n", reg);
return 0;
}
void clock_init(void)
{
int i;
pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB);
pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M);
debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]);
debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]);
debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
for (i = 0; periph_clk_init_table[i].periph_id != -1; i++) {
enum periph_id periph_id;
enum clock_id parent;
int source, mux_bits, divider_bits;
periph_id = periph_clk_init_table[i].periph_id;
parent = periph_clk_init_table[i].parent_clock_id;
source = get_periph_clock_source(periph_id, parent, &mux_bits,
&divider_bits);
clock_ll_set_source_bits(periph_id, mux_bits, source);
}
}
static void set_avp_clock_source(u32 src)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 val;
val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
writel(val, &clkrst->crc_sclk_brst_pol);
udelay(3);
}
/*
* This function is useful on Tegra30, and any later SoCs that have compatible
* PLLP configuration registers.
* NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c
*/
void tegra30_set_up_pllp(void)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 reg;
/*
* Based on the Tegra TRM, the system clock (which is the AVP clock) can
* run up to 275MHz. On power on, the default sytem clock source is set
* to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
* 408MHz which is beyond system clock's upper limit.
*
* The fix is to set the system clock to CLK_M before initializing PLLP,
* and then switch back to PLLP_OUT4, which has an appropriate divider
* configured, after PLLP has been configured
*/
set_avp_clock_source(SCLK_SOURCE_CLKM);
/*
* PLLP output frequency set to 408Mhz
* PLLC output frequency set to 228Mhz
*/
switch (clock_get_osc_freq()) {
case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
break;
case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
break;
case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
break;
case CLOCK_OSC_FREQ_19_2:
default:
/*
* These are not supported. It is too early to print a
* message and the UART likely won't work anyway due to the
* oscillator being wrong.
*/
break;
}
/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
/* OUT1, 2 */
/* Assert RSTN before enable */
reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
/* Set divisor and reenable */
reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
/* OUT3, 4 */
/* Assert RSTN before enable */
reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
/* Set divisor and reenable */
reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
}
int clock_external_output(int clk_id)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
if (clk_id >= 1 && clk_id <= 3) {
setbits_le32(&pmc->pmc_clk_out_cntrl,
1 << (2 + (clk_id - 1) * 8));
} else {
printf("%s: Unknown output clock id %d\n", __func__, clk_id);
return -EINVAL;
}
return 0;
}
__weak bool clock_early_init_done(void)
{
return true;
}