mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-25 19:35:17 +00:00
15942805b7
Config option ARMADA_39X is never set so remove all dead code hidden under ifdef CONFIG_ARMADA_39X blocks. Also remove useless checks for CONFIG_ARMADA_38X define as this macro is always defined for a38x code path. Signed-off-by: Pali Rohár <pali@kernel.org> Reviewed-by: Stefan Roese <sr@denx.de>
1446 lines
36 KiB
C
1446 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) Marvell International Ltd. and its affiliates
|
|
*/
|
|
|
|
#include "ddr3_init.h"
|
|
#include "mv_ddr_common.h"
|
|
#include "mv_ddr_training_db.h"
|
|
#include "mv_ddr_regs.h"
|
|
#include "mv_ddr_sys_env_lib.h"
|
|
|
|
#define DDR_INTERFACES_NUM 1
|
|
#define DDR_INTERFACE_OCTETS_NUM 5
|
|
|
|
/*
|
|
* 1. L2 filter should be set at binary header to 0xD000000,
|
|
* to avoid conflict with internal register IO.
|
|
* 2. U-Boot modifies internal registers base to 0xf100000,
|
|
* and than should update L2 filter accordingly to 0xf000000 (3.75 GB)
|
|
*/
|
|
#define L2_FILTER_FOR_MAX_MEMORY_SIZE 0xC0000000 /* temporary limit l2 filter to 3gb (LSP issue) */
|
|
#define ADDRESS_FILTERING_END_REGISTER 0x8c04
|
|
|
|
#define DYNAMIC_CS_SIZE_CONFIG
|
|
#define DISABLE_L2_FILTERING_DURING_DDR_TRAINING
|
|
|
|
/* Termal Sensor Registers */
|
|
#define TSEN_CONTROL_LSB_REG 0xE4070
|
|
#define TSEN_CONTROL_LSB_TC_TRIM_OFFSET 0
|
|
#define TSEN_CONTROL_LSB_TC_TRIM_MASK (0x7 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET)
|
|
#define TSEN_CONTROL_MSB_REG 0xE4074
|
|
#define TSEN_CONTROL_MSB_RST_OFFSET 8
|
|
#define TSEN_CONTROL_MSB_RST_MASK (0x1 << TSEN_CONTROL_MSB_RST_OFFSET)
|
|
#define TSEN_STATUS_REG 0xe4078
|
|
#define TSEN_STATUS_READOUT_VALID_OFFSET 10
|
|
#define TSEN_STATUS_READOUT_VALID_MASK (0x1 << \
|
|
TSEN_STATUS_READOUT_VALID_OFFSET)
|
|
#define TSEN_STATUS_TEMP_OUT_OFFSET 0
|
|
#define TSEN_STATUS_TEMP_OUT_MASK (0x3ff << TSEN_STATUS_TEMP_OUT_OFFSET)
|
|
|
|
static struct dlb_config ddr3_dlb_config_table[] = {
|
|
{DLB_CTRL_REG, 0x2000005c},
|
|
{DLB_BUS_OPT_WT_REG, 0x00880000},
|
|
{DLB_AGING_REG, 0x0f7f007f},
|
|
{DLB_EVICTION_CTRL_REG, 0x0000129f},
|
|
{DLB_EVICTION_TIMERS_REG, 0x00ff0000},
|
|
{DLB_WTS_DIFF_CS_REG, 0x04030802},
|
|
{DLB_WTS_DIFF_BG_REG, 0x00000a02},
|
|
{DLB_WTS_SAME_BG_REG, 0x09000a01},
|
|
{DLB_WTS_CMDS_REG, 0x00020005},
|
|
{DLB_WTS_ATTR_PRIO_REG, 0x00060f10},
|
|
{DLB_QUEUE_MAP_REG, 0x00000543},
|
|
{DLB_SPLIT_REG, 0x00000000},
|
|
{DLB_USER_CMD_REG, 0x00000000},
|
|
{0x0, 0x0}
|
|
};
|
|
|
|
static struct dlb_config *sys_env_dlb_config_ptr_get(void)
|
|
{
|
|
return &ddr3_dlb_config_table[0];
|
|
}
|
|
|
|
static u8 a38x_bw_per_freq[MV_DDR_FREQ_LAST] = {
|
|
0x3, /* MV_DDR_FREQ_100 */
|
|
0x4, /* MV_DDR_FREQ_400 */
|
|
0x4, /* MV_DDR_FREQ_533 */
|
|
0x5, /* MV_DDR_FREQ_667 */
|
|
0x5, /* MV_DDR_FREQ_800 */
|
|
0x5, /* MV_DDR_FREQ_933 */
|
|
0x5, /* MV_DDR_FREQ_1066 */
|
|
0x3, /* MV_DDR_FREQ_311 */
|
|
0x3, /* MV_DDR_FREQ_333 */
|
|
0x4, /* MV_DDR_FREQ_467 */
|
|
0x5, /* MV_DDR_FREQ_850 */
|
|
0x5, /* MV_DDR_FREQ_600 */
|
|
0x3, /* MV_DDR_FREQ_300 */
|
|
0x5, /* MV_DDR_FREQ_900 */
|
|
0x3, /* MV_DDR_FREQ_360 */
|
|
0x5 /* MV_DDR_FREQ_1000 */
|
|
};
|
|
|
|
static u8 a38x_rate_per_freq[MV_DDR_FREQ_LAST] = {
|
|
0x1, /* MV_DDR_FREQ_100 */
|
|
0x2, /* MV_DDR_FREQ_400 */
|
|
0x2, /* MV_DDR_FREQ_533 */
|
|
0x2, /* MV_DDR_FREQ_667 */
|
|
0x2, /* MV_DDR_FREQ_800 */
|
|
0x3, /* MV_DDR_FREQ_933 */
|
|
0x3, /* MV_DDR_FREQ_1066 */
|
|
0x1, /* MV_DDR_FREQ_311 */
|
|
0x1, /* MV_DDR_FREQ_333 */
|
|
0x2, /* MV_DDR_FREQ_467 */
|
|
0x2, /* MV_DDR_FREQ_850 */
|
|
0x2, /* MV_DDR_FREQ_600 */
|
|
0x1, /* MV_DDR_FREQ_300 */
|
|
0x2, /* MV_DDR_FREQ_900 */
|
|
0x1, /* MV_DDR_FREQ_360 */
|
|
0x2 /* MV_DDR_FREQ_1000 */
|
|
};
|
|
|
|
static u16 a38x_vco_freq_per_sar_ref_clk_25_mhz[] = {
|
|
666, /* 0 */
|
|
1332,
|
|
800,
|
|
1600,
|
|
1066,
|
|
2132,
|
|
1200,
|
|
2400,
|
|
1332,
|
|
1332,
|
|
1500,
|
|
1500,
|
|
1600, /* 12 */
|
|
1600,
|
|
1700,
|
|
1700,
|
|
1866,
|
|
1866,
|
|
1800, /* 18 */
|
|
2000,
|
|
2000,
|
|
4000,
|
|
2132,
|
|
2132,
|
|
2300,
|
|
2300,
|
|
2400,
|
|
2400,
|
|
2500,
|
|
2500,
|
|
800
|
|
};
|
|
|
|
static u16 a38x_vco_freq_per_sar_ref_clk_40_mhz[] = {
|
|
666, /* 0 */
|
|
1332,
|
|
800,
|
|
800, /* 0x3 */
|
|
1066,
|
|
1066, /* 0x5 */
|
|
1200,
|
|
2400,
|
|
1332,
|
|
1332,
|
|
1500, /* 10 */
|
|
1600, /* 0xB */
|
|
1600,
|
|
1600,
|
|
1700,
|
|
1560, /* 0xF */
|
|
1866,
|
|
1866,
|
|
1800,
|
|
2000,
|
|
2000, /* 20 */
|
|
4000,
|
|
2132,
|
|
2132,
|
|
2300,
|
|
2300,
|
|
2400,
|
|
2400,
|
|
2500,
|
|
2500,
|
|
1800 /* 30 - 0x1E */
|
|
};
|
|
|
|
|
|
static u32 async_mode_at_tf;
|
|
|
|
static u32 dq_bit_map_2_phy_pin[] = {
|
|
1, 0, 2, 6, 9, 8, 3, 7, /* 0 */
|
|
8, 9, 1, 7, 2, 6, 3, 0, /* 1 */
|
|
3, 9, 7, 8, 1, 0, 2, 6, /* 2 */
|
|
1, 0, 6, 2, 8, 3, 7, 9, /* 3 */
|
|
0, 1, 2, 9, 7, 8, 3, 6, /* 4 */
|
|
};
|
|
|
|
void mv_ddr_mem_scrubbing(void)
|
|
{
|
|
ddr3_new_tip_ecc_scrub();
|
|
}
|
|
|
|
static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
|
|
enum mv_ddr_freq freq);
|
|
|
|
/*
|
|
* Read temperature TJ value
|
|
*/
|
|
static u32 ddr3_ctrl_get_junc_temp(u8 dev_num)
|
|
{
|
|
int reg = 0;
|
|
|
|
/* Initiates TSEN hardware reset once */
|
|
if ((reg_read(TSEN_CONTROL_MSB_REG) & TSEN_CONTROL_MSB_RST_MASK) == 0) {
|
|
reg_bit_set(TSEN_CONTROL_MSB_REG, TSEN_CONTROL_MSB_RST_MASK);
|
|
/* set Tsen Tc Trim to correct default value (errata #132698) */
|
|
reg = reg_read(TSEN_CONTROL_LSB_REG);
|
|
reg &= ~TSEN_CONTROL_LSB_TC_TRIM_MASK;
|
|
reg |= 0x3 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET;
|
|
reg_write(TSEN_CONTROL_LSB_REG, reg);
|
|
}
|
|
mdelay(10);
|
|
|
|
/* Check if the readout field is valid */
|
|
if ((reg_read(TSEN_STATUS_REG) & TSEN_STATUS_READOUT_VALID_MASK) == 0) {
|
|
printf("%s: TSEN not ready\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
reg = reg_read(TSEN_STATUS_REG);
|
|
reg = (reg & TSEN_STATUS_TEMP_OUT_MASK) >> TSEN_STATUS_TEMP_OUT_OFFSET;
|
|
|
|
return ((((10000 * reg) / 21445) * 1000) - 272674) / 1000;
|
|
}
|
|
|
|
/*
|
|
* Name: ddr3_tip_a38x_get_freq_config.
|
|
* Desc:
|
|
* Args:
|
|
* Notes:
|
|
* Returns: MV_OK if success, other error code if fail.
|
|
*/
|
|
static int ddr3_tip_a38x_get_freq_config(u8 dev_num, enum mv_ddr_freq freq,
|
|
struct hws_tip_freq_config_info
|
|
*freq_config_info)
|
|
{
|
|
if (a38x_bw_per_freq[freq] == 0xff)
|
|
return MV_NOT_SUPPORTED;
|
|
|
|
if (freq_config_info == NULL)
|
|
return MV_BAD_PARAM;
|
|
|
|
freq_config_info->bw_per_freq = a38x_bw_per_freq[freq];
|
|
freq_config_info->rate_per_freq = a38x_rate_per_freq[freq];
|
|
freq_config_info->is_supported = 1;
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static void dunit_read(u32 addr, u32 mask, u32 *data)
|
|
{
|
|
*data = reg_read(addr) & mask;
|
|
}
|
|
|
|
static void dunit_write(u32 addr, u32 mask, u32 data)
|
|
{
|
|
u32 reg_val = data;
|
|
|
|
if (mask != MASK_ALL_BITS) {
|
|
dunit_read(addr, MASK_ALL_BITS, ®_val);
|
|
reg_val &= (~mask);
|
|
reg_val |= (data & mask);
|
|
}
|
|
|
|
reg_write(addr, reg_val);
|
|
}
|
|
|
|
#define ODPG_ENABLE_REG 0x186d4
|
|
#define ODPG_EN_OFFS 0
|
|
#define ODPG_EN_MASK 0x1
|
|
#define ODPG_EN_ENA 1
|
|
#define ODPG_EN_DONE 0
|
|
#define ODPG_DIS_OFFS 8
|
|
#define ODPG_DIS_MASK 0x1
|
|
#define ODPG_DIS_DIS 1
|
|
void mv_ddr_odpg_enable(void)
|
|
{
|
|
dunit_write(ODPG_ENABLE_REG,
|
|
ODPG_EN_MASK << ODPG_EN_OFFS,
|
|
ODPG_EN_ENA << ODPG_EN_OFFS);
|
|
}
|
|
|
|
void mv_ddr_odpg_disable(void)
|
|
{
|
|
dunit_write(ODPG_ENABLE_REG,
|
|
ODPG_DIS_MASK << ODPG_DIS_OFFS,
|
|
ODPG_DIS_DIS << ODPG_DIS_OFFS);
|
|
}
|
|
|
|
void mv_ddr_odpg_done_clr(void)
|
|
{
|
|
return;
|
|
}
|
|
|
|
int mv_ddr_is_odpg_done(u32 count)
|
|
{
|
|
u32 i, data;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
dunit_read(ODPG_ENABLE_REG, MASK_ALL_BITS, &data);
|
|
if (((data >> ODPG_EN_OFFS) & ODPG_EN_MASK) ==
|
|
ODPG_EN_DONE)
|
|
break;
|
|
}
|
|
|
|
if (i >= count) {
|
|
printf("%s: timeout\n", __func__);
|
|
return MV_FAIL;
|
|
}
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
void mv_ddr_training_enable(void)
|
|
{
|
|
dunit_write(GLOB_CTRL_STATUS_REG,
|
|
TRAINING_TRIGGER_MASK << TRAINING_TRIGGER_OFFS,
|
|
TRAINING_TRIGGER_ENA << TRAINING_TRIGGER_OFFS);
|
|
}
|
|
|
|
#define DRAM_INIT_CTRL_STATUS_REG 0x18488
|
|
#define TRAINING_TRIGGER_OFFS 0
|
|
#define TRAINING_TRIGGER_MASK 0x1
|
|
#define TRAINING_TRIGGER_ENA 1
|
|
#define TRAINING_DONE_OFFS 1
|
|
#define TRAINING_DONE_MASK 0x1
|
|
#define TRAINING_DONE_DONE 1
|
|
#define TRAINING_DONE_NOT_DONE 0
|
|
#define TRAINING_RESULT_OFFS 2
|
|
#define TRAINING_RESULT_MASK 0x1
|
|
#define TRAINING_RESULT_PASS 0
|
|
#define TRAINING_RESULT_FAIL 1
|
|
int mv_ddr_is_training_done(u32 count, u32 *result)
|
|
{
|
|
u32 i, data;
|
|
|
|
if (result == NULL) {
|
|
printf("%s: NULL result pointer found\n", __func__);
|
|
return MV_FAIL;
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
dunit_read(DRAM_INIT_CTRL_STATUS_REG, MASK_ALL_BITS, &data);
|
|
if (((data >> TRAINING_DONE_OFFS) & TRAINING_DONE_MASK) ==
|
|
TRAINING_DONE_DONE)
|
|
break;
|
|
}
|
|
|
|
if (i >= count) {
|
|
printf("%s: timeout\n", __func__);
|
|
return MV_FAIL;
|
|
}
|
|
|
|
*result = (data >> TRAINING_RESULT_OFFS) & TRAINING_RESULT_MASK;
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
#define DM_PAD 10
|
|
u32 mv_ddr_dm_pad_get(void)
|
|
{
|
|
return DM_PAD;
|
|
}
|
|
|
|
/*
|
|
* Name: ddr3_tip_a38x_select_ddr_controller.
|
|
* Desc: Enable/Disable access to Marvell's server.
|
|
* Args: dev_num - device number
|
|
* enable - whether to enable or disable the server
|
|
* Notes:
|
|
* Returns: MV_OK if success, other error code if fail.
|
|
*/
|
|
static int ddr3_tip_a38x_select_ddr_controller(u8 dev_num, int enable)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = reg_read(DUAL_DUNIT_CFG_REG);
|
|
|
|
if (enable)
|
|
reg |= (1 << 6);
|
|
else
|
|
reg &= ~(1 << 6);
|
|
|
|
reg_write(DUAL_DUNIT_CFG_REG, reg);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static u8 ddr3_tip_clock_mode(u32 frequency)
|
|
{
|
|
if ((frequency == MV_DDR_FREQ_LOW_FREQ) || (mv_ddr_freq_get(frequency) <= 400))
|
|
return 1;
|
|
|
|
return 2;
|
|
}
|
|
|
|
static int mv_ddr_sar_freq_get(int dev_num, enum mv_ddr_freq *freq)
|
|
{
|
|
u32 reg, ref_clk_satr;
|
|
|
|
/* Read sample at reset setting */
|
|
reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
|
|
RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
|
|
RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
|
|
|
|
ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
|
|
if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
|
|
DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
|
|
switch (reg) {
|
|
case 0x1:
|
|
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
|
|
("Warning: Unsupported freq mode for 333Mhz configured(%d)\n",
|
|
reg));
|
|
/* fallthrough */
|
|
case 0x0:
|
|
*freq = MV_DDR_FREQ_333;
|
|
break;
|
|
case 0x3:
|
|
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
|
|
("Warning: Unsupported freq mode for 400Mhz configured(%d)\n",
|
|
reg));
|
|
/* fallthrough */
|
|
case 0x2:
|
|
*freq = MV_DDR_FREQ_400;
|
|
break;
|
|
case 0xd:
|
|
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
|
|
("Warning: Unsupported freq mode for 533Mhz configured(%d)\n",
|
|
reg));
|
|
/* fallthrough */
|
|
case 0x4:
|
|
*freq = MV_DDR_FREQ_533;
|
|
break;
|
|
case 0x6:
|
|
*freq = MV_DDR_FREQ_600;
|
|
break;
|
|
case 0x11:
|
|
case 0x14:
|
|
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
|
|
("Warning: Unsupported freq mode for 667Mhz configured(%d)\n",
|
|
reg));
|
|
/* fallthrough */
|
|
case 0x8:
|
|
*freq = MV_DDR_FREQ_667;
|
|
break;
|
|
case 0x15:
|
|
case 0x1b:
|
|
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
|
|
("Warning: Unsupported freq mode for 800Mhz configured(%d)\n",
|
|
reg));
|
|
/* fallthrough */
|
|
case 0xc:
|
|
*freq = MV_DDR_FREQ_800;
|
|
break;
|
|
case 0x10:
|
|
*freq = MV_DDR_FREQ_933;
|
|
break;
|
|
case 0x12:
|
|
*freq = MV_DDR_FREQ_900;
|
|
break;
|
|
case 0x13:
|
|
*freq = MV_DDR_FREQ_933;
|
|
break;
|
|
default:
|
|
*freq = 0;
|
|
return MV_NOT_SUPPORTED;
|
|
}
|
|
} else { /* REFCLK 40MHz case */
|
|
switch (reg) {
|
|
case 0x3:
|
|
*freq = MV_DDR_FREQ_400;
|
|
break;
|
|
case 0x5:
|
|
*freq = MV_DDR_FREQ_533;
|
|
break;
|
|
case 0xb:
|
|
*freq = MV_DDR_FREQ_800;
|
|
break;
|
|
case 0x1e:
|
|
*freq = MV_DDR_FREQ_900;
|
|
break;
|
|
default:
|
|
*freq = 0;
|
|
return MV_NOT_SUPPORTED;
|
|
}
|
|
}
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int ddr3_tip_a38x_get_medium_freq(int dev_num, enum mv_ddr_freq *freq)
|
|
{
|
|
u32 reg, ref_clk_satr;
|
|
|
|
/* Read sample at reset setting */
|
|
reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
|
|
RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
|
|
RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
|
|
|
|
ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
|
|
if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
|
|
DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
|
|
switch (reg) {
|
|
case 0x0:
|
|
case 0x1:
|
|
/* Medium is same as TF to run PBS in this freq */
|
|
*freq = MV_DDR_FREQ_333;
|
|
break;
|
|
case 0x2:
|
|
case 0x3:
|
|
/* Medium is same as TF to run PBS in this freq */
|
|
*freq = MV_DDR_FREQ_400;
|
|
break;
|
|
case 0x4:
|
|
case 0xd:
|
|
/* Medium is same as TF to run PBS in this freq */
|
|
*freq = MV_DDR_FREQ_533;
|
|
break;
|
|
case 0x8:
|
|
case 0x10:
|
|
case 0x11:
|
|
case 0x14:
|
|
*freq = MV_DDR_FREQ_333;
|
|
break;
|
|
case 0xc:
|
|
case 0x15:
|
|
case 0x1b:
|
|
*freq = MV_DDR_FREQ_400;
|
|
break;
|
|
case 0x6:
|
|
*freq = MV_DDR_FREQ_300;
|
|
break;
|
|
case 0x12:
|
|
*freq = MV_DDR_FREQ_360;
|
|
break;
|
|
case 0x13:
|
|
*freq = MV_DDR_FREQ_400;
|
|
break;
|
|
default:
|
|
*freq = 0;
|
|
return MV_NOT_SUPPORTED;
|
|
}
|
|
} else { /* REFCLK 40MHz case */
|
|
switch (reg) {
|
|
case 0x3:
|
|
/* Medium is same as TF to run PBS in this freq */
|
|
*freq = MV_DDR_FREQ_400;
|
|
break;
|
|
case 0x5:
|
|
/* Medium is same as TF to run PBS in this freq */
|
|
*freq = MV_DDR_FREQ_533;
|
|
break;
|
|
case 0xb:
|
|
*freq = MV_DDR_FREQ_400;
|
|
break;
|
|
case 0x1e:
|
|
*freq = MV_DDR_FREQ_360;
|
|
break;
|
|
default:
|
|
*freq = 0;
|
|
return MV_NOT_SUPPORTED;
|
|
}
|
|
}
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int ddr3_tip_a38x_get_device_info(u8 dev_num, struct ddr3_device_info *info_ptr)
|
|
{
|
|
info_ptr->device_id = 0x6800;
|
|
info_ptr->ck_delay = ck_delay;
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
/* check indirect access to phy register file completed */
|
|
static int is_prfa_done(void)
|
|
{
|
|
u32 reg_val;
|
|
u32 iter = 0;
|
|
|
|
do {
|
|
if (iter++ > MAX_POLLING_ITERATIONS) {
|
|
printf("error: %s: polling timeout\n", __func__);
|
|
return MV_FAIL;
|
|
}
|
|
dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val);
|
|
reg_val >>= PRFA_REQ_OFFS;
|
|
reg_val &= PRFA_REQ_MASK;
|
|
} while (reg_val == PRFA_REQ_ENA); /* request pending */
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
/* write to phy register thru indirect access */
|
|
static int prfa_write(enum hws_access_type phy_access, u32 phy,
|
|
enum hws_ddr_phy phy_type, u32 addr,
|
|
u32 data, enum hws_operation op_type)
|
|
{
|
|
u32 reg_val = ((data & PRFA_DATA_MASK) << PRFA_DATA_OFFS) |
|
|
((addr & PRFA_REG_NUM_MASK) << PRFA_REG_NUM_OFFS) |
|
|
((phy & PRFA_PUP_NUM_MASK) << PRFA_PUP_NUM_OFFS) |
|
|
((phy_type & PRFA_PUP_CTRL_DATA_MASK) << PRFA_PUP_CTRL_DATA_OFFS) |
|
|
((phy_access & PRFA_PUP_BCAST_WR_ENA_MASK) << PRFA_PUP_BCAST_WR_ENA_OFFS) |
|
|
(((addr >> 6) & PRFA_REG_NUM_HI_MASK) << PRFA_REG_NUM_HI_OFFS) |
|
|
((op_type & PRFA_TYPE_MASK) << PRFA_TYPE_OFFS);
|
|
dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
|
|
reg_val |= (PRFA_REQ_ENA << PRFA_REQ_OFFS);
|
|
dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
|
|
|
|
/* polling for prfa request completion */
|
|
if (is_prfa_done() != MV_OK)
|
|
return MV_FAIL;
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
/* read from phy register thru indirect access */
|
|
static int prfa_read(enum hws_access_type phy_access, u32 phy,
|
|
enum hws_ddr_phy phy_type, u32 addr, u32 *data)
|
|
{
|
|
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
|
|
u32 max_phy = ddr3_tip_dev_attr_get(0, MV_ATTR_OCTET_PER_INTERFACE);
|
|
u32 i, reg_val;
|
|
|
|
if (phy_access == ACCESS_TYPE_MULTICAST) {
|
|
for (i = 0; i < max_phy; i++) {
|
|
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, i);
|
|
if (prfa_write(ACCESS_TYPE_UNICAST, i, phy_type, addr, 0, OPERATION_READ) != MV_OK)
|
|
return MV_FAIL;
|
|
dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val);
|
|
data[i] = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
|
|
}
|
|
} else {
|
|
if (prfa_write(phy_access, phy, phy_type, addr, 0, OPERATION_READ) != MV_OK)
|
|
return MV_FAIL;
|
|
dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val);
|
|
*data = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
|
|
}
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int mv_ddr_sw_db_init(u32 dev_num, u32 board_id)
|
|
{
|
|
struct hws_tip_config_func_db config_func;
|
|
|
|
/* new read leveling version */
|
|
config_func.mv_ddr_dunit_read = dunit_read;
|
|
config_func.mv_ddr_dunit_write = dunit_write;
|
|
config_func.tip_dunit_mux_select_func =
|
|
ddr3_tip_a38x_select_ddr_controller;
|
|
config_func.tip_get_freq_config_info_func =
|
|
ddr3_tip_a38x_get_freq_config;
|
|
config_func.tip_set_freq_divider_func = ddr3_tip_a38x_set_divider;
|
|
config_func.tip_get_device_info_func = ddr3_tip_a38x_get_device_info;
|
|
config_func.tip_get_temperature = ddr3_ctrl_get_junc_temp;
|
|
config_func.tip_get_clock_ratio = ddr3_tip_clock_mode;
|
|
config_func.tip_external_read = ddr3_tip_ext_read;
|
|
config_func.tip_external_write = ddr3_tip_ext_write;
|
|
config_func.mv_ddr_phy_read = prfa_read;
|
|
config_func.mv_ddr_phy_write = prfa_write;
|
|
|
|
ddr3_tip_init_config_func(dev_num, &config_func);
|
|
|
|
ddr3_tip_register_dq_table(dev_num, dq_bit_map_2_phy_pin);
|
|
|
|
/* set device attributes*/
|
|
ddr3_tip_dev_attr_init(dev_num);
|
|
ddr3_tip_dev_attr_set(dev_num, MV_ATTR_TIP_REV, MV_TIP_REV_4);
|
|
ddr3_tip_dev_attr_set(dev_num, MV_ATTR_PHY_EDGE, MV_DDR_PHY_EDGE_POSITIVE);
|
|
ddr3_tip_dev_attr_set(dev_num, MV_ATTR_OCTET_PER_INTERFACE, DDR_INTERFACE_OCTETS_NUM);
|
|
ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 0);
|
|
|
|
ca_delay = 0;
|
|
delay_enable = 1;
|
|
dfs_low_freq = DFS_LOW_FREQ_VALUE;
|
|
calibration_update_control = 1;
|
|
|
|
ddr3_tip_a38x_get_medium_freq(dev_num, &medium_freq);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int mv_ddr_training_mask_set(void)
|
|
{
|
|
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
|
|
enum mv_ddr_freq ddr_freq = tm->interface_params[0].memory_freq;
|
|
|
|
mask_tune_func = (SET_LOW_FREQ_MASK_BIT |
|
|
LOAD_PATTERN_MASK_BIT |
|
|
SET_MEDIUM_FREQ_MASK_BIT | WRITE_LEVELING_MASK_BIT |
|
|
WRITE_LEVELING_SUPP_MASK_BIT |
|
|
READ_LEVELING_MASK_BIT |
|
|
PBS_RX_MASK_BIT |
|
|
PBS_TX_MASK_BIT |
|
|
SET_TARGET_FREQ_MASK_BIT |
|
|
WRITE_LEVELING_TF_MASK_BIT |
|
|
WRITE_LEVELING_SUPP_TF_MASK_BIT |
|
|
READ_LEVELING_TF_MASK_BIT |
|
|
CENTRALIZATION_RX_MASK_BIT |
|
|
CENTRALIZATION_TX_MASK_BIT);
|
|
rl_mid_freq_wa = 1;
|
|
|
|
if ((ddr_freq == MV_DDR_FREQ_333) || (ddr_freq == MV_DDR_FREQ_400)) {
|
|
mask_tune_func = (WRITE_LEVELING_MASK_BIT |
|
|
LOAD_PATTERN_2_MASK_BIT |
|
|
WRITE_LEVELING_SUPP_MASK_BIT |
|
|
READ_LEVELING_MASK_BIT |
|
|
PBS_RX_MASK_BIT |
|
|
PBS_TX_MASK_BIT |
|
|
CENTRALIZATION_RX_MASK_BIT |
|
|
CENTRALIZATION_TX_MASK_BIT);
|
|
rl_mid_freq_wa = 0; /* WA not needed if 333/400 is TF */
|
|
}
|
|
|
|
/* Supplementary not supported for ECC modes */
|
|
if (mv_ddr_is_ecc_ena()) {
|
|
mask_tune_func &= ~WRITE_LEVELING_SUPP_TF_MASK_BIT;
|
|
mask_tune_func &= ~WRITE_LEVELING_SUPP_MASK_BIT;
|
|
mask_tune_func &= ~PBS_TX_MASK_BIT;
|
|
mask_tune_func &= ~PBS_RX_MASK_BIT;
|
|
}
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
/* function: mv_ddr_set_calib_controller
|
|
* this function sets the controller which will control
|
|
* the calibration cycle in the end of the training.
|
|
* 1 - internal controller
|
|
* 2 - external controller
|
|
*/
|
|
void mv_ddr_set_calib_controller(void)
|
|
{
|
|
calibration_update_control = CAL_UPDATE_CTRL_INT;
|
|
}
|
|
|
|
static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
|
|
enum mv_ddr_freq frequency)
|
|
{
|
|
u32 divider = 0;
|
|
u32 sar_val, ref_clk_satr;
|
|
u32 async_val;
|
|
u32 freq = mv_ddr_freq_get(frequency);
|
|
|
|
if (if_id != 0) {
|
|
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
|
|
("A38x does not support interface 0x%x\n",
|
|
if_id));
|
|
return MV_BAD_PARAM;
|
|
}
|
|
|
|
/* get VCO freq index */
|
|
sar_val = (reg_read(REG_DEVICE_SAR1_ADDR) >>
|
|
RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
|
|
RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
|
|
|
|
ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
|
|
if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
|
|
DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ)
|
|
divider = a38x_vco_freq_per_sar_ref_clk_25_mhz[sar_val] / freq;
|
|
else
|
|
divider = a38x_vco_freq_per_sar_ref_clk_40_mhz[sar_val] / freq;
|
|
|
|
if ((async_mode_at_tf == 1) && (freq > 400)) {
|
|
/* Set async mode */
|
|
dunit_write(0x20220, 0x1000, 0x1000);
|
|
dunit_write(0xe42f4, 0x200, 0x200);
|
|
|
|
/* Wait for async mode setup */
|
|
mdelay(5);
|
|
|
|
/* Set KNL values */
|
|
switch (frequency) {
|
|
case MV_DDR_FREQ_467:
|
|
async_val = 0x806f012;
|
|
break;
|
|
case MV_DDR_FREQ_533:
|
|
async_val = 0x807f012;
|
|
break;
|
|
case MV_DDR_FREQ_600:
|
|
async_val = 0x805f00a;
|
|
break;
|
|
case MV_DDR_FREQ_667:
|
|
async_val = 0x809f012;
|
|
break;
|
|
case MV_DDR_FREQ_800:
|
|
async_val = 0x807f00a;
|
|
break;
|
|
case MV_DDR_FREQ_850:
|
|
async_val = 0x80cb012;
|
|
break;
|
|
case MV_DDR_FREQ_900:
|
|
async_val = 0x80d7012;
|
|
break;
|
|
case MV_DDR_FREQ_933:
|
|
async_val = 0x80df012;
|
|
break;
|
|
case MV_DDR_FREQ_1000:
|
|
async_val = 0x80ef012;
|
|
break;
|
|
case MV_DDR_FREQ_1066:
|
|
async_val = 0x80ff012;
|
|
break;
|
|
default:
|
|
/* set MV_DDR_FREQ_667 as default */
|
|
async_val = 0x809f012;
|
|
}
|
|
dunit_write(0xe42f0, 0xffffffff, async_val);
|
|
} else {
|
|
/* Set sync mode */
|
|
dunit_write(0x20220, 0x1000, 0x0);
|
|
dunit_write(0xe42f4, 0x200, 0x0);
|
|
|
|
/* cpupll_clkdiv_reset_mask */
|
|
dunit_write(0xe4264, 0xff, 0x1f);
|
|
|
|
/* cpupll_clkdiv_reload_smooth */
|
|
dunit_write(0xe4260, (0xff << 8), (0x2 << 8));
|
|
|
|
/* cpupll_clkdiv_relax_en */
|
|
dunit_write(0xe4260, (0xff << 24), (0x2 << 24));
|
|
|
|
/* write the divider */
|
|
dunit_write(0xe4268, (0x3f << 8), (divider << 8));
|
|
|
|
/* set cpupll_clkdiv_reload_ratio */
|
|
dunit_write(0xe4264, (1 << 8), (1 << 8));
|
|
|
|
/* undet cpupll_clkdiv_reload_ratio */
|
|
dunit_write(0xe4264, (1 << 8), 0x0);
|
|
|
|
/* clear cpupll_clkdiv_reload_force */
|
|
dunit_write(0xe4260, (0xff << 8), 0x0);
|
|
|
|
/* clear cpupll_clkdiv_relax_en */
|
|
dunit_write(0xe4260, (0xff << 24), 0x0);
|
|
|
|
/* clear cpupll_clkdiv_reset_mask */
|
|
dunit_write(0xe4264, 0xff, 0x0);
|
|
}
|
|
|
|
/* Dunit training clock + 1:1/2:1 mode */
|
|
dunit_write(0x18488, (1 << 16), ((ddr3_tip_clock_mode(frequency) & 0x1) << 16));
|
|
dunit_write(0x1524, (1 << 15), ((ddr3_tip_clock_mode(frequency) - 1) << 15));
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
/*
|
|
* external read from memory
|
|
*/
|
|
int ddr3_tip_ext_read(u32 dev_num, u32 if_id, u32 reg_addr,
|
|
u32 num_of_bursts, u32 *data)
|
|
{
|
|
u32 burst_num;
|
|
|
|
for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
|
|
data[burst_num] = readl(reg_addr + 4 * burst_num);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
/*
|
|
* external write to memory
|
|
*/
|
|
int ddr3_tip_ext_write(u32 dev_num, u32 if_id, u32 reg_addr,
|
|
u32 num_of_bursts, u32 *data) {
|
|
u32 burst_num;
|
|
|
|
for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
|
|
writel(data[burst_num], reg_addr + 4 * burst_num);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
int mv_ddr_early_init(void)
|
|
{
|
|
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
|
|
|
|
/* FIXME: change this configuration per ddr type
|
|
* configure a380 and a390 to work with receiver odt timing
|
|
* the odt_config is defined:
|
|
* '1' in ddr4
|
|
* '0' in ddr3
|
|
* here the parameter is run over in ddr4 and ddr3 to '1' (in ddr4 the default is '1')
|
|
* to configure the odt to work with timing restrictions
|
|
*/
|
|
|
|
mv_ddr_sw_db_init(0, 0);
|
|
|
|
if (tm->interface_params[0].memory_freq != MV_DDR_FREQ_SAR)
|
|
async_mode_at_tf = 1;
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
int mv_ddr_early_init2(void)
|
|
{
|
|
mv_ddr_training_mask_set();
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
int mv_ddr_pre_training_fixup(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int mv_ddr_post_training_fixup(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int ddr3_post_run_alg(void)
|
|
{
|
|
return MV_OK;
|
|
}
|
|
|
|
int ddr3_silicon_post_init(void)
|
|
{
|
|
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
|
|
|
|
/* Set half bus width */
|
|
if (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask)) {
|
|
CHECK_STATUS(ddr3_tip_if_write
|
|
(0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
|
|
SDRAM_CFG_REG, 0x0, 0x8000));
|
|
}
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
u32 mv_ddr_init_freq_get(void)
|
|
{
|
|
enum mv_ddr_freq freq;
|
|
|
|
mv_ddr_sar_freq_get(0, &freq);
|
|
|
|
return freq;
|
|
}
|
|
|
|
static u32 ddr3_get_bus_width(void)
|
|
{
|
|
u32 bus_width;
|
|
|
|
bus_width = (reg_read(SDRAM_CFG_REG) & 0x8000) >>
|
|
BUS_IN_USE_OFFS;
|
|
|
|
return (bus_width == 0) ? 16 : 32;
|
|
}
|
|
|
|
static u32 ddr3_get_device_width(u32 cs)
|
|
{
|
|
u32 device_width;
|
|
|
|
device_width = (reg_read(SDRAM_ADDR_CTRL_REG) &
|
|
(CS_STRUCT_MASK << CS_STRUCT_OFFS(cs))) >>
|
|
CS_STRUCT_OFFS(cs);
|
|
|
|
return (device_width == 0) ? 8 : 16;
|
|
}
|
|
|
|
static u32 ddr3_get_device_size(u32 cs)
|
|
{
|
|
u32 device_size_low, device_size_high, device_size;
|
|
u32 data, cs_low_offset, cs_high_offset;
|
|
|
|
cs_low_offset = CS_SIZE_OFFS(cs);
|
|
cs_high_offset = CS_SIZE_HIGH_OFFS(cs);
|
|
|
|
data = reg_read(SDRAM_ADDR_CTRL_REG);
|
|
device_size_low = (data >> cs_low_offset) & 0x3;
|
|
device_size_high = (data >> cs_high_offset) & 0x1;
|
|
|
|
device_size = device_size_low | (device_size_high << 2);
|
|
|
|
switch (device_size) {
|
|
case 0:
|
|
return 2048;
|
|
case 2:
|
|
return 512;
|
|
case 3:
|
|
return 1024;
|
|
case 4:
|
|
return 4096;
|
|
case 5:
|
|
return 8192;
|
|
case 1:
|
|
default:
|
|
DEBUG_INIT_C("Error: Wrong device size of Cs: ", cs, 1);
|
|
/* zeroes mem size in ddr3_calc_mem_cs_size */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int ddr3_calc_mem_cs_size(u32 cs, uint64_t *cs_size)
|
|
{
|
|
u32 cs_mem_size;
|
|
|
|
/* Calculate in MiB */
|
|
cs_mem_size = ((ddr3_get_bus_width() / ddr3_get_device_width(cs)) *
|
|
ddr3_get_device_size(cs)) / 8;
|
|
|
|
/*
|
|
* Multiple controller bus width, 2x for 64 bit
|
|
* (SoC controller may be 32 or 64 bit,
|
|
* so bit 15 in 0x1400, that means if whole bus used or only half,
|
|
* have a differnt meaning
|
|
*/
|
|
cs_mem_size *= DDR_CONTROLLER_BUS_WIDTH_MULTIPLIER;
|
|
|
|
if ((cs_mem_size < 128) || (cs_mem_size > 4096)) {
|
|
DEBUG_INIT_C("Error: Wrong Memory size of Cs: ", cs, 1);
|
|
return MV_BAD_VALUE;
|
|
}
|
|
|
|
*cs_size = cs_mem_size;
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int ddr3_fast_path_dynamic_cs_size_config(u32 cs_ena)
|
|
{
|
|
u32 reg, cs;
|
|
uint64_t mem_total_size = 0;
|
|
uint64_t cs_mem_size_mb = 0;
|
|
uint64_t cs_mem_size = 0;
|
|
uint64_t mem_total_size_c, cs_mem_size_c;
|
|
|
|
|
|
#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
|
|
u32 physical_mem_size;
|
|
u32 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE;
|
|
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
|
|
#endif
|
|
|
|
/* Open fast path windows */
|
|
for (cs = 0; cs < MAX_CS_NUM; cs++) {
|
|
if (cs_ena & (1 << cs)) {
|
|
/* get CS size */
|
|
if (ddr3_calc_mem_cs_size(cs, &cs_mem_size_mb) != MV_OK)
|
|
return MV_FAIL;
|
|
cs_mem_size = cs_mem_size_mb * _1M;
|
|
|
|
#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
|
|
/*
|
|
* if number of address pins doesn't allow to use max
|
|
* mem size that is defined in topology
|
|
* mem size is defined by DEVICE_MAX_DRAM_ADDRESS_SIZE
|
|
*/
|
|
physical_mem_size = mem_size
|
|
[tm->interface_params[0].memory_size];
|
|
|
|
if (ddr3_get_device_width(cs) == 16) {
|
|
/*
|
|
* 16bit mem device can be twice more - no need
|
|
* in less significant pin
|
|
*/
|
|
max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE * 2;
|
|
}
|
|
|
|
if (physical_mem_size > max_mem_size) {
|
|
cs_mem_size = max_mem_size *
|
|
(ddr3_get_bus_width() /
|
|
ddr3_get_device_width(cs));
|
|
printf("Updated Physical Mem size is from 0x%x to %x\n",
|
|
physical_mem_size,
|
|
DEVICE_MAX_DRAM_ADDRESS_SIZE);
|
|
}
|
|
#endif
|
|
|
|
/* set fast path window control for the cs */
|
|
reg = 0xffffe1;
|
|
reg |= (cs << 2);
|
|
reg |= (cs_mem_size - 1) & 0xffff0000;
|
|
/*Open fast path Window */
|
|
reg_write(REG_FASTPATH_WIN_CTRL_ADDR(cs), reg);
|
|
|
|
/* Set fast path window base address for the cs */
|
|
reg = ((cs_mem_size) * cs) & 0xffff0000;
|
|
/* Set base address */
|
|
reg_write(REG_FASTPATH_WIN_BASE_ADDR(cs), reg);
|
|
|
|
/*
|
|
* Since memory size may be bigger than 4G the summ may
|
|
* be more than 32 bit word,
|
|
* so to estimate the result divide mem_total_size and
|
|
* cs_mem_size by 0x10000 (it is equal to >> 16)
|
|
*/
|
|
mem_total_size_c = (mem_total_size >> 16) & 0xffffffffffff;
|
|
cs_mem_size_c = (cs_mem_size >> 16) & 0xffffffffffff;
|
|
|
|
/* if the sum less than 2 G - calculate the value */
|
|
if (mem_total_size_c + cs_mem_size_c < 0x10000)
|
|
mem_total_size += cs_mem_size;
|
|
else /* put max possible size */
|
|
mem_total_size = L2_FILTER_FOR_MAX_MEMORY_SIZE;
|
|
}
|
|
}
|
|
|
|
/* Set L2 filtering to Max Memory size */
|
|
reg_write(ADDRESS_FILTERING_END_REGISTER, mem_total_size);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int ddr3_restore_and_set_final_windows(u32 *win, const char *ddr_type)
|
|
{
|
|
u32 win_ctrl_reg, num_of_win_regs;
|
|
u32 cs_ena = mv_ddr_sys_env_get_cs_ena_from_reg();
|
|
u32 ui;
|
|
|
|
win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
|
|
num_of_win_regs = 16;
|
|
|
|
/* Return XBAR windows 4-7 or 16-19 init configuration */
|
|
for (ui = 0; ui < num_of_win_regs; ui++)
|
|
reg_write((win_ctrl_reg + 0x4 * ui), win[ui]);
|
|
|
|
printf("%s Training Sequence - Switching XBAR Window to FastPath Window\n",
|
|
ddr_type);
|
|
|
|
#if defined DYNAMIC_CS_SIZE_CONFIG
|
|
if (ddr3_fast_path_dynamic_cs_size_config(cs_ena) != MV_OK)
|
|
printf("ddr3_fast_path_dynamic_cs_size_config FAILED\n");
|
|
#else
|
|
u32 reg, cs;
|
|
reg = 0x1fffffe1;
|
|
for (cs = 0; cs < MAX_CS_NUM; cs++) {
|
|
if (cs_ena & (1 << cs)) {
|
|
reg |= (cs << 2);
|
|
break;
|
|
}
|
|
}
|
|
/* Open fast path Window to - 0.5G */
|
|
reg_write(REG_FASTPATH_WIN_CTRL_ADDR(0), reg);
|
|
#endif
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int ddr3_save_and_set_training_windows(u32 *win)
|
|
{
|
|
u32 cs_ena;
|
|
u32 reg, tmp_count, cs, ui;
|
|
u32 win_ctrl_reg, win_base_reg, win_remap_reg;
|
|
u32 num_of_win_regs, win_jump_index;
|
|
win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
|
|
win_base_reg = REG_XBAR_WIN_4_BASE_ADDR;
|
|
win_remap_reg = REG_XBAR_WIN_4_REMAP_ADDR;
|
|
win_jump_index = 0x10;
|
|
num_of_win_regs = 16;
|
|
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
|
|
|
|
#ifdef DISABLE_L2_FILTERING_DURING_DDR_TRAINING
|
|
/*
|
|
* Disable L2 filtering during DDR training
|
|
* (when Cross Bar window is open)
|
|
*/
|
|
reg_write(ADDRESS_FILTERING_END_REGISTER, 0);
|
|
#endif
|
|
|
|
cs_ena = tm->interface_params[0].as_bus_params[0].cs_bitmask;
|
|
|
|
/* Close XBAR Window 19 - Not needed */
|
|
/* {0x000200e8} - Open Mbus Window - 2G */
|
|
reg_write(REG_XBAR_WIN_19_CTRL_ADDR, 0);
|
|
|
|
/* Save XBAR Windows 4-19 init configurations */
|
|
for (ui = 0; ui < num_of_win_regs; ui++)
|
|
win[ui] = reg_read(win_ctrl_reg + 0x4 * ui);
|
|
|
|
/* Open XBAR Windows 4-7 or 16-19 for other CS */
|
|
reg = 0;
|
|
tmp_count = 0;
|
|
for (cs = 0; cs < MAX_CS_NUM; cs++) {
|
|
if (cs_ena & (1 << cs)) {
|
|
switch (cs) {
|
|
case 0:
|
|
reg = 0x0e00;
|
|
break;
|
|
case 1:
|
|
reg = 0x0d00;
|
|
break;
|
|
case 2:
|
|
reg = 0x0b00;
|
|
break;
|
|
case 3:
|
|
reg = 0x0700;
|
|
break;
|
|
}
|
|
reg |= (1 << 0);
|
|
reg |= (SDRAM_CS_SIZE & 0xffff0000);
|
|
|
|
reg_write(win_ctrl_reg + win_jump_index * tmp_count,
|
|
reg);
|
|
reg = (((SDRAM_CS_SIZE + 1) * (tmp_count)) &
|
|
0xffff0000);
|
|
reg_write(win_base_reg + win_jump_index * tmp_count,
|
|
reg);
|
|
|
|
if (win_remap_reg <= REG_XBAR_WIN_7_REMAP_ADDR)
|
|
reg_write(win_remap_reg +
|
|
win_jump_index * tmp_count, 0);
|
|
|
|
tmp_count++;
|
|
}
|
|
}
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static u32 win[16];
|
|
|
|
int mv_ddr_pre_training_soc_config(const char *ddr_type)
|
|
{
|
|
u32 soc_num;
|
|
u32 reg_val;
|
|
|
|
/* Switching CPU to MRVL ID */
|
|
soc_num = (reg_read(REG_SAMPLE_RESET_HIGH_ADDR) & SAR1_CPU_CORE_MASK) >>
|
|
SAR1_CPU_CORE_OFFSET;
|
|
switch (soc_num) {
|
|
case 0x3:
|
|
reg_bit_set(CPU_CONFIGURATION_REG(3), CPU_MRVL_ID_OFFSET);
|
|
reg_bit_set(CPU_CONFIGURATION_REG(2), CPU_MRVL_ID_OFFSET);
|
|
/* fallthrough */
|
|
case 0x1:
|
|
reg_bit_set(CPU_CONFIGURATION_REG(1), CPU_MRVL_ID_OFFSET);
|
|
/* fallthrough */
|
|
case 0x0:
|
|
reg_bit_set(CPU_CONFIGURATION_REG(0), CPU_MRVL_ID_OFFSET);
|
|
/* fallthrough */
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Set DRAM Reset Mask in case detected GPIO indication of wakeup from
|
|
* suspend i.e the DRAM values will not be overwritten / reset when
|
|
* waking from suspend
|
|
*/
|
|
if (mv_ddr_sys_env_suspend_wakeup_check() ==
|
|
SUSPEND_WAKEUP_ENABLED_GPIO_DETECTED) {
|
|
reg_bit_set(SDRAM_INIT_CTRL_REG,
|
|
DRAM_RESET_MASK_MASKED << DRAM_RESET_MASK_OFFS);
|
|
}
|
|
|
|
/* Check if DRAM is already initialized */
|
|
if (reg_read(REG_BOOTROM_ROUTINE_ADDR) &
|
|
(1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)) {
|
|
printf("%s Training Sequence - 2nd boot - Skip\n", ddr_type);
|
|
return MV_OK;
|
|
}
|
|
|
|
/* Fix read ready phases for all SOC in reg 0x15c8 */
|
|
reg_val = reg_read(TRAINING_DBG_3_REG);
|
|
|
|
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0));
|
|
reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0)); /* phase 0 */
|
|
|
|
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1));
|
|
reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1)); /* phase 1 */
|
|
|
|
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3));
|
|
reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3)); /* phase 3 */
|
|
|
|
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4));
|
|
reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4)); /* phase 4 */
|
|
|
|
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5));
|
|
reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5)); /* phase 5 */
|
|
|
|
reg_write(TRAINING_DBG_3_REG, reg_val);
|
|
|
|
/*
|
|
* Axi_bresp_mode[8] = Compliant,
|
|
* Axi_addr_decode_cntrl[11] = Internal,
|
|
* Axi_data_bus_width[0] = 128bit
|
|
* */
|
|
/* 0x14a8 - AXI Control Register */
|
|
reg_write(AXI_CTRL_REG, 0);
|
|
|
|
/*
|
|
* Stage 2 - Training Values Setup
|
|
*/
|
|
/* Set X-BAR windows for the training sequence */
|
|
ddr3_save_and_set_training_windows(win);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int ddr3_new_tip_dlb_config(void)
|
|
{
|
|
u32 reg, i = 0;
|
|
struct dlb_config *config_table_ptr = sys_env_dlb_config_ptr_get();
|
|
|
|
/* Write the configuration */
|
|
while (config_table_ptr[i].reg_addr != 0) {
|
|
reg_write(config_table_ptr[i].reg_addr,
|
|
config_table_ptr[i].reg_data);
|
|
i++;
|
|
}
|
|
|
|
|
|
/* Enable DLB */
|
|
reg = reg_read(DLB_CTRL_REG);
|
|
reg &= ~(DLB_EN_MASK << DLB_EN_OFFS) &
|
|
~(WR_COALESCE_EN_MASK << WR_COALESCE_EN_OFFS) &
|
|
~(AXI_PREFETCH_EN_MASK << AXI_PREFETCH_EN_OFFS) &
|
|
~(MBUS_PREFETCH_EN_MASK << MBUS_PREFETCH_EN_OFFS) &
|
|
~(PREFETCH_NXT_LN_SZ_TRIG_MASK << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
|
|
|
|
reg |= (DLB_EN_ENA << DLB_EN_OFFS) |
|
|
(WR_COALESCE_EN_ENA << WR_COALESCE_EN_OFFS) |
|
|
(AXI_PREFETCH_EN_ENA << AXI_PREFETCH_EN_OFFS) |
|
|
(MBUS_PREFETCH_EN_ENA << MBUS_PREFETCH_EN_OFFS) |
|
|
(PREFETCH_NXT_LN_SZ_TRIG_ENA << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
|
|
|
|
reg_write(DLB_CTRL_REG, reg);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
int mv_ddr_post_training_soc_config(const char *ddr_type)
|
|
{
|
|
u32 reg_val;
|
|
|
|
/* Restore and set windows */
|
|
ddr3_restore_and_set_final_windows(win, ddr_type);
|
|
|
|
/* Update DRAM init indication in bootROM register */
|
|
reg_val = reg_read(REG_BOOTROM_ROUTINE_ADDR);
|
|
reg_write(REG_BOOTROM_ROUTINE_ADDR,
|
|
reg_val | (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS));
|
|
|
|
/* DLB config */
|
|
ddr3_new_tip_dlb_config();
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
void mv_ddr_mc_config(void)
|
|
{
|
|
/* Memory controller initializations */
|
|
struct init_cntr_param init_param;
|
|
int status;
|
|
|
|
init_param.do_mrs_phy = 1;
|
|
init_param.is_ctrl64_bit = 0;
|
|
init_param.init_phy = 1;
|
|
init_param.msys_init = 1;
|
|
status = hws_ddr3_tip_init_controller(0, &init_param);
|
|
if (status != MV_OK)
|
|
printf("DDR3 init controller - FAILED 0x%x\n", status);
|
|
|
|
status = mv_ddr_mc_init();
|
|
if (status != MV_OK)
|
|
printf("DDR3 init_sequence - FAILED 0x%x\n", status);
|
|
}
|
|
/* function: mv_ddr_mc_init
|
|
* this function enables the dunit after init controller configuration
|
|
*/
|
|
int mv_ddr_mc_init(void)
|
|
{
|
|
CHECK_STATUS(ddr3_tip_enable_init_sequence(0));
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
/* function: ddr3_tip_configure_phy
|
|
* configures phy and electrical parameters
|
|
*/
|
|
int ddr3_tip_configure_phy(u32 dev_num)
|
|
{
|
|
u32 if_id, phy_id;
|
|
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
|
|
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
|
|
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
|
|
PAD_ZRI_CAL_PHY_REG,
|
|
((0x7f & g_zpri_data) << 7 | (0x7f & g_znri_data))));
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
|
|
PAD_ZRI_CAL_PHY_REG,
|
|
((0x7f & g_zpri_ctrl) << 7 | (0x7f & g_znri_ctrl))));
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
|
|
PAD_ODT_CAL_PHY_REG,
|
|
((0x3f & g_zpodt_data) << 6 | (0x3f & g_znodt_data))));
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
|
|
PAD_ODT_CAL_PHY_REG,
|
|
((0x3f & g_zpodt_ctrl) << 6 | (0x3f & g_znodt_ctrl))));
|
|
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
|
|
PAD_PRE_DISABLE_PHY_REG, 0));
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
|
|
CMOS_CONFIG_PHY_REG, 0));
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
|
|
CMOS_CONFIG_PHY_REG, 0));
|
|
|
|
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
|
|
/* check if the interface is enabled */
|
|
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
|
|
|
|
for (phy_id = 0;
|
|
phy_id < octets_per_if_num;
|
|
phy_id++) {
|
|
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, phy_id);
|
|
/* Vref & clamp */
|
|
CHECK_STATUS(ddr3_tip_bus_read_modify_write
|
|
(dev_num, ACCESS_TYPE_UNICAST,
|
|
if_id, phy_id, DDR_PHY_DATA,
|
|
PAD_CFG_PHY_REG,
|
|
((clamp_tbl[if_id] << 4) | vref_init_val),
|
|
((0x7 << 4) | 0x7)));
|
|
/* clamp not relevant for control */
|
|
CHECK_STATUS(ddr3_tip_bus_read_modify_write
|
|
(dev_num, ACCESS_TYPE_UNICAST,
|
|
if_id, phy_id, DDR_PHY_CONTROL,
|
|
PAD_CFG_PHY_REG, 0x4, 0x7));
|
|
}
|
|
}
|
|
|
|
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_PHY_EDGE) ==
|
|
MV_DDR_PHY_EDGE_POSITIVE)
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
DDR_PHY_DATA, 0x90, 0x6002));
|
|
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
|
|
int mv_ddr_manual_cal_do(void)
|
|
{
|
|
return 0;
|
|
}
|