u-boot/arch/arm/cpu/armv7m/systick-timer.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

115 lines
3 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* ARM Cortex M3/M4/M7 SysTick timer driver
* (C) Copyright 2017 Renesas Electronics Europe Ltd
*
* Based on arch/arm/mach-stm32/stm32f1/timer.c
* (C) Copyright 2015
* Kamil Lulko, <kamil.lulko@gmail.com>
*
* Copyright 2015 ATS Advanced Telematics Systems GmbH
* Copyright 2015 Konsulko Group, Matt Porter <mporter@konsulko.com>
*
* The SysTick timer is a 24-bit count down timer. The clock can be either the
* CPU clock or a reference clock. Since the timer will wrap around very quickly
* when using the CPU clock, and we do not handle the timer interrupts, it is
* expected that this driver is only ever used with a slow reference clock.
*
* The number of reference clock ticks that correspond to 10ms is normally
* defined in the SysTick Calibration register's TENMS field. However, on some
* devices this is wrong, so this driver allows the clock rate to be defined
* using CONFIG_SYS_HZ_CLOCK.
*/
#include <common.h>
#include <asm/io.h>
DECLARE_GLOBAL_DATA_PTR;
/* SysTick Base Address - fixed for all Cortex M3, M4 and M7 devices */
#define SYSTICK_BASE 0xE000E010
struct cm3_systick {
uint32_t ctrl;
uint32_t reload_val;
uint32_t current_val;
uint32_t calibration;
};
#define TIMER_MAX_VAL 0x00FFFFFF
#define SYSTICK_CTRL_EN BIT(0)
/* Clock source: 0 = Ref clock, 1 = CPU clock */
#define SYSTICK_CTRL_CPU_CLK BIT(2)
#define SYSTICK_CAL_NOREF BIT(31)
#define SYSTICK_CAL_SKEW BIT(30)
#define SYSTICK_CAL_TENMS_MASK 0x00FFFFFF
/* read the 24-bit timer */
static ulong read_timer(void)
{
struct cm3_systick *systick = (struct cm3_systick *)SYSTICK_BASE;
/* The timer counts down, therefore convert to an incrementing timer */
return TIMER_MAX_VAL - readl(&systick->current_val);
}
int timer_init(void)
{
struct cm3_systick *systick = (struct cm3_systick *)SYSTICK_BASE;
u32 cal;
writel(TIMER_MAX_VAL, &systick->reload_val);
/* Any write to current_val reg clears it to 0 */
writel(0, &systick->current_val);
cal = readl(&systick->calibration);
if (cal & SYSTICK_CAL_NOREF)
/* Use CPU clock, no interrupts */
writel(SYSTICK_CTRL_EN | SYSTICK_CTRL_CPU_CLK, &systick->ctrl);
else
/* Use external clock, no interrupts */
writel(SYSTICK_CTRL_EN, &systick->ctrl);
/*
* If the TENMS field is inexact or wrong, specify the clock rate using
* CONFIG_SYS_HZ_CLOCK.
*/
#if defined(CONFIG_SYS_HZ_CLOCK)
gd->arch.timer_rate_hz = CONFIG_SYS_HZ_CLOCK;
#else
gd->arch.timer_rate_hz = (cal & SYSTICK_CAL_TENMS_MASK) * 100;
#endif
gd->arch.tbl = 0;
gd->arch.tbu = 0;
gd->arch.lastinc = read_timer();
return 0;
}
/* return milli-seconds timer value */
ulong get_timer(ulong base)
{
unsigned long long t = get_ticks() * 1000;
return (ulong)((t / gd->arch.timer_rate_hz)) - base;
}
unsigned long long get_ticks(void)
{
u32 now = read_timer();
if (now >= gd->arch.lastinc)
gd->arch.tbl += (now - gd->arch.lastinc);
else
gd->arch.tbl += (TIMER_MAX_VAL - gd->arch.lastinc) + now;
gd->arch.lastinc = now;
return gd->arch.tbl;
}
ulong get_tbclk(void)
{
return gd->arch.timer_rate_hz;
}