mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-07 10:48:54 +00:00
352ba256da
This patch adds the necessary code to make nonsec booting and PSCI secondary core management functional on the R528/T113. Signed-off-by: Sam Edwards <CFSworks@gmail.com> Tested-by: Maksim Kiselev <bigunclemax@gmail.com> Tested-by: Kevin Amadiva <kevin.amadiva@mec.at> Reviewed-by: Andre Przywara <andre.przywara@arm.com>
363 lines
8.4 KiB
C
363 lines
8.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2016
|
|
* Author: Chen-Yu Tsai <wens@csie.org>
|
|
*
|
|
* Based on assembly code by Marc Zyngier <marc.zyngier@arm.com>,
|
|
* which was based on code by Carl van Schaik <carl@ok-labs.com>.
|
|
*/
|
|
#include <config.h>
|
|
#include <common.h>
|
|
#include <asm/cache.h>
|
|
|
|
#include <asm/arch/cpu.h>
|
|
#include <asm/armv7.h>
|
|
#include <asm/gic.h>
|
|
#include <asm/io.h>
|
|
#include <asm/psci.h>
|
|
#include <asm/secure.h>
|
|
#include <asm/system.h>
|
|
|
|
#include <linux/bitops.h>
|
|
|
|
#define __irq __attribute__ ((interrupt ("IRQ")))
|
|
|
|
#define GICD_BASE (SUNXI_GIC400_BASE + GIC_DIST_OFFSET)
|
|
#define GICC_BASE (SUNXI_GIC400_BASE + GIC_CPU_OFFSET_A15)
|
|
|
|
/*
|
|
* Offsets into the CPUCFG block applicable to most SUNXIs.
|
|
*/
|
|
#define SUNXI_CPU_RST(cpu) (0x40 + (cpu) * 0x40 + 0x0)
|
|
#define SUNXI_CPU_STATUS(cpu) (0x40 + (cpu) * 0x40 + 0x8)
|
|
#define SUNXI_GEN_CTRL (0x184)
|
|
#define SUNXI_PRIV0 (0x1a4)
|
|
#define SUN7I_CPU1_PWR_CLAMP (0x1b0)
|
|
#define SUN7I_CPU1_PWROFF (0x1b4)
|
|
#define SUNXI_DBG_CTRL1 (0x1e4)
|
|
|
|
/*
|
|
* R40 is different from other single cluster SoCs.
|
|
*
|
|
* The power clamps are located in the unused space after the per-core
|
|
* reset controls for core 3. The secondary core entry address register
|
|
* is in the SRAM controller address range.
|
|
*/
|
|
#define SUN8I_R40_PWROFF (0x110)
|
|
#define SUN8I_R40_PWR_CLAMP(cpu) (0x120 + (cpu) * 0x4)
|
|
#define SUN8I_R40_SRAMC_SOFT_ENTRY_REG0 (0xbc)
|
|
|
|
/*
|
|
* R528 is also different, as it has both cores powered up (but held in reset
|
|
* state) after the SoC is reset. Like the R40, it uses a "soft" entry point
|
|
* address register, but unlike the R40, it uses a newer "CPUX" block to manage
|
|
* CPU state, rather than the older CPUCFG system.
|
|
*/
|
|
#define SUN8I_R528_SOFT_ENTRY (0x1c8)
|
|
#define SUN8I_R528_C0_RST_CTRL (0x0000)
|
|
#define SUN8I_R528_C0_CTRL_REG0 (0x0010)
|
|
#define SUN8I_R528_C0_CPU_STATUS (0x0080)
|
|
|
|
#define SUN8I_R528_C0_STATUS_STANDBYWFI (16)
|
|
|
|
/* Only newer cores have this additional IP block. */
|
|
#ifndef SUNXI_R_CPUCFG_BASE
|
|
#define SUNXI_R_CPUCFG_BASE 0
|
|
#endif
|
|
|
|
static void __secure cp15_write_cntp_tval(u32 tval)
|
|
{
|
|
asm volatile ("mcr p15, 0, %0, c14, c2, 0" : : "r" (tval));
|
|
}
|
|
|
|
static void __secure cp15_write_cntp_ctl(u32 val)
|
|
{
|
|
asm volatile ("mcr p15, 0, %0, c14, c2, 1" : : "r" (val));
|
|
}
|
|
|
|
static u32 __secure cp15_read_cntp_ctl(void)
|
|
{
|
|
u32 val;
|
|
|
|
asm volatile ("mrc p15, 0, %0, c14, c2, 1" : "=r" (val));
|
|
|
|
return val;
|
|
}
|
|
|
|
#define ONE_MS (CONFIG_COUNTER_FREQUENCY / 1000)
|
|
|
|
static void __secure __mdelay(u32 ms)
|
|
{
|
|
u32 reg = ONE_MS * ms;
|
|
|
|
cp15_write_cntp_tval(reg);
|
|
isb();
|
|
cp15_write_cntp_ctl(3);
|
|
|
|
do {
|
|
isb();
|
|
reg = cp15_read_cntp_ctl();
|
|
} while (!(reg & BIT(2)));
|
|
|
|
cp15_write_cntp_ctl(0);
|
|
isb();
|
|
}
|
|
|
|
static void __secure clamp_release(u32 *clamp)
|
|
{
|
|
u32 tmp = 0x1ff;
|
|
do {
|
|
tmp >>= 1;
|
|
writel(tmp, clamp);
|
|
} while (tmp);
|
|
|
|
__mdelay(10);
|
|
}
|
|
|
|
static void __secure clamp_set(u32 *clamp)
|
|
{
|
|
writel(0xff, clamp);
|
|
}
|
|
|
|
static void __secure sunxi_cpu_set_entry(int __always_unused cpu, void *entry)
|
|
{
|
|
if (IS_ENABLED(CONFIG_MACH_SUN8I_R40)) {
|
|
writel((u32)entry,
|
|
SUNXI_SRAMC_BASE + SUN8I_R40_SRAMC_SOFT_ENTRY_REG0);
|
|
} else if (IS_ENABLED(CONFIG_MACH_SUN8I_R528)) {
|
|
writel((u32)entry,
|
|
SUNXI_R_CPUCFG_BASE + SUN8I_R528_SOFT_ENTRY);
|
|
} else {
|
|
writel((u32)entry, SUNXI_CPUCFG_BASE + SUNXI_PRIV0);
|
|
}
|
|
}
|
|
|
|
static void __secure sunxi_cpu_set_power(int cpu, bool on)
|
|
{
|
|
u32 *clamp = NULL;
|
|
u32 *pwroff;
|
|
|
|
/* sun7i (A20) is different from other single cluster SoCs */
|
|
if (IS_ENABLED(CONFIG_MACH_SUN7I)) {
|
|
clamp = (void *)SUNXI_CPUCFG_BASE + SUN7I_CPU1_PWR_CLAMP;
|
|
pwroff = (void *)SUNXI_CPUCFG_BASE + SUN7I_CPU1_PWROFF;
|
|
cpu = 0;
|
|
} else if (IS_ENABLED(CONFIG_MACH_SUN8I_R40)) {
|
|
clamp = (void *)SUNXI_CPUCFG_BASE + SUN8I_R40_PWR_CLAMP(cpu);
|
|
pwroff = (void *)SUNXI_CPUCFG_BASE + SUN8I_R40_PWROFF;
|
|
} else if (IS_ENABLED(CONFIG_MACH_SUN8I_R528)) {
|
|
/* R528 leaves both cores powered up, manages them via reset */
|
|
return;
|
|
} else {
|
|
if (IS_ENABLED(CONFIG_MACH_SUN6I) ||
|
|
IS_ENABLED(CONFIG_MACH_SUN8I_H3))
|
|
clamp = (void *)SUNXI_PRCM_BASE + 0x140 + cpu * 0x4;
|
|
|
|
pwroff = (void *)SUNXI_PRCM_BASE + 0x100;
|
|
}
|
|
|
|
if (on) {
|
|
/* Release power clamp */
|
|
if (clamp)
|
|
clamp_release(clamp);
|
|
|
|
/* Clear power gating */
|
|
clrbits_le32(pwroff, BIT(cpu));
|
|
} else {
|
|
/* Set power gating */
|
|
setbits_le32(pwroff, BIT(cpu));
|
|
|
|
/* Activate power clamp */
|
|
if (clamp)
|
|
clamp_set(clamp);
|
|
}
|
|
}
|
|
|
|
static void __secure sunxi_cpu_set_reset(int cpu, bool reset)
|
|
{
|
|
if (IS_ENABLED(CONFIG_MACH_SUN8I_R528)) {
|
|
if (reset)
|
|
clrbits_le32(SUNXI_CPUCFG_BASE + SUN8I_R528_C0_RST_CTRL,
|
|
BIT(cpu));
|
|
else
|
|
setbits_le32(SUNXI_CPUCFG_BASE + SUN8I_R528_C0_RST_CTRL,
|
|
BIT(cpu));
|
|
|
|
return;
|
|
}
|
|
|
|
writel(reset ? 0b00 : 0b11, SUNXI_CPUCFG_BASE + SUNXI_CPU_RST(cpu));
|
|
}
|
|
|
|
static void __secure sunxi_cpu_set_locking(int cpu, bool lock)
|
|
{
|
|
if (IS_ENABLED(CONFIG_MACH_SUN8I_R528)) {
|
|
/* Not required on R528 */
|
|
return;
|
|
}
|
|
|
|
if (lock)
|
|
clrbits_le32(SUNXI_CPUCFG_BASE + SUNXI_DBG_CTRL1, BIT(cpu));
|
|
else
|
|
setbits_le32(SUNXI_CPUCFG_BASE + SUNXI_DBG_CTRL1, BIT(cpu));
|
|
}
|
|
|
|
static bool __secure sunxi_cpu_poll_wfi(int cpu)
|
|
{
|
|
if (IS_ENABLED(CONFIG_MACH_SUN8I_R528)) {
|
|
return !!(readl(SUNXI_CPUCFG_BASE + SUN8I_R528_C0_CPU_STATUS) &
|
|
BIT(SUN8I_R528_C0_STATUS_STANDBYWFI + cpu));
|
|
}
|
|
|
|
return !!(readl(SUNXI_CPUCFG_BASE + SUNXI_CPU_STATUS(cpu)) & BIT(2));
|
|
}
|
|
|
|
static void __secure sunxi_cpu_invalidate_cache(int cpu)
|
|
{
|
|
if (IS_ENABLED(CONFIG_MACH_SUN8I_R528)) {
|
|
clrbits_le32(SUNXI_CPUCFG_BASE + SUN8I_R528_C0_CTRL_REG0,
|
|
BIT(cpu));
|
|
return;
|
|
}
|
|
|
|
clrbits_le32(SUNXI_CPUCFG_BASE + SUNXI_GEN_CTRL, BIT(cpu));
|
|
}
|
|
|
|
static void __secure sunxi_cpu_power_off(u32 cpuid)
|
|
{
|
|
u32 cpu = cpuid & 0x3;
|
|
|
|
/* Wait for the core to enter WFI */
|
|
while (!sunxi_cpu_poll_wfi(cpu))
|
|
__mdelay(1);
|
|
|
|
/* Assert reset on target CPU */
|
|
sunxi_cpu_set_reset(cpu, true);
|
|
|
|
/* Lock CPU (Disable external debug access) */
|
|
sunxi_cpu_set_locking(cpu, true);
|
|
|
|
/* Power down CPU */
|
|
sunxi_cpu_set_power(cpuid, false);
|
|
|
|
/* Unlock CPU (Reenable external debug access) */
|
|
sunxi_cpu_set_locking(cpu, false);
|
|
}
|
|
|
|
static u32 __secure cp15_read_scr(void)
|
|
{
|
|
u32 scr;
|
|
|
|
asm volatile ("mrc p15, 0, %0, c1, c1, 0" : "=r" (scr));
|
|
|
|
return scr;
|
|
}
|
|
|
|
static void __secure cp15_write_scr(u32 scr)
|
|
{
|
|
asm volatile ("mcr p15, 0, %0, c1, c1, 0" : : "r" (scr));
|
|
isb();
|
|
}
|
|
|
|
/*
|
|
* Although this is an FIQ handler, the FIQ is processed in monitor mode,
|
|
* which means there's no FIQ banked registers. This is the same as IRQ
|
|
* mode, so use the IRQ attribute to ask the compiler to handler entry
|
|
* and return.
|
|
*/
|
|
void __secure __irq psci_fiq_enter(void)
|
|
{
|
|
u32 scr, reg, cpu;
|
|
|
|
/* Switch to secure mode */
|
|
scr = cp15_read_scr();
|
|
cp15_write_scr(scr & ~BIT(0));
|
|
|
|
/* Validate reason based on IAR and acknowledge */
|
|
reg = readl(GICC_BASE + GICC_IAR);
|
|
|
|
/* Skip spurious interrupts 1022 and 1023 */
|
|
if (reg == 1023 || reg == 1022)
|
|
goto out;
|
|
|
|
/* End of interrupt */
|
|
writel(reg, GICC_BASE + GICC_EOIR);
|
|
dsb();
|
|
|
|
/* Get CPU number */
|
|
cpu = (reg >> 10) & 0x7;
|
|
|
|
/* Power off the CPU */
|
|
sunxi_cpu_power_off(cpu);
|
|
|
|
out:
|
|
/* Restore security level */
|
|
cp15_write_scr(scr);
|
|
}
|
|
|
|
int __secure psci_cpu_on(u32 __always_unused unused, u32 mpidr, u32 pc,
|
|
u32 context_id)
|
|
{
|
|
u32 cpu = (mpidr & 0x3);
|
|
|
|
/* store target PC and context id */
|
|
psci_save(cpu, pc, context_id);
|
|
|
|
/* Set secondary core power on PC */
|
|
sunxi_cpu_set_entry(cpu, &psci_cpu_entry);
|
|
|
|
/* Assert reset on target CPU */
|
|
sunxi_cpu_set_reset(cpu, true);
|
|
|
|
/* Invalidate L1 cache */
|
|
sunxi_cpu_invalidate_cache(cpu);
|
|
|
|
/* Lock CPU (Disable external debug access) */
|
|
sunxi_cpu_set_locking(cpu, true);
|
|
|
|
/* Power up target CPU */
|
|
sunxi_cpu_set_power(cpu, true);
|
|
|
|
/* De-assert reset on target CPU */
|
|
sunxi_cpu_set_reset(cpu, false);
|
|
|
|
/* Unlock CPU (Reenable external debug access) */
|
|
sunxi_cpu_set_locking(cpu, false);
|
|
|
|
return ARM_PSCI_RET_SUCCESS;
|
|
}
|
|
|
|
s32 __secure psci_cpu_off(void)
|
|
{
|
|
psci_cpu_off_common();
|
|
|
|
/* Ask CPU0 via SGI15 to pull the rug... */
|
|
writel(BIT(16) | 15, GICD_BASE + GICD_SGIR);
|
|
dsb();
|
|
|
|
/* Wait to be turned off */
|
|
while (1)
|
|
wfi();
|
|
}
|
|
|
|
void __secure psci_arch_init(void)
|
|
{
|
|
u32 reg;
|
|
|
|
/* SGI15 as Group-0 */
|
|
clrbits_le32(GICD_BASE + GICD_IGROUPRn, BIT(15));
|
|
|
|
/* Set SGI15 priority to 0 */
|
|
writeb(0, GICD_BASE + GICD_IPRIORITYRn + 15);
|
|
|
|
/* Be cool with non-secure */
|
|
writel(0xff, GICC_BASE + GICC_PMR);
|
|
|
|
/* Switch FIQEn on */
|
|
setbits_le32(GICC_BASE + GICC_CTLR, BIT(3));
|
|
|
|
reg = cp15_read_scr();
|
|
reg |= BIT(2); /* Enable FIQ in monitor mode */
|
|
reg &= ~BIT(0); /* Secure mode */
|
|
cp15_write_scr(reg);
|
|
}
|