u-boot/arch/mips/mach-octeon/include/mach/cvmx-cmd-queue.h
Aaron Williams fe3334d0a3 mips: octeon: Add misc remaining header files
Import misc remaining header files from 2013 U-Boot. These will be used
by the later added drivers to support PCIe and networking on the MIPS
Octeon II / III platforms.

Signed-off-by: Aaron Williams <awilliams@marvell.com>
Signed-off-by: Stefan Roese <sr@denx.de>
Cc: Aaron Williams <awilliams@marvell.com>
Cc: Chandrakala Chavva <cchavva@marvell.com>
Cc: Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
2021-04-23 21:03:08 +02:00

441 lines
14 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2020 Marvell International Ltd.
*
* Support functions for managing command queues used for
* various hardware blocks.
*
* The common command queue infrastructure abstracts out the
* software necessary for adding to Octeon's chained queue
* structures. These structures are used for commands to the
* PKO, ZIP, DFA, RAID, HNA, and DMA engine blocks. Although each
* hardware unit takes commands and CSRs of different types,
* they all use basic linked command buffers to store the
* pending request. In general, users of the CVMX API don't
* call cvmx-cmd-queue functions directly. Instead the hardware
* unit specific wrapper should be used. The wrappers perform
* unit specific validation and CSR writes to submit the
* commands.
*
* Even though most software will never directly interact with
* cvmx-cmd-queue, knowledge of its internal workings can help
* in diagnosing performance problems and help with debugging.
*
* Command queue pointers are stored in a global named block
* called "cvmx_cmd_queues". Except for the PKO queues, each
* hardware queue is stored in its own cache line to reduce SMP
* contention on spin locks. The PKO queues are stored such that
* every 16th queue is next to each other in memory. This scheme
* allows for queues being in separate cache lines when there
* are low number of queues per port. With 16 queues per port,
* the first queue for each port is in the same cache area. The
* second queues for each port are in another area, etc. This
* allows software to implement very efficient lockless PKO with
* 16 queues per port using a minimum of cache lines per core.
* All queues for a given core will be isolated in the same
* cache area.
*
* In addition to the memory pointer layout, cvmx-cmd-queue
* provides an optimized fair ll/sc locking mechanism for the
* queues. The lock uses a "ticket / now serving" model to
* maintain fair order on contended locks. In addition, it uses
* predicted locking time to limit cache contention. When a core
* know it must wait in line for a lock, it spins on the
* internal cycle counter to completely eliminate any causes of
* bus traffic.
*/
#ifndef __CVMX_CMD_QUEUE_H__
#define __CVMX_CMD_QUEUE_H__
/**
* By default we disable the max depth support. Most programs
* don't use it and it slows down the command queue processing
* significantly.
*/
#ifndef CVMX_CMD_QUEUE_ENABLE_MAX_DEPTH
#define CVMX_CMD_QUEUE_ENABLE_MAX_DEPTH 0
#endif
/**
* Enumeration representing all hardware blocks that use command
* queues. Each hardware block has up to 65536 sub identifiers for
* multiple command queues. Not all chips support all hardware
* units.
*/
typedef enum {
CVMX_CMD_QUEUE_PKO_BASE = 0x00000,
#define CVMX_CMD_QUEUE_PKO(queue) \
((cvmx_cmd_queue_id_t)(CVMX_CMD_QUEUE_PKO_BASE + (0xffff & (queue))))
CVMX_CMD_QUEUE_ZIP = 0x10000,
#define CVMX_CMD_QUEUE_ZIP_QUE(queue) \
((cvmx_cmd_queue_id_t)(CVMX_CMD_QUEUE_ZIP + (0xffff & (queue))))
CVMX_CMD_QUEUE_DFA = 0x20000,
CVMX_CMD_QUEUE_RAID = 0x30000,
CVMX_CMD_QUEUE_DMA_BASE = 0x40000,
#define CVMX_CMD_QUEUE_DMA(queue) \
((cvmx_cmd_queue_id_t)(CVMX_CMD_QUEUE_DMA_BASE + (0xffff & (queue))))
CVMX_CMD_QUEUE_BCH = 0x50000,
#define CVMX_CMD_QUEUE_BCH(queue) ((cvmx_cmd_queue_id_t)(CVMX_CMD_QUEUE_BCH + (0xffff & (queue))))
CVMX_CMD_QUEUE_HNA = 0x60000,
CVMX_CMD_QUEUE_END = 0x70000,
} cvmx_cmd_queue_id_t;
#define CVMX_CMD_QUEUE_ZIP3_QUE(node, queue) \
((cvmx_cmd_queue_id_t)((node) << 24 | CVMX_CMD_QUEUE_ZIP | (0xffff & (queue))))
/**
* Command write operations can fail if the command queue needs
* a new buffer and the associated FPA pool is empty. It can also
* fail if the number of queued command words reaches the maximum
* set at initialization.
*/
typedef enum {
CVMX_CMD_QUEUE_SUCCESS = 0,
CVMX_CMD_QUEUE_NO_MEMORY = -1,
CVMX_CMD_QUEUE_FULL = -2,
CVMX_CMD_QUEUE_INVALID_PARAM = -3,
CVMX_CMD_QUEUE_ALREADY_SETUP = -4,
} cvmx_cmd_queue_result_t;
typedef struct {
/* First 64-bit word: */
u64 fpa_pool : 16;
u64 base_paddr : 48;
s32 index;
u16 max_depth;
u16 pool_size_m1;
} __cvmx_cmd_queue_state_t;
/**
* command-queue locking uses a fair ticket spinlock algo,
* with 64-bit tickets for endianness-neutrality and
* counter overflow protection.
* Lock is free when both counters are of equal value.
*/
typedef struct {
u64 ticket;
u64 now_serving;
} __cvmx_cmd_queue_lock_t;
/**
* @INTERNAL
* This structure contains the global state of all command queues.
* It is stored in a bootmem named block and shared by all
* applications running on Octeon. Tickets are stored in a different
* cache line that queue information to reduce the contention on the
* ll/sc used to get a ticket. If this is not the case, the update
* of queue state causes the ll/sc to fail quite often.
*/
typedef struct {
__cvmx_cmd_queue_lock_t lock[(CVMX_CMD_QUEUE_END >> 16) * 256];
__cvmx_cmd_queue_state_t state[(CVMX_CMD_QUEUE_END >> 16) * 256];
} __cvmx_cmd_queue_all_state_t;
extern __cvmx_cmd_queue_all_state_t *__cvmx_cmd_queue_state_ptrs[CVMX_MAX_NODES];
/**
* @INTERNAL
* Internal function to handle the corner cases
* of adding command words to a queue when the current
* block is getting full.
*/
cvmx_cmd_queue_result_t __cvmx_cmd_queue_write_raw(cvmx_cmd_queue_id_t queue_id,
__cvmx_cmd_queue_state_t *qptr, int cmd_count,
const u64 *cmds);
/**
* Initialize a command queue for use. The initial FPA buffer is
* allocated and the hardware unit is configured to point to the
* new command queue.
*
* @param queue_id Hardware command queue to initialize.
* @param max_depth Maximum outstanding commands that can be queued.
* @param fpa_pool FPA pool the command queues should come from.
* @param pool_size Size of each buffer in the FPA pool (bytes)
*
* @return CVMX_CMD_QUEUE_SUCCESS or a failure code
*/
cvmx_cmd_queue_result_t cvmx_cmd_queue_initialize(cvmx_cmd_queue_id_t queue_id, int max_depth,
int fpa_pool, int pool_size);
/**
* Shutdown a queue a free it's command buffers to the FPA. The
* hardware connected to the queue must be stopped before this
* function is called.
*
* @param queue_id Queue to shutdown
*
* @return CVMX_CMD_QUEUE_SUCCESS or a failure code
*/
cvmx_cmd_queue_result_t cvmx_cmd_queue_shutdown(cvmx_cmd_queue_id_t queue_id);
/**
* Return the number of command words pending in the queue. This
* function may be relatively slow for some hardware units.
*
* @param queue_id Hardware command queue to query
*
* @return Number of outstanding commands
*/
int cvmx_cmd_queue_length(cvmx_cmd_queue_id_t queue_id);
/**
* Return the command buffer to be written to. The purpose of this
* function is to allow CVMX routine access to the low level buffer
* for initial hardware setup. User applications should not call this
* function directly.
*
* @param queue_id Command queue to query
*
* @return Command buffer or NULL on failure
*/
void *cvmx_cmd_queue_buffer(cvmx_cmd_queue_id_t queue_id);
/**
* @INTERNAL
* Retrieve or allocate command queue state named block
*/
cvmx_cmd_queue_result_t __cvmx_cmd_queue_init_state_ptr(unsigned int node);
/**
* @INTERNAL
* Get the index into the state arrays for the supplied queue id.
*
* @param queue_id Queue ID to get an index for
*
* @return Index into the state arrays
*/
static inline unsigned int __cvmx_cmd_queue_get_index(cvmx_cmd_queue_id_t queue_id)
{
/* Warning: This code currently only works with devices that have 256
* queues or less. Devices with more than 16 queues are laid out in
* memory to allow cores quick access to every 16th queue. This reduces
* cache thrashing when you are running 16 queues per port to support
* lockless operation
*/
unsigned int unit = (queue_id >> 16) & 0xff;
unsigned int q = (queue_id >> 4) & 0xf;
unsigned int core = queue_id & 0xf;
return (unit << 8) | (core << 4) | q;
}
static inline int __cvmx_cmd_queue_get_node(cvmx_cmd_queue_id_t queue_id)
{
unsigned int node = queue_id >> 24;
return node;
}
/**
* @INTERNAL
* Lock the supplied queue so nobody else is updating it at the same
* time as us.
*
* @param queue_id Queue ID to lock
*
*/
static inline void __cvmx_cmd_queue_lock(cvmx_cmd_queue_id_t queue_id)
{
}
/**
* @INTERNAL
* Unlock the queue, flushing all writes.
*
* @param queue_id Queue ID to lock
*
*/
static inline void __cvmx_cmd_queue_unlock(cvmx_cmd_queue_id_t queue_id)
{
CVMX_SYNCWS; /* nudge out the unlock. */
}
/**
* @INTERNAL
* Initialize a command-queue lock to "unlocked" state.
*/
static inline void __cvmx_cmd_queue_lock_init(cvmx_cmd_queue_id_t queue_id)
{
unsigned int index = __cvmx_cmd_queue_get_index(queue_id);
unsigned int node = __cvmx_cmd_queue_get_node(queue_id);
__cvmx_cmd_queue_state_ptrs[node]->lock[index] = (__cvmx_cmd_queue_lock_t){ 0, 0 };
CVMX_SYNCWS;
}
/**
* @INTERNAL
* Get the queue state structure for the given queue id
*
* @param queue_id Queue id to get
*
* @return Queue structure or NULL on failure
*/
static inline __cvmx_cmd_queue_state_t *__cvmx_cmd_queue_get_state(cvmx_cmd_queue_id_t queue_id)
{
unsigned int index;
unsigned int node;
__cvmx_cmd_queue_state_t *qptr;
node = __cvmx_cmd_queue_get_node(queue_id);
index = __cvmx_cmd_queue_get_index(queue_id);
if (cvmx_unlikely(!__cvmx_cmd_queue_state_ptrs[node]))
__cvmx_cmd_queue_init_state_ptr(node);
qptr = &__cvmx_cmd_queue_state_ptrs[node]->state[index];
return qptr;
}
/**
* Write an arbitrary number of command words to a command queue.
* This is a generic function; the fixed number of command word
* functions yield higher performance.
*
* @param queue_id Hardware command queue to write to
* @param use_locking
* Use internal locking to ensure exclusive access for queue
* updates. If you don't use this locking you must ensure
* exclusivity some other way. Locking is strongly recommended.
* @param cmd_count Number of command words to write
* @param cmds Array of commands to write
*
* @return CVMX_CMD_QUEUE_SUCCESS or a failure code
*/
static inline cvmx_cmd_queue_result_t
cvmx_cmd_queue_write(cvmx_cmd_queue_id_t queue_id, bool use_locking, int cmd_count, const u64 *cmds)
{
cvmx_cmd_queue_result_t ret = CVMX_CMD_QUEUE_SUCCESS;
u64 *cmd_ptr;
__cvmx_cmd_queue_state_t *qptr = __cvmx_cmd_queue_get_state(queue_id);
/* Make sure nobody else is updating the same queue */
if (cvmx_likely(use_locking))
__cvmx_cmd_queue_lock(queue_id);
/* Most of the time there is lots of free words in current block */
if (cvmx_unlikely((qptr->index + cmd_count) >= qptr->pool_size_m1)) {
/* The rare case when nearing end of block */
ret = __cvmx_cmd_queue_write_raw(queue_id, qptr, cmd_count, cmds);
} else {
cmd_ptr = (u64 *)cvmx_phys_to_ptr((u64)qptr->base_paddr);
/* Loop easy for compiler to unroll for the likely case */
while (cmd_count > 0) {
cmd_ptr[qptr->index++] = *cmds++;
cmd_count--;
}
}
/* All updates are complete. Release the lock and return */
if (cvmx_likely(use_locking))
__cvmx_cmd_queue_unlock(queue_id);
else
CVMX_SYNCWS;
return ret;
}
/**
* Simple function to write two command words to a command queue.
*
* @param queue_id Hardware command queue to write to
* @param use_locking
* Use internal locking to ensure exclusive access for queue
* updates. If you don't use this locking you must ensure
* exclusivity some other way. Locking is strongly recommended.
* @param cmd1 Command
* @param cmd2 Command
*
* @return CVMX_CMD_QUEUE_SUCCESS or a failure code
*/
static inline cvmx_cmd_queue_result_t cvmx_cmd_queue_write2(cvmx_cmd_queue_id_t queue_id,
bool use_locking, u64 cmd1, u64 cmd2)
{
cvmx_cmd_queue_result_t ret = CVMX_CMD_QUEUE_SUCCESS;
u64 *cmd_ptr;
__cvmx_cmd_queue_state_t *qptr = __cvmx_cmd_queue_get_state(queue_id);
/* Make sure nobody else is updating the same queue */
if (cvmx_likely(use_locking))
__cvmx_cmd_queue_lock(queue_id);
if (cvmx_unlikely((qptr->index + 2) >= qptr->pool_size_m1)) {
/* The rare case when nearing end of block */
u64 cmds[2];
cmds[0] = cmd1;
cmds[1] = cmd2;
ret = __cvmx_cmd_queue_write_raw(queue_id, qptr, 2, cmds);
} else {
/* Likely case to work fast */
cmd_ptr = (u64 *)cvmx_phys_to_ptr((u64)qptr->base_paddr);
cmd_ptr += qptr->index;
qptr->index += 2;
cmd_ptr[0] = cmd1;
cmd_ptr[1] = cmd2;
}
/* All updates are complete. Release the lock and return */
if (cvmx_likely(use_locking))
__cvmx_cmd_queue_unlock(queue_id);
else
CVMX_SYNCWS;
return ret;
}
/**
* Simple function to write three command words to a command queue.
*
* @param queue_id Hardware command queue to write to
* @param use_locking
* Use internal locking to ensure exclusive access for queue
* updates. If you don't use this locking you must ensure
* exclusivity some other way. Locking is strongly recommended.
* @param cmd1 Command
* @param cmd2 Command
* @param cmd3 Command
*
* @return CVMX_CMD_QUEUE_SUCCESS or a failure code
*/
static inline cvmx_cmd_queue_result_t
cvmx_cmd_queue_write3(cvmx_cmd_queue_id_t queue_id, bool use_locking, u64 cmd1, u64 cmd2, u64 cmd3)
{
cvmx_cmd_queue_result_t ret = CVMX_CMD_QUEUE_SUCCESS;
__cvmx_cmd_queue_state_t *qptr = __cvmx_cmd_queue_get_state(queue_id);
u64 *cmd_ptr;
/* Make sure nobody else is updating the same queue */
if (cvmx_likely(use_locking))
__cvmx_cmd_queue_lock(queue_id);
if (cvmx_unlikely((qptr->index + 3) >= qptr->pool_size_m1)) {
/* Most of the time there is lots of free words in current block */
u64 cmds[3];
cmds[0] = cmd1;
cmds[1] = cmd2;
cmds[2] = cmd3;
ret = __cvmx_cmd_queue_write_raw(queue_id, qptr, 3, cmds);
} else {
cmd_ptr = (u64 *)cvmx_phys_to_ptr((u64)qptr->base_paddr);
cmd_ptr += qptr->index;
qptr->index += 3;
cmd_ptr[0] = cmd1;
cmd_ptr[1] = cmd2;
cmd_ptr[2] = cmd3;
}
/* All updates are complete. Release the lock and return */
if (cvmx_likely(use_locking))
__cvmx_cmd_queue_unlock(queue_id);
else
CVMX_SYNCWS;
return ret;
}
#endif /* __CVMX_CMD_QUEUE_H__ */