u-boot/arch/arm/cpu/arm720t/tegra30/cpu.c
Jimmy Zhang b9dd6215ce ARM: tegra: don't exceed AVP limits when configuring PLLP
Based on the Tegra TRM, the system clock (which is the AVP clock) can
run up to 275MHz. On power on, the default sytem clock source is set to
PLLP_OUT0. In function clock_early_init(), PLLP_OUT0 will be set to
408MHz which is beyond system clock's upper limit.

The fix is to set the system clock to CLK_M before initializing PLLP,
and then switch back to PLLP_OUT4, which has an appropriate divider
configured, after PLLP has been configured

Implement this logic in new function tegra30_set_up_pllp(),
which sets up PLLP and all PLLP_OUT* dividers, and handles the AVP
clock switching. Remove the duplicate PLLP setup from pllx_set_rate()
and adjust_pllp_out_freqs().

Signed-off-by: Jimmy Zhang <jimmzhang@nvidia.com>
[swarren, significantly refactored the change]
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Reviewed-by: Thierry Reding <treding@nvidia.com>
Tested-by: Thierry Reding <treding@nvidia.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Tom Warren <twarren@nvidia.com>
2014-02-03 09:46:45 -07:00

164 lines
4.5 KiB
C

/*
* Copyright (c) 2010-2014, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/flow.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/pmc.h>
#include <asm/arch-tegra/tegra_i2c.h>
#include "../tegra-common/cpu.h"
/* Tegra30-specific CPU init code */
void tegra_i2c_ll_write_addr(uint addr, uint config)
{
struct i2c_ctlr *reg = (struct i2c_ctlr *)TEGRA_DVC_BASE;
writel(addr, &reg->cmd_addr0);
writel(config, &reg->cnfg);
}
void tegra_i2c_ll_write_data(uint data, uint config)
{
struct i2c_ctlr *reg = (struct i2c_ctlr *)TEGRA_DVC_BASE;
writel(data, &reg->cmd_data1);
writel(config, &reg->cnfg);
}
#define TPS65911_I2C_ADDR 0x5A
#define TPS65911_VDDCTRL_OP_REG 0x28
#define TPS65911_VDDCTRL_SR_REG 0x27
#define TPS65911_VDDCTRL_OP_DATA (0x2300 | TPS65911_VDDCTRL_OP_REG)
#define TPS65911_VDDCTRL_SR_DATA (0x0100 | TPS65911_VDDCTRL_SR_REG)
#define I2C_SEND_2_BYTES 0x0A02
static void enable_cpu_power_rail(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
u32 reg;
debug("enable_cpu_power_rail entry\n");
reg = readl(&pmc->pmc_cntrl);
reg |= CPUPWRREQ_OE;
writel(reg, &pmc->pmc_cntrl);
/*
* Bring up CPU VDD via the TPS65911x PMIC on the DVC I2C bus.
* First set VDD to 1.4V, then enable the VDD regulator.
*/
tegra_i2c_ll_write_addr(TPS65911_I2C_ADDR, 2);
tegra_i2c_ll_write_data(TPS65911_VDDCTRL_OP_DATA, I2C_SEND_2_BYTES);
udelay(1000);
tegra_i2c_ll_write_data(TPS65911_VDDCTRL_SR_DATA, I2C_SEND_2_BYTES);
udelay(10 * 1000);
}
/**
* The T30 requires some special clock initialization, including setting up
* the dvc i2c, turning on mselect and selecting the G CPU cluster
*/
void t30_init_clocks(void)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;
u32 val;
debug("t30_init_clocks entry\n");
/* Set active CPU cluster to G */
clrbits_le32(flow->cluster_control, 1 << 0);
writel(SUPER_SCLK_ENB_MASK, &clkrst->crc_super_sclk_div);
val = (0 << CLK_SYS_RATE_HCLK_DISABLE_SHIFT) |
(1 << CLK_SYS_RATE_AHB_RATE_SHIFT) |
(0 << CLK_SYS_RATE_PCLK_DISABLE_SHIFT) |
(0 << CLK_SYS_RATE_APB_RATE_SHIFT);
writel(val, &clkrst->crc_clk_sys_rate);
/* Put i2c, mselect in reset and enable clocks */
reset_set_enable(PERIPH_ID_DVC_I2C, 1);
clock_set_enable(PERIPH_ID_DVC_I2C, 1);
reset_set_enable(PERIPH_ID_MSELECT, 1);
clock_set_enable(PERIPH_ID_MSELECT, 1);
/* Switch MSELECT clock to PLLP (00) and use a divisor of 2 */
clock_ll_set_source_divisor(PERIPH_ID_MSELECT, 0, 2);
/*
* Our high-level clock routines are not available prior to
* relocation. We use the low-level functions which require a
* hard-coded divisor. Use CLK_M with divide by (n + 1 = 17)
*/
clock_ll_set_source_divisor(PERIPH_ID_DVC_I2C, 3, 16);
/*
* Give clocks time to stabilize, then take i2c and mselect out of
* reset
*/
udelay(1000);
reset_set_enable(PERIPH_ID_DVC_I2C, 0);
reset_set_enable(PERIPH_ID_MSELECT, 0);
}
static void set_cpu_running(int run)
{
struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;
debug("set_cpu_running entry, run = %d\n", run);
writel(run ? FLOW_MODE_NONE : FLOW_MODE_STOP, &flow->halt_cpu_events);
}
void start_cpu(u32 reset_vector)
{
debug("start_cpu entry, reset_vector = %x\n", reset_vector);
t30_init_clocks();
/* Enable VDD_CPU */
enable_cpu_power_rail();
set_cpu_running(0);
/* Hold the CPUs in reset */
reset_A9_cpu(1);
/* Disable the CPU clock */
enable_cpu_clock(0);
/* Enable CoreSight */
clock_enable_coresight(1);
/*
* Set the entry point for CPU execution from reset,
* if it's a non-zero value.
*/
if (reset_vector)
writel(reset_vector, EXCEP_VECTOR_CPU_RESET_VECTOR);
/* Enable the CPU clock */
enable_cpu_clock(1);
/* If the CPU doesn't already have power, power it up */
powerup_cpu();
/* Take the CPU out of reset */
reset_A9_cpu(0);
set_cpu_running(1);
}