u-boot/arch/sandbox/cpu/os.c
Heinrich Schuchardt 7750ee45a6 sandbox: add function os_printf()
Before setting up the devices U-Boot's printf() function cannot be used
for console output. Provide function os_printf() to print to stderr.

Signed-off-by: Heinrich Schuchardt <heinrich.schuchardt@canonical.com>
2022-06-28 03:09:51 +01:00

1092 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2011 The Chromium OS Authors.
*/
#define _GNU_SOURCE
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <getopt.h>
#include <setjmp.h>
#include <signal.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <termios.h>
#include <time.h>
#include <ucontext.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <linux/compiler_attributes.h>
#include <linux/types.h>
#include <asm/fuzzing_engine.h>
#include <asm/getopt.h>
#include <asm/main.h>
#include <asm/sections.h>
#include <asm/state.h>
#include <os.h>
#include <rtc_def.h>
/* Environment variable for time offset */
#define ENV_TIME_OFFSET "UBOOT_SB_TIME_OFFSET"
/* Operating System Interface */
struct os_mem_hdr {
size_t length; /* number of bytes in the block */
};
ssize_t os_read(int fd, void *buf, size_t count)
{
return read(fd, buf, count);
}
ssize_t os_write(int fd, const void *buf, size_t count)
{
return write(fd, buf, count);
}
int os_printf(const char *fmt, ...)
{
va_list args;
int i;
va_start(args, fmt);
i = vfprintf(stdout, fmt, args);
va_end(args);
return i;
}
off_t os_lseek(int fd, off_t offset, int whence)
{
if (whence == OS_SEEK_SET)
whence = SEEK_SET;
else if (whence == OS_SEEK_CUR)
whence = SEEK_CUR;
else if (whence == OS_SEEK_END)
whence = SEEK_END;
else
os_exit(1);
return lseek(fd, offset, whence);
}
int os_open(const char *pathname, int os_flags)
{
int flags;
switch (os_flags & OS_O_MASK) {
case OS_O_RDONLY:
default:
flags = O_RDONLY;
break;
case OS_O_WRONLY:
flags = O_WRONLY;
break;
case OS_O_RDWR:
flags = O_RDWR;
break;
}
if (os_flags & OS_O_CREAT)
flags |= O_CREAT;
if (os_flags & OS_O_TRUNC)
flags |= O_TRUNC;
/*
* During a cold reset execv() is used to relaunch the U-Boot binary.
* We must ensure that all files are closed in this case.
*/
flags |= O_CLOEXEC;
return open(pathname, flags, 0777);
}
int os_close(int fd)
{
/* Do not close the console input */
if (fd)
return close(fd);
return -1;
}
int os_unlink(const char *pathname)
{
return unlink(pathname);
}
void os_exit(int exit_code)
{
exit(exit_code);
}
int os_write_file(const char *fname, const void *buf, int size)
{
int fd;
fd = os_open(fname, OS_O_WRONLY | OS_O_CREAT | OS_O_TRUNC);
if (fd < 0) {
printf("Cannot open file '%s'\n", fname);
return -EIO;
}
if (os_write(fd, buf, size) != size) {
printf("Cannot write to file '%s'\n", fname);
os_close(fd);
return -EIO;
}
os_close(fd);
return 0;
}
int os_filesize(int fd)
{
off_t size;
size = os_lseek(fd, 0, OS_SEEK_END);
if (size < 0)
return -errno;
if (os_lseek(fd, 0, OS_SEEK_SET) < 0)
return -errno;
return size;
}
int os_read_file(const char *fname, void **bufp, int *sizep)
{
off_t size;
int ret = -EIO;
int fd;
fd = os_open(fname, OS_O_RDONLY);
if (fd < 0) {
printf("Cannot open file '%s'\n", fname);
goto err;
}
size = os_filesize(fd);
if (size < 0) {
printf("Cannot get file size of '%s'\n", fname);
goto err;
}
*bufp = os_malloc(size);
if (!*bufp) {
printf("Not enough memory to read file '%s'\n", fname);
ret = -ENOMEM;
goto err;
}
if (os_read(fd, *bufp, size) != size) {
printf("Cannot read from file '%s'\n", fname);
goto err;
}
os_close(fd);
*sizep = size;
return 0;
err:
os_close(fd);
return ret;
}
int os_map_file(const char *pathname, int os_flags, void **bufp, int *sizep)
{
void *ptr;
int size;
int ifd;
ifd = os_open(pathname, os_flags);
if (ifd < 0) {
printf("Cannot open file '%s'\n", pathname);
return -EIO;
}
size = os_filesize(ifd);
if (size < 0) {
printf("Cannot get file size of '%s'\n", pathname);
return -EIO;
}
ptr = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, ifd, 0);
if (ptr == MAP_FAILED) {
printf("Can't map file '%s': %s\n", pathname, strerror(errno));
return -EPERM;
}
*bufp = ptr;
*sizep = size;
return 0;
}
int os_unmap(void *buf, int size)
{
if (munmap(buf, size)) {
printf("Can't unmap %p %x\n", buf, size);
return -EIO;
}
return 0;
}
/* Restore tty state when we exit */
static struct termios orig_term;
static bool term_setup;
static bool term_nonblock;
void os_fd_restore(void)
{
if (term_setup) {
int flags;
tcsetattr(0, TCSANOW, &orig_term);
if (term_nonblock) {
flags = fcntl(0, F_GETFL, 0);
fcntl(0, F_SETFL, flags & ~O_NONBLOCK);
}
term_setup = false;
}
}
static void os_sigint_handler(int sig)
{
os_fd_restore();
signal(SIGINT, SIG_DFL);
raise(SIGINT);
}
static void os_signal_handler(int sig, siginfo_t *info, void *con)
{
ucontext_t __maybe_unused *context = con;
unsigned long pc;
#if defined(__x86_64__)
pc = context->uc_mcontext.gregs[REG_RIP];
#elif defined(__aarch64__)
pc = context->uc_mcontext.pc;
#elif defined(__riscv)
pc = context->uc_mcontext.__gregs[REG_PC];
#else
const char msg[] =
"\nUnsupported architecture, cannot read program counter\n";
os_write(1, msg, sizeof(msg));
pc = 0;
#endif
os_signal_action(sig, pc);
}
int os_setup_signal_handlers(void)
{
struct sigaction act;
act.sa_sigaction = os_signal_handler;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_SIGINFO;
if (sigaction(SIGILL, &act, NULL) ||
sigaction(SIGBUS, &act, NULL) ||
sigaction(SIGSEGV, &act, NULL))
return -1;
return 0;
}
/* Put tty into raw mode so <tab> and <ctrl+c> work */
void os_tty_raw(int fd, bool allow_sigs)
{
struct termios term;
int flags;
if (term_setup)
return;
/* If not a tty, don't complain */
if (tcgetattr(fd, &orig_term))
return;
term = orig_term;
term.c_iflag = IGNBRK | IGNPAR;
term.c_oflag = OPOST | ONLCR;
term.c_cflag = CS8 | CREAD | CLOCAL;
term.c_lflag = allow_sigs ? ISIG : 0;
if (tcsetattr(fd, TCSANOW, &term))
return;
flags = fcntl(fd, F_GETFL, 0);
if (!(flags & O_NONBLOCK)) {
if (fcntl(fd, F_SETFL, flags | O_NONBLOCK))
return;
term_nonblock = true;
}
term_setup = true;
atexit(os_fd_restore);
signal(SIGINT, os_sigint_handler);
}
/*
* Provide our own malloc so we don't use space in the sandbox ram_buf for
* allocations that are internal to sandbox, or need to be done before U-Boot's
* malloc() is ready.
*/
void *os_malloc(size_t length)
{
int page_size = getpagesize();
struct os_mem_hdr *hdr;
if (!length)
return NULL;
/*
* Use an address that is hopefully available to us so that pointers
* to this memory are fairly obvious. If we end up with a different
* address, that's fine too.
*/
hdr = mmap((void *)0x10000000, length + page_size,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (hdr == MAP_FAILED)
return NULL;
hdr->length = length;
return (void *)hdr + page_size;
}
void os_free(void *ptr)
{
int page_size = getpagesize();
struct os_mem_hdr *hdr;
if (ptr) {
hdr = ptr - page_size;
munmap(hdr, hdr->length + page_size);
}
}
/* These macros are from kernel.h but not accessible in this file */
#define ALIGN(x, a) __ALIGN_MASK((x), (typeof(x))(a) - 1)
#define __ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
/*
* Provide our own malloc so we don't use space in the sandbox ram_buf for
* allocations that are internal to sandbox, or need to be done before U-Boot's
* malloc() is ready.
*/
void *os_realloc(void *ptr, size_t length)
{
int page_size = getpagesize();
struct os_mem_hdr *hdr;
void *new_ptr;
/* Reallocating a NULL pointer is just an alloc */
if (!ptr)
return os_malloc(length);
/* Changing a length to 0 is just a free */
if (length) {
os_free(ptr);
return NULL;
}
/*
* If the new size is the same number of pages as the old, nothing to
* do. There isn't much point in shrinking things
*/
hdr = ptr - page_size;
if (ALIGN(length, page_size) <= ALIGN(hdr->length, page_size))
return ptr;
/* We have to grow it, so allocate something new */
new_ptr = os_malloc(length);
memcpy(new_ptr, ptr, hdr->length);
os_free(ptr);
return new_ptr;
}
void os_usleep(unsigned long usec)
{
usleep(usec);
}
uint64_t __attribute__((no_instrument_function)) os_get_nsec(void)
{
#if defined(CLOCK_MONOTONIC) && defined(_POSIX_MONOTONIC_CLOCK)
struct timespec tp;
if (EINVAL == clock_gettime(CLOCK_MONOTONIC, &tp)) {
struct timeval tv;
gettimeofday(&tv, NULL);
tp.tv_sec = tv.tv_sec;
tp.tv_nsec = tv.tv_usec * 1000;
}
return tp.tv_sec * 1000000000ULL + tp.tv_nsec;
#else
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000000ULL + tv.tv_usec * 1000;
#endif
}
static char *short_opts;
static struct option *long_opts;
int os_parse_args(struct sandbox_state *state, int argc, char *argv[])
{
struct sandbox_cmdline_option **sb_opt =
__u_boot_sandbox_option_start();
size_t num_options = __u_boot_sandbox_option_count();
size_t i;
int hidden_short_opt;
size_t si;
int c;
if (short_opts || long_opts)
return 1;
state->argc = argc;
state->argv = argv;
/* dynamically construct the arguments to the system getopt_long */
short_opts = os_malloc(sizeof(*short_opts) * num_options * 2 + 1);
long_opts = os_malloc(sizeof(*long_opts) * (num_options + 1));
if (!short_opts || !long_opts)
return 1;
/*
* getopt_long requires "val" to be unique (since that is what the
* func returns), so generate unique values automatically for flags
* that don't have a short option. pick 0x100 as that is above the
* single byte range (where ASCII/ISO-XXXX-X charsets live).
*/
hidden_short_opt = 0x100;
si = 0;
for (i = 0; i < num_options; ++i) {
long_opts[i].name = sb_opt[i]->flag;
long_opts[i].has_arg = sb_opt[i]->has_arg ?
required_argument : no_argument;
long_opts[i].flag = NULL;
if (sb_opt[i]->flag_short) {
short_opts[si++] = long_opts[i].val = sb_opt[i]->flag_short;
if (long_opts[i].has_arg == required_argument)
short_opts[si++] = ':';
} else
long_opts[i].val = sb_opt[i]->flag_short = hidden_short_opt++;
}
short_opts[si] = '\0';
/* we need to handle output ourselves since u-boot provides printf */
opterr = 0;
memset(&long_opts[num_options], '\0', sizeof(*long_opts));
/*
* walk all of the options the user gave us on the command line,
* figure out what u-boot option structure they belong to (via
* the unique short val key), and call the appropriate callback.
*/
while ((c = getopt_long(argc, argv, short_opts, long_opts, NULL)) != -1) {
for (i = 0; i < num_options; ++i) {
if (sb_opt[i]->flag_short == c) {
if (sb_opt[i]->callback(state, optarg)) {
state->parse_err = sb_opt[i]->flag;
return 0;
}
break;
}
}
if (i == num_options) {
/*
* store the faulting flag for later display. we have to
* store the flag itself as the getopt parsing itself is
* tricky: need to handle the following flags (assume all
* of the below are unknown):
* -a optopt='a' optind=<next>
* -abbbb optopt='a' optind=<this>
* -aaaaa optopt='a' optind=<this>
* --a optopt=0 optind=<this>
* as you can see, it is impossible to determine the exact
* faulting flag without doing the parsing ourselves, so
* we just report the specific flag that failed.
*/
if (optopt) {
static char parse_err[3] = { '-', 0, '\0', };
parse_err[1] = optopt;
state->parse_err = parse_err;
} else
state->parse_err = argv[optind - 1];
break;
}
}
return 0;
}
void os_dirent_free(struct os_dirent_node *node)
{
struct os_dirent_node *next;
while (node) {
next = node->next;
os_free(node);
node = next;
}
}
int os_dirent_ls(const char *dirname, struct os_dirent_node **headp)
{
struct dirent *entry;
struct os_dirent_node *head, *node, *next;
struct stat buf;
DIR *dir;
int ret;
char *fname;
char *old_fname;
int len;
int dirlen;
*headp = NULL;
dir = opendir(dirname);
if (!dir)
return -1;
/* Create a buffer upfront, with typically sufficient size */
dirlen = strlen(dirname) + 2;
len = dirlen + 256;
fname = os_malloc(len);
if (!fname) {
ret = -ENOMEM;
goto done;
}
for (node = head = NULL;; node = next) {
errno = 0;
entry = readdir(dir);
if (!entry) {
ret = errno;
break;
}
next = os_malloc(sizeof(*node) + strlen(entry->d_name) + 1);
if (!next) {
os_dirent_free(head);
ret = -ENOMEM;
goto done;
}
if (dirlen + strlen(entry->d_name) > len) {
len = dirlen + strlen(entry->d_name);
old_fname = fname;
fname = os_realloc(fname, len);
if (!fname) {
os_free(old_fname);
os_free(next);
os_dirent_free(head);
ret = -ENOMEM;
goto done;
}
}
next->next = NULL;
strcpy(next->name, entry->d_name);
switch (entry->d_type) {
case DT_REG:
next->type = OS_FILET_REG;
break;
case DT_DIR:
next->type = OS_FILET_DIR;
break;
case DT_LNK:
next->type = OS_FILET_LNK;
break;
default:
next->type = OS_FILET_UNKNOWN;
}
next->size = 0;
snprintf(fname, len, "%s/%s", dirname, next->name);
if (!stat(fname, &buf))
next->size = buf.st_size;
if (node)
node->next = next;
else
head = next;
}
*headp = head;
done:
closedir(dir);
os_free(fname);
return ret;
}
const char *os_dirent_typename[OS_FILET_COUNT] = {
" ",
"SYM",
"DIR",
"???",
};
const char *os_dirent_get_typename(enum os_dirent_t type)
{
if (type >= OS_FILET_REG && type < OS_FILET_COUNT)
return os_dirent_typename[type];
return os_dirent_typename[OS_FILET_UNKNOWN];
}
/*
* For compatibility reasons avoid loff_t here.
* U-Boot defines loff_t as long long.
* But /usr/include/linux/types.h may not define it at all.
* Alpine Linux being one example.
*/
int os_get_filesize(const char *fname, long long *size)
{
struct stat buf;
int ret;
ret = stat(fname, &buf);
if (ret)
return ret;
*size = buf.st_size;
return 0;
}
void os_putc(int ch)
{
os_write(1, &ch, 1);
}
void os_puts(const char *str)
{
while (*str)
os_putc(*str++);
}
int os_write_ram_buf(const char *fname)
{
struct sandbox_state *state = state_get_current();
int fd, ret;
fd = open(fname, O_CREAT | O_WRONLY, 0777);
if (fd < 0)
return -ENOENT;
ret = write(fd, state->ram_buf, state->ram_size);
close(fd);
if (ret != state->ram_size)
return -EIO;
return 0;
}
int os_read_ram_buf(const char *fname)
{
struct sandbox_state *state = state_get_current();
int fd, ret;
long long size;
ret = os_get_filesize(fname, &size);
if (ret < 0)
return ret;
if (size != state->ram_size)
return -ENOSPC;
fd = open(fname, O_RDONLY);
if (fd < 0)
return -ENOENT;
ret = read(fd, state->ram_buf, state->ram_size);
close(fd);
if (ret != state->ram_size)
return -EIO;
return 0;
}
static int make_exec(char *fname, const void *data, int size)
{
int fd;
strcpy(fname, "/tmp/u-boot.jump.XXXXXX");
fd = mkstemp(fname);
if (fd < 0)
return -ENOENT;
if (write(fd, data, size) < 0)
return -EIO;
close(fd);
if (chmod(fname, 0777))
return -ENOEXEC;
return 0;
}
/**
* add_args() - Allocate a new argv with the given args
*
* This is used to create a new argv array with all the old arguments and some
* new ones that are passed in
*
* @argvp: Returns newly allocated args list
* @add_args: Arguments to add, each a string
* @count: Number of arguments in @add_args
* Return: 0 if OK, -ENOMEM if out of memory
*/
static int add_args(char ***argvp, char *add_args[], int count)
{
char **argv, **ap;
int argc;
for (argc = 0; (*argvp)[argc]; argc++)
;
argv = os_malloc((argc + count + 1) * sizeof(char *));
if (!argv) {
printf("Out of memory for %d argv\n", count);
return -ENOMEM;
}
for (ap = *argvp, argc = 0; *ap; ap++) {
char *arg = *ap;
/* Drop args that we don't want to propagate */
if (*arg == '-' && strlen(arg) == 2) {
switch (arg[1]) {
case 'j':
case 'm':
ap++;
continue;
}
} else if (!strcmp(arg, "--rm_memory")) {
continue;
}
argv[argc++] = arg;
}
memcpy(argv + argc, add_args, count * sizeof(char *));
argv[argc + count] = NULL;
*argvp = argv;
return 0;
}
/**
* os_jump_to_file() - Jump to a new program
*
* This saves the memory buffer, sets up arguments to the new process, then
* execs it.
*
* @fname: Filename to exec
* Return: does not return on success, any return value is an error
*/
static int os_jump_to_file(const char *fname, bool delete_it)
{
struct sandbox_state *state = state_get_current();
char mem_fname[30];
int fd, err;
char *extra_args[5];
char **argv = state->argv;
int argc;
#ifdef DEBUG
int i;
#endif
strcpy(mem_fname, "/tmp/u-boot.mem.XXXXXX");
fd = mkstemp(mem_fname);
if (fd < 0)
return -ENOENT;
close(fd);
err = os_write_ram_buf(mem_fname);
if (err)
return err;
os_fd_restore();
argc = 0;
if (delete_it) {
extra_args[argc++] = "-j";
extra_args[argc++] = (char *)fname;
}
extra_args[argc++] = "-m";
extra_args[argc++] = mem_fname;
if (state->ram_buf_rm)
extra_args[argc++] = "--rm_memory";
err = add_args(&argv, extra_args, argc);
if (err)
return err;
argv[0] = (char *)fname;
#ifdef DEBUG
for (i = 0; argv[i]; i++)
printf("%d %s\n", i, argv[i]);
#endif
if (state_uninit())
os_exit(2);
err = execv(fname, argv);
os_free(argv);
if (err) {
perror("Unable to run image");
printf("Image filename '%s'\n", fname);
return err;
}
if (delete_it)
return unlink(fname);
return -EFAULT;
}
int os_jump_to_image(const void *dest, int size)
{
char fname[30];
int err;
err = make_exec(fname, dest, size);
if (err)
return err;
return os_jump_to_file(fname, true);
}
int os_find_u_boot(char *fname, int maxlen, bool use_img,
const char *cur_prefix, const char *next_prefix)
{
struct sandbox_state *state = state_get_current();
const char *progname = state->argv[0];
int len = strlen(progname);
char subdir[10];
char *suffix;
char *p;
int fd;
if (len >= maxlen || len < 4)
return -ENOSPC;
strcpy(fname, progname);
suffix = fname + len - 4;
/* Change the existing suffix to the new one */
if (*suffix != '-')
return -EINVAL;
if (*next_prefix)
strcpy(suffix + 1, next_prefix); /* e.g. "-tpl" to "-spl" */
else
*suffix = '\0'; /* e.g. "-spl" to "" */
fd = os_open(fname, O_RDONLY);
if (fd >= 0) {
close(fd);
return 0;
}
/*
* We didn't find it, so try looking for 'u-boot-xxx' in the xxx/
* directory. Replace the old dirname with the new one.
*/
snprintf(subdir, sizeof(subdir), "/%s/", cur_prefix);
p = strstr(fname, subdir);
if (p) {
if (*next_prefix)
/* e.g. ".../tpl/u-boot-spl" to "../spl/u-boot-spl" */
memcpy(p + 1, next_prefix, strlen(next_prefix));
else
/* e.g. ".../spl/u-boot" to ".../u-boot" */
strcpy(p, p + 1 + strlen(cur_prefix));
if (use_img)
strcat(p, ".img");
fd = os_open(fname, O_RDONLY);
if (fd >= 0) {
close(fd);
return 0;
}
}
return -ENOENT;
}
int os_spl_to_uboot(const char *fname)
{
struct sandbox_state *state = state_get_current();
/* U-Boot will delete ram buffer after read: "--rm_memory"*/
state->ram_buf_rm = true;
return os_jump_to_file(fname, false);
}
long os_get_time_offset(void)
{
const char *offset;
offset = getenv(ENV_TIME_OFFSET);
if (offset)
return strtol(offset, NULL, 0);
return 0;
}
void os_set_time_offset(long offset)
{
char buf[21];
int ret;
snprintf(buf, sizeof(buf), "%ld", offset);
ret = setenv(ENV_TIME_OFFSET, buf, true);
if (ret)
printf("Could not set environment variable %s\n",
ENV_TIME_OFFSET);
}
void os_localtime(struct rtc_time *rt)
{
time_t t = time(NULL);
struct tm *tm;
tm = localtime(&t);
rt->tm_sec = tm->tm_sec;
rt->tm_min = tm->tm_min;
rt->tm_hour = tm->tm_hour;
rt->tm_mday = tm->tm_mday;
rt->tm_mon = tm->tm_mon + 1;
rt->tm_year = tm->tm_year + 1900;
rt->tm_wday = tm->tm_wday;
rt->tm_yday = tm->tm_yday;
rt->tm_isdst = tm->tm_isdst;
}
void os_abort(void)
{
abort();
}
int os_mprotect_allow(void *start, size_t len)
{
int page_size = getpagesize();
/* Move start to the start of a page, len to the end */
start = (void *)(((ulong)start) & ~(page_size - 1));
len = (len + page_size * 2) & ~(page_size - 1);
return mprotect(start, len, PROT_READ | PROT_WRITE);
}
void *os_find_text_base(void)
{
char line[500];
void *base = NULL;
int len;
int fd;
/*
* This code assumes that the first line of /proc/self/maps holds
* information about the text, for example:
*
* 5622d9907000-5622d9a55000 r-xp 00000000 08:01 15067168 u-boot
*
* The first hex value is assumed to be the address.
*
* This is tested in Linux 4.15.
*/
fd = open("/proc/self/maps", O_RDONLY);
if (fd == -1)
return NULL;
len = read(fd, line, sizeof(line));
if (len > 0) {
char *end = memchr(line, '-', len);
if (end) {
uintptr_t addr;
*end = '\0';
if (sscanf(line, "%zx", &addr) == 1)
base = (void *)addr;
}
}
close(fd);
return base;
}
void os_relaunch(char *argv[])
{
execv(argv[0], argv);
os_exit(1);
}
#ifdef CONFIG_FUZZ
static void *fuzzer_thread(void * ptr)
{
char cmd[64];
char *argv[5] = {"./u-boot", "-T", "-c", cmd, NULL};
const char *fuzz_test;
/* Find which test to run from an environment variable. */
fuzz_test = getenv("UBOOT_SB_FUZZ_TEST");
if (!fuzz_test)
os_abort();
snprintf(cmd, sizeof(cmd), "fuzz %s", fuzz_test);
sandbox_main(4, argv);
os_abort();
return NULL;
}
static bool fuzzer_initialized = false;
static pthread_mutex_t fuzzer_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t fuzzer_cond = PTHREAD_COND_INITIALIZER;
static const uint8_t *fuzzer_data;
static size_t fuzzer_size;
int sandbox_fuzzing_engine_get_input(const uint8_t **data, size_t *size)
{
if (!fuzzer_initialized)
return -ENOSYS;
/* Tell the main thread we need new inputs then wait for them. */
pthread_mutex_lock(&fuzzer_mutex);
pthread_cond_signal(&fuzzer_cond);
pthread_cond_wait(&fuzzer_cond, &fuzzer_mutex);
*data = fuzzer_data;
*size = fuzzer_size;
pthread_mutex_unlock(&fuzzer_mutex);
return 0;
}
int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size)
{
static pthread_t tid;
pthread_mutex_lock(&fuzzer_mutex);
/* Initialize the sandbox on another thread. */
if (!fuzzer_initialized) {
fuzzer_initialized = true;
if (pthread_create(&tid, NULL, fuzzer_thread, NULL))
os_abort();
pthread_cond_wait(&fuzzer_cond, &fuzzer_mutex);
}
/* Hand over the input. */
fuzzer_data = data;
fuzzer_size = size;
pthread_cond_signal(&fuzzer_cond);
/* Wait for the inputs to be finished with. */
pthread_cond_wait(&fuzzer_cond, &fuzzer_mutex);
pthread_mutex_unlock(&fuzzer_mutex);
return 0;
}
#else
int main(int argc, char *argv[])
{
return sandbox_main(argc, argv);
}
#endif