mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-06 13:14:27 +00:00
8cffb50ab3
rtc_to_tm() and rtc_mktime() are required for some RTC drivers, at least PL031. Without this patch, we also need to enable CONFIG_CMD_DATE even if we don't want or need this command. Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org> Reviewed-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
100 lines
2.6 KiB
C
100 lines
2.6 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright 2001
|
|
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <command.h>
|
|
#include <errno.h>
|
|
#include <rtc.h>
|
|
|
|
#if defined(CONFIG_CMD_DATE) || defined(CONFIG_DM_RTC) || \
|
|
defined(CONFIG_TIMESTAMP)
|
|
|
|
#define FEBRUARY 2
|
|
#define STARTOFTIME 1970
|
|
#define SECDAY 86400L
|
|
#define SECYR (SECDAY * 365)
|
|
#define leapyear(year) ((year) % 4 == 0)
|
|
#define days_in_year(a) (leapyear(a) ? 366 : 365)
|
|
#define days_in_month(a) (month_days[(a) - 1])
|
|
|
|
static int month_offset[] = {
|
|
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
|
|
};
|
|
|
|
/*
|
|
* This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
|
|
*/
|
|
int rtc_calc_weekday(struct rtc_time *tm)
|
|
{
|
|
int leaps_to_date;
|
|
int last_year;
|
|
int day;
|
|
|
|
if (tm->tm_year < 1753)
|
|
return -1;
|
|
last_year = tm->tm_year - 1;
|
|
|
|
/* Number of leap corrections to apply up to end of last year */
|
|
leaps_to_date = last_year / 4 - last_year / 100 + last_year / 400;
|
|
|
|
/*
|
|
* This year is a leap year if it is divisible by 4 except when it is
|
|
* divisible by 100 unless it is divisible by 400
|
|
*
|
|
* e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 is.
|
|
*/
|
|
if (tm->tm_year % 4 == 0 &&
|
|
((tm->tm_year % 100 != 0) || (tm->tm_year % 400 == 0)) &&
|
|
tm->tm_mon > 2) {
|
|
/* We are past Feb. 29 in a leap year */
|
|
day = 1;
|
|
} else {
|
|
day = 0;
|
|
}
|
|
|
|
day += last_year * 365 + leaps_to_date + month_offset[tm->tm_mon - 1] +
|
|
tm->tm_mday;
|
|
tm->tm_wday = day % 7;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
|
|
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
|
|
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
|
|
*
|
|
* [For the Julian calendar (which was used in Russia before 1917,
|
|
* Britain & colonies before 1752, anywhere else before 1582,
|
|
* and is still in use by some communities) leave out the
|
|
* -year / 100 + year / 400 terms, and add 10.]
|
|
*
|
|
* This algorithm was first published by Gauss (I think).
|
|
*
|
|
* WARNING: this function will overflow on 2106-02-07 06:28:16 on
|
|
* machines where long is 32-bit! (However, as time_t is signed, we
|
|
* will already get problems at other places on 2038-01-19 03:14:08)
|
|
*/
|
|
unsigned long rtc_mktime(const struct rtc_time *tm)
|
|
{
|
|
int mon = tm->tm_mon;
|
|
int year = tm->tm_year;
|
|
int days, hours;
|
|
|
|
mon -= 2;
|
|
if (0 >= (int)mon) { /* 1..12 -> 11, 12, 1..10 */
|
|
mon += 12; /* Puts Feb last since it has leap day */
|
|
year -= 1;
|
|
}
|
|
|
|
days = (unsigned long)(year / 4 - year / 100 + year / 400 +
|
|
367 * mon / 12 + tm->tm_mday) +
|
|
year * 365 - 719499;
|
|
hours = days * 24 + tm->tm_hour;
|
|
return (hours * 60 + tm->tm_min) * 60 + tm->tm_sec;
|
|
}
|
|
|
|
#endif
|