mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-12 05:08:57 +00:00
714209832d
Most callers unpack the structure and pass each member. It seems better to pass the whole structure instead, as with the C library. Also add an rtc_ prefix. Signed-off-by: Simon Glass <sjg@chromium.org> Acked-by: Heiko Schocher <hs@denx.de>
193 lines
3.7 KiB
C
193 lines
3.7 KiB
C
/*
|
|
* (C) Copyright 2002
|
|
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#include <common.h>
|
|
|
|
/*
|
|
* RTC test
|
|
*
|
|
* The Real Time Clock (RTC) operation is verified by this test.
|
|
* The following features are verified:
|
|
* o) RTC Power Fault
|
|
* This is verified by analyzing the rtc_get() return status.
|
|
* o) Time uniformity
|
|
* This is verified by reading RTC in polling within
|
|
* a short period of time.
|
|
* o) Passing month boundaries
|
|
* This is checked by setting RTC to a second before
|
|
* a month boundary and reading it after its passing the
|
|
* boundary. The test is performed for both leap- and
|
|
* nonleap-years.
|
|
*/
|
|
|
|
#include <post.h>
|
|
#include <rtc.h>
|
|
|
|
#if CONFIG_POST & CONFIG_SYS_POST_RTC
|
|
|
|
static int rtc_post_skip (ulong * diff)
|
|
{
|
|
struct rtc_time tm1;
|
|
struct rtc_time tm2;
|
|
ulong start1;
|
|
ulong start2;
|
|
|
|
rtc_get (&tm1);
|
|
start1 = get_timer (0);
|
|
|
|
while (1) {
|
|
rtc_get (&tm2);
|
|
start2 = get_timer (0);
|
|
if (tm1.tm_sec != tm2.tm_sec)
|
|
break;
|
|
if (start2 - start1 > 1500)
|
|
break;
|
|
}
|
|
|
|
if (tm1.tm_sec != tm2.tm_sec) {
|
|
*diff = start2 - start1;
|
|
|
|
return 0;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static void rtc_post_restore (struct rtc_time *tm, unsigned int sec)
|
|
{
|
|
time_t t = rtc_mktime(tm) + sec;
|
|
struct rtc_time ntm;
|
|
|
|
rtc_to_tm(t, &ntm);
|
|
|
|
rtc_set (&ntm);
|
|
}
|
|
|
|
int rtc_post_test (int flags)
|
|
{
|
|
ulong diff;
|
|
unsigned int i;
|
|
struct rtc_time svtm;
|
|
static unsigned int daysnl[] =
|
|
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
|
static unsigned int daysl[] =
|
|
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
|
unsigned int ynl = 1999;
|
|
unsigned int yl = 2000;
|
|
unsigned int skipped = 0;
|
|
int reliable;
|
|
|
|
/* Time reliability */
|
|
reliable = rtc_get (&svtm);
|
|
|
|
/* Time uniformity */
|
|
if (rtc_post_skip (&diff) != 0) {
|
|
post_log ("Timeout while waiting for a new second !\n");
|
|
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
if (rtc_post_skip (&diff) != 0) {
|
|
post_log ("Timeout while waiting for a new second !\n");
|
|
|
|
return -1;
|
|
}
|
|
|
|
if (diff < 950 || diff > 1050) {
|
|
post_log ("Invalid second duration !\n");
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Passing month boundaries */
|
|
|
|
if (rtc_post_skip (&diff) != 0) {
|
|
post_log ("Timeout while waiting for a new second !\n");
|
|
|
|
return -1;
|
|
}
|
|
rtc_get (&svtm);
|
|
|
|
for (i = 0; i < 12; i++) {
|
|
time_t t;
|
|
struct rtc_time tm;
|
|
|
|
tm.tm_year = ynl;
|
|
tm.tm_mon = i + 1;
|
|
tm.tm_mday = daysnl[i];
|
|
tm.tm_hour = 23;
|
|
tm.tm_min = 59;
|
|
tm.tm_sec = 59;
|
|
t = rtc_mktime(&tm);
|
|
rtc_to_tm(t, &tm);
|
|
rtc_set (&tm);
|
|
|
|
skipped++;
|
|
if (rtc_post_skip (&diff) != 0) {
|
|
rtc_post_restore (&svtm, skipped);
|
|
post_log ("Timeout while waiting for a new second !\n");
|
|
|
|
return -1;
|
|
}
|
|
|
|
rtc_get (&tm);
|
|
if (tm.tm_mon == i + 1) {
|
|
rtc_post_restore (&svtm, skipped);
|
|
post_log ("Month %d boundary is not passed !\n", i + 1);
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 12; i++) {
|
|
time_t t;
|
|
struct rtc_time tm;
|
|
|
|
tm.tm_year = yl;
|
|
tm.tm_mon = i + 1;
|
|
tm.tm_mday = daysl[i];
|
|
tm.tm_hour = 23;
|
|
tm.tm_min = 59;
|
|
tm.tm_sec = 59;
|
|
t = rtc_mktime(&tm);
|
|
|
|
rtc_to_tm(t, &tm);
|
|
rtc_set (&tm);
|
|
|
|
skipped++;
|
|
if (rtc_post_skip (&diff) != 0) {
|
|
rtc_post_restore (&svtm, skipped);
|
|
post_log ("Timeout while waiting for a new second !\n");
|
|
|
|
return -1;
|
|
}
|
|
|
|
rtc_get (&tm);
|
|
if (tm.tm_mon == i + 1) {
|
|
rtc_post_restore (&svtm, skipped);
|
|
post_log ("Month %d boundary is not passed !\n", i + 1);
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
rtc_post_restore (&svtm, skipped);
|
|
|
|
/* If come here, then RTC operates correcty, check the correctness
|
|
* of the time it reports.
|
|
*/
|
|
if (reliable < 0) {
|
|
post_log ("RTC Time is not reliable! Power fault? \n");
|
|
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_POST & CONFIG_SYS_POST_RTC */
|