mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-07 10:48:54 +00:00
546795b579
This adds support for reading the battery-backed memory present on these RTCs. This modifies the read/write methods to access the RAM instead of raw register offsets. No one was using these in-tree, so we should be fine changing them. We use the "standard" address space window to access the RAM. The extension RAM address register has some reserved bits, but we write the whole thing for simplicity (as these bits default to 0). Signed-off-by: Sean Anderson <sean.anderson@seco.com>
587 lines
14 KiB
C
587 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* A driver for the I2C members of the Abracon AB x8xx RTC family,
|
|
* and compatible: AB 1805 and AB 0805
|
|
*
|
|
* Copyright 2014-2015 Macq S.A.
|
|
* Copyright 2020 Linaro
|
|
*
|
|
* Author: Philippe De Muyter <phdm@macqel.be>
|
|
* Author: Alexandre Belloni <alexandre.belloni@bootlin.com>
|
|
* Author: Ying-Chun Liu (PaulLiu) <paul.liu@linaro.org>
|
|
*
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <dm.h>
|
|
#include <i2c.h>
|
|
#include <rtc.h>
|
|
#include <log.h>
|
|
#include <linux/bitfield.h>
|
|
|
|
#define ABX8XX_REG_HTH 0x00
|
|
#define ABX8XX_REG_SC 0x01
|
|
#define ABX8XX_REG_MN 0x02
|
|
#define ABX8XX_REG_HR 0x03
|
|
#define ABX8XX_REG_DA 0x04
|
|
#define ABX8XX_REG_MO 0x05
|
|
#define ABX8XX_REG_YR 0x06
|
|
#define ABX8XX_REG_WD 0x07
|
|
|
|
#define ABX8XX_REG_AHTH 0x08
|
|
#define ABX8XX_REG_ASC 0x09
|
|
#define ABX8XX_REG_AMN 0x0a
|
|
#define ABX8XX_REG_AHR 0x0b
|
|
#define ABX8XX_REG_ADA 0x0c
|
|
#define ABX8XX_REG_AMO 0x0d
|
|
#define ABX8XX_REG_AWD 0x0e
|
|
|
|
#define ABX8XX_REG_STATUS 0x0f
|
|
#define ABX8XX_STATUS_AF BIT(2)
|
|
#define ABX8XX_STATUS_BLF BIT(4)
|
|
#define ABX8XX_STATUS_WDT BIT(6)
|
|
|
|
#define ABX8XX_REG_CTRL1 0x10
|
|
#define ABX8XX_CTRL_WRITE BIT(0)
|
|
#define ABX8XX_CTRL_ARST BIT(2)
|
|
#define ABX8XX_CTRL_12_24 BIT(6)
|
|
|
|
#define ABX8XX_REG_CTRL2 0x11
|
|
#define ABX8XX_CTRL2_RSVD BIT(5)
|
|
|
|
#define ABX8XX_REG_IRQ 0x12
|
|
#define ABX8XX_IRQ_AIE BIT(2)
|
|
#define ABX8XX_IRQ_IM_1_4 (0x3 << 5)
|
|
|
|
#define ABX8XX_REG_CD_TIMER_CTL 0x18
|
|
|
|
#define ABX8XX_REG_OSC 0x1c
|
|
#define ABX8XX_OSC_FOS BIT(3)
|
|
#define ABX8XX_OSC_BOS BIT(4)
|
|
#define ABX8XX_OSC_ACAL_512 BIT(5)
|
|
#define ABX8XX_OSC_ACAL_1024 BIT(6)
|
|
|
|
#define ABX8XX_OSC_OSEL BIT(7)
|
|
|
|
#define ABX8XX_REG_OSS 0x1d
|
|
#define ABX8XX_OSS_OF BIT(1)
|
|
#define ABX8XX_OSS_OMODE BIT(4)
|
|
|
|
#define ABX8XX_REG_WDT 0x1b
|
|
#define ABX8XX_WDT_WDS BIT(7)
|
|
#define ABX8XX_WDT_BMB_MASK 0x7c
|
|
#define ABX8XX_WDT_BMB_SHIFT 2
|
|
#define ABX8XX_WDT_MAX_TIME (ABX8XX_WDT_BMB_MASK >> ABX8XX_WDT_BMB_SHIFT)
|
|
#define ABX8XX_WDT_WRB_MASK 0x03
|
|
#define ABX8XX_WDT_WRB_1HZ 0x02
|
|
|
|
#define ABX8XX_REG_CFG_KEY 0x1f
|
|
#define ABX8XX_CFG_KEY_OSC 0xa1
|
|
#define ABX8XX_CFG_KEY_MISC 0x9d
|
|
|
|
#define ABX8XX_REG_ID0 0x28
|
|
|
|
#define ABX8XX_REG_OUT_CTRL 0x30
|
|
#define ABX8XX_OUT_CTRL_EXDS BIT(4)
|
|
|
|
#define ABX8XX_REG_TRICKLE 0x20
|
|
#define ABX8XX_TRICKLE_CHARGE_ENABLE 0xa0
|
|
#define ABX8XX_TRICKLE_STANDARD_DIODE 0x8
|
|
#define ABX8XX_TRICKLE_SCHOTTKY_DIODE 0x4
|
|
|
|
#define ABX8XX_REG_EXTRAM 0x3f
|
|
#define ABX8XX_EXTRAM_XADS GENMASK(1, 0)
|
|
|
|
#define ABX8XX_SRAM_BASE 0x40
|
|
#define ABX8XX_SRAM_WIN_SIZE 0x40U
|
|
#define ABX8XX_RAM_SIZE 256
|
|
|
|
#define RAM_ADDR_LOWER GENMASK(5, 0)
|
|
#define RAM_ADDR_UPPER GENMASK(7, 6)
|
|
|
|
static u8 trickle_resistors[] = {0, 3, 6, 11};
|
|
|
|
enum abx80x_chip {AB0801, AB0803, AB0804, AB0805,
|
|
AB1801, AB1803, AB1804, AB1805, RV1805, ABX80X};
|
|
|
|
struct abx80x_cap {
|
|
u16 pn;
|
|
bool has_tc;
|
|
bool has_wdog;
|
|
};
|
|
|
|
static struct abx80x_cap abx80x_caps[] = {
|
|
[AB0801] = {.pn = 0x0801},
|
|
[AB0803] = {.pn = 0x0803},
|
|
[AB0804] = {.pn = 0x0804, .has_tc = true, .has_wdog = true},
|
|
[AB0805] = {.pn = 0x0805, .has_tc = true, .has_wdog = true},
|
|
[AB1801] = {.pn = 0x1801},
|
|
[AB1803] = {.pn = 0x1803},
|
|
[AB1804] = {.pn = 0x1804, .has_tc = true, .has_wdog = true},
|
|
[AB1805] = {.pn = 0x1805, .has_tc = true, .has_wdog = true},
|
|
[RV1805] = {.pn = 0x1805, .has_tc = true, .has_wdog = true},
|
|
[ABX80X] = {.pn = 0}
|
|
};
|
|
|
|
static int abx80x_rtc_xfer(struct udevice *dev, unsigned int offset,
|
|
u8 *val, unsigned int bytes, bool write)
|
|
{
|
|
int ret;
|
|
|
|
if (offset + bytes > ABX8XX_RAM_SIZE)
|
|
return -EINVAL;
|
|
|
|
while (bytes) {
|
|
u8 extram, reg, len, lower, upper;
|
|
|
|
lower = FIELD_GET(RAM_ADDR_LOWER, offset);
|
|
upper = FIELD_GET(RAM_ADDR_UPPER, offset);
|
|
extram = FIELD_PREP(ABX8XX_EXTRAM_XADS, upper);
|
|
reg = ABX8XX_SRAM_BASE + lower;
|
|
len = min(lower + bytes, ABX8XX_SRAM_WIN_SIZE) - lower;
|
|
|
|
ret = dm_i2c_reg_write(dev, ABX8XX_REG_EXTRAM, extram);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (write)
|
|
ret = dm_i2c_write(dev, reg, val, len);
|
|
else
|
|
ret = dm_i2c_read(dev, reg, val, len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
offset += len;
|
|
val += len;
|
|
bytes -= len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int abx80x_rtc_read(struct udevice *dev, unsigned int offset, u8 *val,
|
|
unsigned int bytes)
|
|
{
|
|
return abx80x_rtc_xfer(dev, offset, val, bytes, false);
|
|
}
|
|
|
|
static int abx80x_rtc_write(struct udevice *dev, unsigned int offset,
|
|
const u8 *val, unsigned int bytes)
|
|
{
|
|
return abx80x_rtc_xfer(dev, offset, (u8 *)val, bytes, true);
|
|
}
|
|
|
|
static int abx80x_is_rc_mode(struct udevice *dev)
|
|
{
|
|
int flags = 0;
|
|
|
|
flags = dm_i2c_reg_read(dev, ABX8XX_REG_OSS);
|
|
if (flags < 0) {
|
|
log_err("Failed to read autocalibration attribute\n");
|
|
return flags;
|
|
}
|
|
|
|
return (flags & ABX8XX_OSS_OMODE) ? 1 : 0;
|
|
}
|
|
|
|
static int abx80x_enable_trickle_charger(struct udevice *dev, u8 trickle_cfg)
|
|
{
|
|
int err;
|
|
|
|
/*
|
|
* Write the configuration key register to enable access to the Trickle
|
|
* register
|
|
*/
|
|
err = dm_i2c_reg_write(dev, ABX8XX_REG_CFG_KEY, ABX8XX_CFG_KEY_MISC);
|
|
if (err < 0) {
|
|
log_err("Unable to write configuration key\n");
|
|
return -EIO;
|
|
}
|
|
|
|
err = dm_i2c_reg_write(dev, ABX8XX_REG_TRICKLE,
|
|
ABX8XX_TRICKLE_CHARGE_ENABLE | trickle_cfg);
|
|
if (err < 0) {
|
|
log_err("Unable to write trickle register\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int abx80x_rtc_read_time(struct udevice *dev, struct rtc_time *tm)
|
|
{
|
|
unsigned char buf[8];
|
|
int err, flags, rc_mode = 0;
|
|
|
|
/* Read the Oscillator Failure only in XT mode */
|
|
rc_mode = abx80x_is_rc_mode(dev);
|
|
if (rc_mode < 0)
|
|
return rc_mode;
|
|
|
|
if (!rc_mode) {
|
|
flags = dm_i2c_reg_read(dev, ABX8XX_REG_OSS);
|
|
if (flags < 0) {
|
|
log_err("Unable to read oscillator status.\n");
|
|
return flags;
|
|
}
|
|
|
|
if (flags & ABX8XX_OSS_OF)
|
|
log_debug("Oscillator fail, data is not accurate.\n");
|
|
}
|
|
|
|
err = dm_i2c_read(dev, ABX8XX_REG_HTH,
|
|
buf, sizeof(buf));
|
|
if (err < 0) {
|
|
log_err("Unable to read date\n");
|
|
return -EIO;
|
|
}
|
|
|
|
tm->tm_sec = bcd2bin(buf[ABX8XX_REG_SC] & 0x7F);
|
|
tm->tm_min = bcd2bin(buf[ABX8XX_REG_MN] & 0x7F);
|
|
tm->tm_hour = bcd2bin(buf[ABX8XX_REG_HR] & 0x3F);
|
|
tm->tm_wday = buf[ABX8XX_REG_WD] & 0x7;
|
|
tm->tm_mday = bcd2bin(buf[ABX8XX_REG_DA] & 0x3F);
|
|
tm->tm_mon = bcd2bin(buf[ABX8XX_REG_MO] & 0x1F);
|
|
tm->tm_year = bcd2bin(buf[ABX8XX_REG_YR]) + 2000;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int abx80x_rtc_set_time(struct udevice *dev, const struct rtc_time *tm)
|
|
{
|
|
unsigned char buf[8];
|
|
int err, flags;
|
|
|
|
if (tm->tm_year < 2000)
|
|
return -EINVAL;
|
|
|
|
buf[ABX8XX_REG_HTH] = 0;
|
|
buf[ABX8XX_REG_SC] = bin2bcd(tm->tm_sec);
|
|
buf[ABX8XX_REG_MN] = bin2bcd(tm->tm_min);
|
|
buf[ABX8XX_REG_HR] = bin2bcd(tm->tm_hour);
|
|
buf[ABX8XX_REG_DA] = bin2bcd(tm->tm_mday);
|
|
buf[ABX8XX_REG_MO] = bin2bcd(tm->tm_mon);
|
|
buf[ABX8XX_REG_YR] = bin2bcd(tm->tm_year - 2000);
|
|
buf[ABX8XX_REG_WD] = tm->tm_wday;
|
|
|
|
err = dm_i2c_write(dev, ABX8XX_REG_HTH,
|
|
buf, sizeof(buf));
|
|
if (err < 0) {
|
|
log_err("Unable to write to date registers\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Clear the OF bit of Oscillator Status Register */
|
|
flags = dm_i2c_reg_read(dev, ABX8XX_REG_OSS);
|
|
if (flags < 0) {
|
|
log_err("Unable to read oscillator status.\n");
|
|
return flags;
|
|
}
|
|
|
|
err = dm_i2c_reg_write(dev, ABX8XX_REG_OSS,
|
|
flags & ~ABX8XX_OSS_OF);
|
|
if (err < 0) {
|
|
log_err("Unable to write oscillator status register\n");
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int abx80x_rtc_set_autocalibration(struct udevice *dev,
|
|
int autocalibration)
|
|
{
|
|
int retval, flags = 0;
|
|
|
|
if (autocalibration != 0 && autocalibration != 1024 &&
|
|
autocalibration != 512) {
|
|
log_err("autocalibration value outside permitted range\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
flags = dm_i2c_reg_read(dev, ABX8XX_REG_OSC);
|
|
if (flags < 0)
|
|
return flags;
|
|
|
|
if (autocalibration == 0) {
|
|
flags &= ~(ABX8XX_OSC_ACAL_512 | ABX8XX_OSC_ACAL_1024);
|
|
} else if (autocalibration == 1024) {
|
|
/* 1024 autocalibration is 0x10 */
|
|
flags |= ABX8XX_OSC_ACAL_1024;
|
|
flags &= ~(ABX8XX_OSC_ACAL_512);
|
|
} else {
|
|
/* 512 autocalibration is 0x11 */
|
|
flags |= (ABX8XX_OSC_ACAL_1024 | ABX8XX_OSC_ACAL_512);
|
|
}
|
|
|
|
/* Unlock write access to Oscillator Control Register */
|
|
retval = dm_i2c_reg_write(dev, ABX8XX_REG_CFG_KEY,
|
|
ABX8XX_CFG_KEY_OSC);
|
|
if (retval < 0) {
|
|
log_err("Failed to write CONFIG_KEY register\n");
|
|
return retval;
|
|
}
|
|
|
|
retval = dm_i2c_reg_write(dev, ABX8XX_REG_OSC, flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int abx80x_rtc_get_autocalibration(struct udevice *dev)
|
|
{
|
|
int flags = 0, autocalibration;
|
|
|
|
flags = dm_i2c_reg_read(dev, ABX8XX_REG_OSC);
|
|
if (flags < 0)
|
|
return flags;
|
|
|
|
if (flags & ABX8XX_OSC_ACAL_512)
|
|
autocalibration = 512;
|
|
else if (flags & ABX8XX_OSC_ACAL_1024)
|
|
autocalibration = 1024;
|
|
else
|
|
autocalibration = 0;
|
|
|
|
return autocalibration;
|
|
}
|
|
|
|
static struct rtc_time default_tm = { 0, 0, 0, 1, 1, 2000, 6, 0, 0 };
|
|
|
|
static int abx80x_rtc_reset(struct udevice *dev)
|
|
{
|
|
int ret = 0;
|
|
|
|
int autocalib = abx80x_rtc_get_autocalibration(dev);
|
|
|
|
if (autocalib != 0)
|
|
abx80x_rtc_set_autocalibration(dev, 0);
|
|
|
|
ret = abx80x_rtc_set_time(dev, &default_tm);
|
|
if (ret != 0) {
|
|
log_err("cannot set time to default_tm. error %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct rtc_ops abx80x_rtc_ops = {
|
|
.get = abx80x_rtc_read_time,
|
|
.set = abx80x_rtc_set_time,
|
|
.reset = abx80x_rtc_reset,
|
|
.read = abx80x_rtc_read,
|
|
.write = abx80x_rtc_write,
|
|
};
|
|
|
|
static int abx80x_dt_trickle_cfg(struct udevice *dev)
|
|
{
|
|
const char *diode;
|
|
int trickle_cfg = 0;
|
|
int i, ret = 0;
|
|
u32 tmp;
|
|
|
|
diode = ofnode_read_string(dev_ofnode(dev), "abracon,tc-diode");
|
|
if (!diode)
|
|
return ret;
|
|
|
|
if (!strcmp(diode, "standard")) {
|
|
trickle_cfg |= ABX8XX_TRICKLE_STANDARD_DIODE;
|
|
} else if (!strcmp(diode, "schottky")) {
|
|
trickle_cfg |= ABX8XX_TRICKLE_SCHOTTKY_DIODE;
|
|
} else {
|
|
log_err("Invalid tc-diode value: %s\n", diode);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = ofnode_read_u32(dev_ofnode(dev), "abracon,tc-resistor", &tmp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < sizeof(trickle_resistors); i++)
|
|
if (trickle_resistors[i] == tmp)
|
|
break;
|
|
|
|
if (i == sizeof(trickle_resistors)) {
|
|
log_err("Invalid tc-resistor value: %u\n", tmp);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return (trickle_cfg | i);
|
|
}
|
|
|
|
static int abx80x_probe(struct udevice *dev)
|
|
{
|
|
int i, data, err, trickle_cfg = -EINVAL;
|
|
unsigned char buf[7];
|
|
unsigned int part = dev->driver_data;
|
|
unsigned int partnumber;
|
|
unsigned int majrev, minrev;
|
|
unsigned int lot;
|
|
unsigned int wafer;
|
|
unsigned int uid;
|
|
|
|
err = dm_i2c_read(dev, ABX8XX_REG_ID0, buf, sizeof(buf));
|
|
if (err < 0) {
|
|
log_err("Unable to read partnumber\n");
|
|
return -EIO;
|
|
}
|
|
|
|
partnumber = (buf[0] << 8) | buf[1];
|
|
majrev = buf[2] >> 3;
|
|
minrev = buf[2] & 0x7;
|
|
lot = ((buf[4] & 0x80) << 2) | ((buf[6] & 0x80) << 1) | buf[3];
|
|
uid = ((buf[4] & 0x7f) << 8) | buf[5];
|
|
wafer = (buf[6] & 0x7c) >> 2;
|
|
log_debug("model %04x, revision %u.%u, lot %x, wafer %x, uid %x\n",
|
|
partnumber, majrev, minrev, lot, wafer, uid);
|
|
|
|
data = dm_i2c_reg_read(dev, ABX8XX_REG_CTRL1);
|
|
if (data < 0) {
|
|
log_err("Unable to read control register\n");
|
|
return -EIO;
|
|
}
|
|
|
|
err = dm_i2c_reg_write(dev, ABX8XX_REG_CTRL1,
|
|
((data & ~(ABX8XX_CTRL_12_24 |
|
|
ABX8XX_CTRL_ARST)) |
|
|
ABX8XX_CTRL_WRITE));
|
|
if (err < 0) {
|
|
log_err("Unable to write control register\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Configure RV1805 specifics */
|
|
if (part == RV1805) {
|
|
/*
|
|
* Avoid accidentally entering test mode. This can happen
|
|
* on the RV1805 in case the reserved bit 5 in control2
|
|
* register is set. RV-1805-C3 datasheet indicates that
|
|
* the bit should be cleared in section 11h - Control2.
|
|
*/
|
|
data = dm_i2c_reg_read(dev, ABX8XX_REG_CTRL2);
|
|
if (data < 0) {
|
|
log_err("Unable to read control2 register\n");
|
|
return -EIO;
|
|
}
|
|
|
|
err = dm_i2c_reg_write(dev, ABX8XX_REG_CTRL2,
|
|
data & ~ABX8XX_CTRL2_RSVD);
|
|
if (err < 0) {
|
|
log_err("Unable to write control2 register\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Avoid extra power leakage. The RV1805 uses smaller
|
|
* 10pin package and the EXTI input is not present.
|
|
* Disable it to avoid leakage.
|
|
*/
|
|
data = dm_i2c_reg_read(dev, ABX8XX_REG_OUT_CTRL);
|
|
if (data < 0) {
|
|
log_err("Unable to read output control register\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Write the configuration key register to enable access to
|
|
* the config2 register
|
|
*/
|
|
err = dm_i2c_reg_write(dev, ABX8XX_REG_CFG_KEY,
|
|
ABX8XX_CFG_KEY_MISC);
|
|
if (err < 0) {
|
|
log_err("Unable to write configuration key\n");
|
|
return -EIO;
|
|
}
|
|
|
|
err = dm_i2c_reg_write(dev, ABX8XX_REG_OUT_CTRL,
|
|
data | ABX8XX_OUT_CTRL_EXDS);
|
|
if (err < 0) {
|
|
log_err("Unable to write output control register\n");
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
/* part autodetection */
|
|
if (part == ABX80X) {
|
|
for (i = 0; abx80x_caps[i].pn; i++)
|
|
if (partnumber == abx80x_caps[i].pn)
|
|
break;
|
|
if (abx80x_caps[i].pn == 0) {
|
|
log_err("Unknown part: %04x\n", partnumber);
|
|
return -EINVAL;
|
|
}
|
|
part = i;
|
|
}
|
|
|
|
if (partnumber != abx80x_caps[part].pn) {
|
|
log_err("partnumber mismatch %04x != %04x\n",
|
|
partnumber, abx80x_caps[part].pn);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (abx80x_caps[part].has_tc)
|
|
trickle_cfg = abx80x_dt_trickle_cfg(dev);
|
|
|
|
if (trickle_cfg > 0) {
|
|
log_debug("Enabling trickle charger: %02x\n", trickle_cfg);
|
|
abx80x_enable_trickle_charger(dev, trickle_cfg);
|
|
}
|
|
|
|
err = dm_i2c_reg_write(dev, ABX8XX_REG_CD_TIMER_CTL, BIT(2));
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct udevice_id abx80x_of_match[] = {
|
|
{
|
|
.compatible = "abracon,abx80x",
|
|
.data = ABX80X
|
|
},
|
|
{
|
|
.compatible = "abracon,ab0801",
|
|
.data = AB0801
|
|
},
|
|
{
|
|
.compatible = "abracon,ab0803",
|
|
.data = AB0803
|
|
},
|
|
{
|
|
.compatible = "abracon,ab0804",
|
|
.data = AB0804
|
|
},
|
|
{
|
|
.compatible = "abracon,ab0805",
|
|
.data = AB0805
|
|
},
|
|
{
|
|
.compatible = "abracon,ab1801",
|
|
.data = AB1801
|
|
},
|
|
{
|
|
.compatible = "abracon,ab1803",
|
|
.data = AB1803
|
|
},
|
|
{
|
|
.compatible = "abracon,ab1804",
|
|
.data = AB1804
|
|
},
|
|
{
|
|
.compatible = "abracon,ab1805",
|
|
.data = AB1805
|
|
},
|
|
{
|
|
.compatible = "microcrystal,rv1805",
|
|
.data = RV1805
|
|
},
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(abx80x_rtc) = {
|
|
.name = "rtc-abx80x",
|
|
.id = UCLASS_RTC,
|
|
.probe = abx80x_probe,
|
|
.of_match = abx80x_of_match,
|
|
.ops = &abx80x_rtc_ops,
|
|
};
|