mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-11 04:38:54 +00:00
7a946961c7
In order for indirect mode on the PIXIS to work properly, both chip selects need to be set to GPCM mode, otherwise writes to the chip select base addresses will not actually post to the local bus -- they'll go to the NAND controller instead. Therefore, we need to set BR0 and BR1 to GPCM mode before switching to indirect mode. Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
480 lines
13 KiB
C
480 lines
13 KiB
C
/*
|
|
* Copyright 2010-2011 Freescale Semiconductor, Inc.
|
|
* Authors: Timur Tabi <timur@freescale.com>
|
|
*
|
|
* FSL DIU Framebuffer driver
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <command.h>
|
|
#include <linux/ctype.h>
|
|
#include <asm/io.h>
|
|
#include <stdio_dev.h>
|
|
#include <video_fb.h>
|
|
#include "../common/ngpixis.h"
|
|
#include <fsl_diu_fb.h>
|
|
|
|
/* The CTL register is called 'csr' in the ngpixis_t structure */
|
|
#define PX_CTL_ALTACC 0x80
|
|
|
|
#define PX_BRDCFG0_ELBC_SPI_MASK 0xc0
|
|
#define PX_BRDCFG0_ELBC_SPI_ELBC 0x00
|
|
#define PX_BRDCFG0_ELBC_SPI_NULL 0xc0
|
|
#define PX_BRDCFG0_ELBC_DIU 0x02
|
|
|
|
#define PX_BRDCFG1_DVIEN 0x80
|
|
#define PX_BRDCFG1_DFPEN 0x40
|
|
#define PX_BRDCFG1_BACKLIGHT 0x20
|
|
|
|
#define PMUXCR_ELBCDIU_MASK 0xc0000000
|
|
#define PMUXCR_ELBCDIU_NOR16 0x80000000
|
|
#define PMUXCR_ELBCDIU_DIU 0x40000000
|
|
|
|
/*
|
|
* DIU Area Descriptor
|
|
*
|
|
* Note that we need to byte-swap the value before it's written to the AD
|
|
* register. So even though the registers don't look like they're in the same
|
|
* bit positions as they are on the MPC8610, the same value is written to the
|
|
* AD register on the MPC8610 and on the P1022.
|
|
*/
|
|
#define AD_BYTE_F 0x10000000
|
|
#define AD_ALPHA_C_SHIFT 25
|
|
#define AD_BLUE_C_SHIFT 23
|
|
#define AD_GREEN_C_SHIFT 21
|
|
#define AD_RED_C_SHIFT 19
|
|
#define AD_PIXEL_S_SHIFT 16
|
|
#define AD_COMP_3_SHIFT 12
|
|
#define AD_COMP_2_SHIFT 8
|
|
#define AD_COMP_1_SHIFT 4
|
|
#define AD_COMP_0_SHIFT 0
|
|
|
|
/*
|
|
* Variables used by the DIU/LBC switching code. It's safe to makes these
|
|
* global, because the DIU requires DDR, so we'll only run this code after
|
|
* relocation.
|
|
*/
|
|
static u8 px_brdcfg0;
|
|
static u32 pmuxcr;
|
|
static void *lbc_lcs0_ba;
|
|
static void *lbc_lcs1_ba;
|
|
static u32 old_br0, old_or0, old_br1, old_or1;
|
|
static u32 new_br0, new_or0, new_br1, new_or1;
|
|
|
|
void diu_set_pixel_clock(unsigned int pixclock)
|
|
{
|
|
ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
|
|
unsigned long speed_ccb, temp;
|
|
u32 pixval;
|
|
|
|
speed_ccb = get_bus_freq(0);
|
|
temp = 1000000000 / pixclock;
|
|
temp *= 1000;
|
|
pixval = speed_ccb / temp;
|
|
debug("DIU pixval = %u\n", pixval);
|
|
|
|
/* Modify PXCLK in GUTS CLKDVDR */
|
|
temp = in_be32(&gur->clkdvdr) & 0x2000FFFF;
|
|
out_be32(&gur->clkdvdr, temp); /* turn off clock */
|
|
out_be32(&gur->clkdvdr, temp | 0x80000000 | ((pixval & 0x1F) << 16));
|
|
}
|
|
|
|
int platform_diu_init(unsigned int xres, unsigned int yres, const char *port)
|
|
{
|
|
ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
|
|
const char *name;
|
|
u32 pixel_format;
|
|
u8 temp;
|
|
phys_addr_t phys0, phys1; /* BR0/BR1 physical addresses */
|
|
|
|
/*
|
|
* Indirect mode requires both BR0 and BR1 to be set to "GPCM",
|
|
* otherwise writes to these addresses won't actually appear on the
|
|
* local bus, and so the PIXIS won't see them.
|
|
*
|
|
* In FCM mode, writes go to the NAND controller, which does not pass
|
|
* them to the localbus directly. So we force BR0 and BR1 into GPCM
|
|
* mode, since we don't care about what's behind the localbus any
|
|
* more. However, we save those registers first, so that we can
|
|
* restore them when necessary.
|
|
*/
|
|
new_br0 = old_br0 = get_lbc_br(0);
|
|
new_br1 = old_br1 = get_lbc_br(1);
|
|
new_or0 = old_or0 = get_lbc_or(0);
|
|
new_or1 = old_or1 = get_lbc_or(1);
|
|
|
|
/*
|
|
* Use the existing BRx/ORx values if it's already GPCM. Otherwise,
|
|
* force the values to simple 32KB GPCM windows with the most
|
|
* conservative timing.
|
|
*/
|
|
if ((old_br0 & BR_MSEL) != BR_MS_GPCM) {
|
|
new_br0 = (get_lbc_br(0) & BR_BA) | BR_V;
|
|
new_or0 = OR_AM_32KB | 0xFF7;
|
|
set_lbc_br(0, new_br0);
|
|
set_lbc_or(0, new_or0);
|
|
}
|
|
if ((old_br1 & BR_MSEL) != BR_MS_GPCM) {
|
|
new_br1 = (get_lbc_br(1) & BR_BA) | BR_V;
|
|
new_or1 = OR_AM_32KB | 0xFF7;
|
|
set_lbc_br(1, new_br1);
|
|
set_lbc_or(1, new_or1);
|
|
}
|
|
|
|
/*
|
|
* Determine the physical addresses for Chip Selects 0 and 1. The
|
|
* BR0/BR1 registers contain the truncated physical addresses for the
|
|
* chip selects, mapped via the localbus LAW. Since the BRx registers
|
|
* only contain the lower 32 bits of the address, we have to determine
|
|
* the upper 4 bits some other way. The proper way is to scan the LAW
|
|
* table looking for a matching localbus address. Instead, we cheat.
|
|
* We know that the upper bits are 0 for 32-bit addressing, or 0xF for
|
|
* 36-bit addressing.
|
|
*/
|
|
#ifdef CONFIG_PHYS_64BIT
|
|
phys0 = 0xf00000000ULL | (old_br0 & old_or0 & BR_BA);
|
|
phys1 = 0xf00000000ULL | (old_br1 & old_or1 & BR_BA);
|
|
#else
|
|
phys0 = old_br0 & old_or0 & BR_BA;
|
|
phys1 = old_br1 & old_or1 & BR_BA;
|
|
#endif
|
|
|
|
/* Save the LBC LCS0 and LCS1 addresses for the DIU mux functions */
|
|
lbc_lcs0_ba = map_physmem(phys0, 1, 0);
|
|
lbc_lcs1_ba = map_physmem(phys1, 1, 0);
|
|
|
|
pixel_format = cpu_to_le32(AD_BYTE_F | (3 << AD_ALPHA_C_SHIFT) |
|
|
(0 << AD_BLUE_C_SHIFT) | (1 << AD_GREEN_C_SHIFT) |
|
|
(2 << AD_RED_C_SHIFT) | (8 << AD_COMP_3_SHIFT) |
|
|
(8 << AD_COMP_2_SHIFT) | (8 << AD_COMP_1_SHIFT) |
|
|
(8 << AD_COMP_0_SHIFT) | (3 << AD_PIXEL_S_SHIFT));
|
|
|
|
temp = in_8(&pixis->brdcfg1);
|
|
|
|
if (strncmp(port, "lvds", 4) == 0) {
|
|
/* Single link LVDS */
|
|
temp &= ~PX_BRDCFG1_DVIEN;
|
|
/*
|
|
* LVDS also needs backlight enabled, otherwise the display
|
|
* will be blank.
|
|
*/
|
|
temp |= (PX_BRDCFG1_DFPEN | PX_BRDCFG1_BACKLIGHT);
|
|
name = "Single-Link LVDS";
|
|
} else { /* DVI */
|
|
/* Enable the DVI port, disable the DFP and the backlight */
|
|
temp &= ~(PX_BRDCFG1_DFPEN | PX_BRDCFG1_BACKLIGHT);
|
|
temp |= PX_BRDCFG1_DVIEN;
|
|
name = "DVI";
|
|
}
|
|
|
|
printf("DIU: Switching to %s monitor @ %ux%u\n", name, xres, yres);
|
|
out_8(&pixis->brdcfg1, temp);
|
|
|
|
/*
|
|
* Enable PIXIS indirect access mode. This is a hack that allows us to
|
|
* access PIXIS registers even when the LBC pins have been muxed to the
|
|
* DIU.
|
|
*/
|
|
setbits_8(&pixis->csr, PX_CTL_ALTACC);
|
|
|
|
/*
|
|
* Route the LAD pins to the DIU. This will disable access to the eLBC,
|
|
* which means we won't be able to read/write any NOR flash addresses!
|
|
*/
|
|
out_8(lbc_lcs0_ba, offsetof(ngpixis_t, brdcfg0));
|
|
px_brdcfg0 = in_8(lbc_lcs1_ba);
|
|
out_8(lbc_lcs1_ba, px_brdcfg0 | PX_BRDCFG0_ELBC_DIU);
|
|
in_8(lbc_lcs1_ba);
|
|
|
|
/* Set PMUXCR to switch the muxed pins from the LBC to the DIU */
|
|
clrsetbits_be32(&gur->pmuxcr, PMUXCR_ELBCDIU_MASK, PMUXCR_ELBCDIU_DIU);
|
|
pmuxcr = in_be32(&gur->pmuxcr);
|
|
|
|
return fsl_diu_init(xres, yres, pixel_format, 0);
|
|
}
|
|
|
|
/*
|
|
* set_mux_to_lbc - disable the DIU so that we can read/write to elbc
|
|
*
|
|
* On the Freescale P1022, the DIU video signal and the LBC address/data lines
|
|
* share the same pins, which means that when the DIU is active (e.g. the
|
|
* console is on the DVI display), NOR flash cannot be accessed. So we use the
|
|
* weak accessor feature of the CFI flash code to temporarily switch the pin
|
|
* mux from DIU to LBC whenever we want to read or write flash. This has a
|
|
* significant performance penalty, but it's the only way to make it work.
|
|
*
|
|
* There are two muxes: one on the chip, and one on the board. The chip mux
|
|
* controls whether the pins are used for the DIU or the LBC, and it is
|
|
* set via PMUXCR. The board mux controls whether those signals go to
|
|
* the video connector or the NOR flash chips, and it is set via the ngPIXIS.
|
|
*/
|
|
static int set_mux_to_lbc(void)
|
|
{
|
|
ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC85xx_GUTS_ADDR;
|
|
|
|
/* Switch the muxes only if they're currently set to DIU mode */
|
|
if ((in_be32(&gur->pmuxcr) & PMUXCR_ELBCDIU_MASK) !=
|
|
PMUXCR_ELBCDIU_NOR16) {
|
|
/*
|
|
* In DIU mode, the PIXIS can only be accessed indirectly
|
|
* since we can't read/write the LBC directly.
|
|
*/
|
|
/* Set the board mux to LBC. This will disable the display. */
|
|
out_8(lbc_lcs0_ba, offsetof(ngpixis_t, brdcfg0));
|
|
out_8(lbc_lcs1_ba, px_brdcfg0);
|
|
in_8(lbc_lcs1_ba);
|
|
|
|
/* Disable indirect PIXIS mode */
|
|
out_8(lbc_lcs0_ba, offsetof(ngpixis_t, csr));
|
|
clrbits_8(lbc_lcs1_ba, PX_CTL_ALTACC);
|
|
|
|
/* Set the chip mux to LBC mode, so that writes go to flash. */
|
|
out_be32(&gur->pmuxcr, (pmuxcr & ~PMUXCR_ELBCDIU_MASK) |
|
|
PMUXCR_ELBCDIU_NOR16);
|
|
in_be32(&gur->pmuxcr);
|
|
|
|
/* Restore the BR0 and BR1 settings */
|
|
set_lbc_br(0, old_br0);
|
|
set_lbc_or(0, old_or0);
|
|
set_lbc_br(1, old_br1);
|
|
set_lbc_or(1, old_or1);
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* set_mux_to_diu - re-enable the DIU muxing
|
|
*
|
|
* This function restores the chip and board muxing to point to the DIU.
|
|
*/
|
|
static void set_mux_to_diu(void)
|
|
{
|
|
ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC85xx_GUTS_ADDR;
|
|
|
|
/* Set BR0 and BR1 to GPCM mode */
|
|
set_lbc_br(0, new_br0);
|
|
set_lbc_or(0, new_or0);
|
|
set_lbc_br(1, new_br1);
|
|
set_lbc_or(1, new_or1);
|
|
|
|
/* Enable indirect PIXIS mode */
|
|
setbits_8(&pixis->csr, PX_CTL_ALTACC);
|
|
|
|
/* Set the board mux to DIU. This will enable the display. */
|
|
out_8(lbc_lcs0_ba, offsetof(ngpixis_t, brdcfg0));
|
|
out_8(lbc_lcs1_ba, px_brdcfg0 | PX_BRDCFG0_ELBC_DIU);
|
|
in_8(lbc_lcs1_ba);
|
|
|
|
/* Set the chip mux to DIU mode. */
|
|
out_be32(&gur->pmuxcr, pmuxcr);
|
|
in_be32(&gur->pmuxcr);
|
|
}
|
|
|
|
/*
|
|
* pixis_read - board-specific function to read from the PIXIS
|
|
*
|
|
* This function overrides the generic pixis_read() function, so that it can
|
|
* use PIXIS indirect mode if necessary.
|
|
*/
|
|
u8 pixis_read(unsigned int reg)
|
|
{
|
|
ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC85xx_GUTS_ADDR;
|
|
|
|
/* Use indirect mode if the mux is currently set to DIU mode */
|
|
if ((in_be32(&gur->pmuxcr) & PMUXCR_ELBCDIU_MASK) !=
|
|
PMUXCR_ELBCDIU_NOR16) {
|
|
out_8(lbc_lcs0_ba, reg);
|
|
return in_8(lbc_lcs1_ba);
|
|
} else {
|
|
void *p = (void *)PIXIS_BASE;
|
|
|
|
return in_8(p + reg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* pixis_write - board-specific function to write to the PIXIS
|
|
*
|
|
* This function overrides the generic pixis_write() function, so that it can
|
|
* use PIXIS indirect mode if necessary.
|
|
*/
|
|
void pixis_write(unsigned int reg, u8 value)
|
|
{
|
|
ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC85xx_GUTS_ADDR;
|
|
|
|
/* Use indirect mode if the mux is currently set to DIU mode */
|
|
if ((in_be32(&gur->pmuxcr) & PMUXCR_ELBCDIU_MASK) !=
|
|
PMUXCR_ELBCDIU_NOR16) {
|
|
out_8(lbc_lcs0_ba, reg);
|
|
out_8(lbc_lcs1_ba, value);
|
|
/* Do a read-back to ensure the write completed */
|
|
in_8(lbc_lcs1_ba);
|
|
} else {
|
|
void *p = (void *)PIXIS_BASE;
|
|
|
|
out_8(p + reg, value);
|
|
}
|
|
}
|
|
|
|
void pixis_bank_reset(void)
|
|
{
|
|
/*
|
|
* For some reason, a PIXIS bank reset does not work if the PIXIS is
|
|
* in indirect mode, so switch to direct mode first.
|
|
*/
|
|
set_mux_to_lbc();
|
|
|
|
out_8(&pixis->vctl, 0);
|
|
out_8(&pixis->vctl, 1);
|
|
|
|
while (1);
|
|
}
|
|
|
|
#ifdef CONFIG_CFI_FLASH_USE_WEAK_ACCESSORS
|
|
|
|
void flash_write8(u8 value, void *addr)
|
|
{
|
|
int sw = set_mux_to_lbc();
|
|
|
|
__raw_writeb(value, addr);
|
|
if (sw) {
|
|
/*
|
|
* To ensure the post-write is completed to eLBC, software must
|
|
* perform a dummy read from one valid address from eLBC space
|
|
* before changing the eLBC_DIU from NOR mode to DIU mode.
|
|
* set_mux_to_diu() includes a sync that will ensure the
|
|
* __raw_readb() completes before it switches the mux.
|
|
*/
|
|
__raw_readb(addr);
|
|
set_mux_to_diu();
|
|
}
|
|
}
|
|
|
|
void flash_write16(u16 value, void *addr)
|
|
{
|
|
int sw = set_mux_to_lbc();
|
|
|
|
__raw_writew(value, addr);
|
|
if (sw) {
|
|
/*
|
|
* To ensure the post-write is completed to eLBC, software must
|
|
* perform a dummy read from one valid address from eLBC space
|
|
* before changing the eLBC_DIU from NOR mode to DIU mode.
|
|
* set_mux_to_diu() includes a sync that will ensure the
|
|
* __raw_readb() completes before it switches the mux.
|
|
*/
|
|
__raw_readb(addr);
|
|
set_mux_to_diu();
|
|
}
|
|
}
|
|
|
|
void flash_write32(u32 value, void *addr)
|
|
{
|
|
int sw = set_mux_to_lbc();
|
|
|
|
__raw_writel(value, addr);
|
|
if (sw) {
|
|
/*
|
|
* To ensure the post-write is completed to eLBC, software must
|
|
* perform a dummy read from one valid address from eLBC space
|
|
* before changing the eLBC_DIU from NOR mode to DIU mode.
|
|
* set_mux_to_diu() includes a sync that will ensure the
|
|
* __raw_readb() completes before it switches the mux.
|
|
*/
|
|
__raw_readb(addr);
|
|
set_mux_to_diu();
|
|
}
|
|
}
|
|
|
|
void flash_write64(u64 value, void *addr)
|
|
{
|
|
int sw = set_mux_to_lbc();
|
|
uint32_t *p = addr;
|
|
|
|
/*
|
|
* There is no __raw_writeq(), so do the write manually. We don't trust
|
|
* the compiler, so we use inline assembly.
|
|
*/
|
|
__asm__ __volatile__(
|
|
"stw%U0%X0 %2,%0;\n"
|
|
"stw%U1%X1 %3,%1;\n"
|
|
: "=m" (*p), "=m" (*(p + 1))
|
|
: "r" ((uint32_t) (value >> 32)), "r" ((uint32_t) (value)));
|
|
|
|
if (sw) {
|
|
/*
|
|
* To ensure the post-write is completed to eLBC, software must
|
|
* perform a dummy read from one valid address from eLBC space
|
|
* before changing the eLBC_DIU from NOR mode to DIU mode. We
|
|
* read addr+4 because we just wrote to addr+4, so that's how we
|
|
* maintain execution order. set_mux_to_diu() includes a sync
|
|
* that will ensure the __raw_readb() completes before it
|
|
* switches the mux.
|
|
*/
|
|
__raw_readb(addr + 4);
|
|
set_mux_to_diu();
|
|
}
|
|
}
|
|
|
|
u8 flash_read8(void *addr)
|
|
{
|
|
u8 ret;
|
|
|
|
int sw = set_mux_to_lbc();
|
|
|
|
ret = __raw_readb(addr);
|
|
if (sw)
|
|
set_mux_to_diu();
|
|
|
|
return ret;
|
|
}
|
|
|
|
u16 flash_read16(void *addr)
|
|
{
|
|
u16 ret;
|
|
|
|
int sw = set_mux_to_lbc();
|
|
|
|
ret = __raw_readw(addr);
|
|
if (sw)
|
|
set_mux_to_diu();
|
|
|
|
return ret;
|
|
}
|
|
|
|
u32 flash_read32(void *addr)
|
|
{
|
|
u32 ret;
|
|
|
|
int sw = set_mux_to_lbc();
|
|
|
|
ret = __raw_readl(addr);
|
|
if (sw)
|
|
set_mux_to_diu();
|
|
|
|
return ret;
|
|
}
|
|
|
|
u64 flash_read64(void *addr)
|
|
{
|
|
u64 ret;
|
|
|
|
int sw = set_mux_to_lbc();
|
|
|
|
/* There is no __raw_readq(), so do the read manually */
|
|
ret = *(volatile u64 *)addr;
|
|
if (sw)
|
|
set_mux_to_diu();
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif
|