u-boot/boot/bootm.c
Tom Rini d7a2c7ff75 Merge patch series "bootm: Handle compressed arm64 images with bootm"
To quote the author:

This little series corrects a problem I noticed with arm64 images,
where the kernel is not recognised if compression is used:

   U-Boot> tftp image.fit
   Using ethernet@7d580000 device
   TFTP from server 192.168.4.7; our IP address is 192.168.4.147
   Filename 'image.fit'.
   Load address: 0x1000000
   Loading: ##################################################  23 MiB
   	 20.5 MiB/s
   done
   Bytes transferred = 24118272 (1700400 hex)
   U-Boot> bootm
   ## Loading kernel from FIT Image at 01000000 ...
      Using 'conf-768' configuration
      Trying 'kernel' kernel subimage
        Description:  Linux
        Type:         Kernel Image (no loading done)
        Compression:  gzip compressed
        Data Start:   0x01000120
        Data Size:    13662338 Bytes = 13 MiB
      Verifying Hash Integrity ... OK
   Bad Linux ARM64 Image magic!

With this series:

   U-Boot> tftp 20000000 image.fit
   Using ethernet@7d580000 device
   TFTP from server 192.168.4.7; our IP address is 192.168.4.147
   Filename 'image.fit'.
   Load address: 0x20000000
   Loading: ##################################################  23.5 MiB
   	 20.8 MiB/s
   done
   Bytes transferred = 24642560 (1780400 hex)
   U-Boot> bootm 0x20000000
   ## Loading kernel from FIT Image at 20000000 ...
      Using 'conf-768' configuration
      Trying 'kernel' kernel subimage
        Description:  Linux
        Type:         Kernel Image (no loading done)
        Compression:  zstd compressed
        Data Start:   0x20000120
        Data Size:    14333475 Bytes = 13.7 MiB
      Verifying Hash Integrity ... OK
   Using kernel load address 80000
   ## Loading fdt from FIT Image at 20000000 ...
      Using 'conf-768' configuration
      Trying 'fdt-768' fdt subimage
        Description:  Raspberry Pi 4 Model B
        Type:         Flat Device Tree
        Compression:  zstd compressed
        Data Start:   0x215f820c
        Data Size:    9137 Bytes = 8.9 KiB
        Architecture: AArch64
      Verifying Hash Integrity ... OK
      Uncompressing Flat Device Tree to 3aff3010
      Booting using the fdt blob at 0x3aff3010
   Working FDT set to 3aff3010
      Uncompressing Kernel Image (no loading done) to 80000
   Moving Image from 0x80000 to 0x200000, end=2b00000
      Using Device Tree in place at 000000003aff3010, end 000000003afff4c4
   Working FDT set to 3aff3010

   Starting kernel ...

   [    0.000000] Booting Linux on physical CPU 0x0000000000 [0x410fd083]

The problem is that the arm64 magic is checked before the image is
decompressed. However this is only part of it. The kernel_noload image
type doesn't work with compression, since the kernel is not loaded. So
this series deals with that by using an lmb-allocated buffer for the
uncompressed kernel.

Another issue is that the arm64 handling is done too early, before the
image is loaded. This series moves it to after loading, so that
compression can be handled.

A patch is included to show the kernel load-address, so it is easy to
see what is going on.

One annoying feature of arm64 is that the image is often copied to
another address. It might be possible for U-Boot to figure that out
earlier and decompress it to the right place, but perhaps not.

With all of this it should be possible to boot a compressed kernel on
any of the 990 arm64 boards supported by Linux, although I have only
tested two.
2023-12-15 09:41:44 -05:00

1269 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2000-2009
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*/
#ifndef USE_HOSTCC
#include <common.h>
#include <bootstage.h>
#include <cli.h>
#include <command.h>
#include <cpu_func.h>
#include <env.h>
#include <errno.h>
#include <fdt_support.h>
#include <irq_func.h>
#include <lmb.h>
#include <log.h>
#include <malloc.h>
#include <mapmem.h>
#include <net.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <linux/sizes.h>
#include <tpm-v2.h>
#if defined(CONFIG_CMD_USB)
#include <usb.h>
#endif
#else
#include "mkimage.h"
#endif
#include <bootm.h>
#include <image.h>
#define MAX_CMDLINE_SIZE SZ_4K
#define IH_INITRD_ARCH IH_ARCH_DEFAULT
#ifndef USE_HOSTCC
DECLARE_GLOBAL_DATA_PTR;
struct bootm_headers images; /* pointers to os/initrd/fdt images */
__weak void board_quiesce_devices(void)
{
}
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
/**
* image_get_kernel - verify legacy format kernel image
* @img_addr: in RAM address of the legacy format image to be verified
* @verify: data CRC verification flag
*
* image_get_kernel() verifies legacy image integrity and returns pointer to
* legacy image header if image verification was completed successfully.
*
* returns:
* pointer to a legacy image header if valid image was found
* otherwise return NULL
*/
static struct legacy_img_hdr *image_get_kernel(ulong img_addr, int verify)
{
struct legacy_img_hdr *hdr = (struct legacy_img_hdr *)img_addr;
if (!image_check_magic(hdr)) {
puts("Bad Magic Number\n");
bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC);
return NULL;
}
bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER);
if (!image_check_hcrc(hdr)) {
puts("Bad Header Checksum\n");
bootstage_error(BOOTSTAGE_ID_CHECK_HEADER);
return NULL;
}
bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM);
image_print_contents(hdr);
if (verify) {
puts(" Verifying Checksum ... ");
if (!image_check_dcrc(hdr)) {
printf("Bad Data CRC\n");
bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM);
return NULL;
}
puts("OK\n");
}
bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH);
if (!image_check_target_arch(hdr)) {
printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr));
bootstage_error(BOOTSTAGE_ID_CHECK_ARCH);
return NULL;
}
return hdr;
}
#endif
/**
* boot_get_kernel() - find kernel image
*
* @addr_fit: first argument to bootm: address, fit configuration, etc.
* @os_data: pointer to a ulong variable, will hold os data start address
* @os_len: pointer to a ulong variable, will hold os data length
* address and length, otherwise NULL
* pointer to image header if valid image was found, plus kernel start
* @kernp: image header if valid image was found, otherwise NULL
*
* boot_get_kernel() tries to find a kernel image, verifies its integrity
* and locates kernel data.
*
* Return: 0 on success, -ve on error. -EPROTOTYPE means that the image is in
* a wrong or unsupported format
*/
static int boot_get_kernel(const char *addr_fit, struct bootm_headers *images,
ulong *os_data, ulong *os_len, const void **kernp)
{
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
struct legacy_img_hdr *hdr;
#endif
ulong img_addr;
const void *buf;
const char *fit_uname_config = NULL, *fit_uname_kernel = NULL;
#if CONFIG_IS_ENABLED(FIT)
int os_noffset;
#endif
#ifdef CONFIG_ANDROID_BOOT_IMAGE
const void *boot_img;
const void *vendor_boot_img;
#endif
img_addr = genimg_get_kernel_addr_fit(addr_fit, &fit_uname_config,
&fit_uname_kernel);
if (IS_ENABLED(CONFIG_CMD_BOOTM_PRE_LOAD))
img_addr += image_load_offset;
bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC);
/* check image type, for FIT images get FIT kernel node */
*os_data = *os_len = 0;
buf = map_sysmem(img_addr, 0);
switch (genimg_get_format(buf)) {
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
case IMAGE_FORMAT_LEGACY:
printf("## Booting kernel from Legacy Image at %08lx ...\n",
img_addr);
hdr = image_get_kernel(img_addr, images->verify);
if (!hdr)
return -EINVAL;
bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE);
/* get os_data and os_len */
switch (image_get_type(hdr)) {
case IH_TYPE_KERNEL:
case IH_TYPE_KERNEL_NOLOAD:
*os_data = image_get_data(hdr);
*os_len = image_get_data_size(hdr);
break;
case IH_TYPE_MULTI:
image_multi_getimg(hdr, 0, os_data, os_len);
break;
case IH_TYPE_STANDALONE:
*os_data = image_get_data(hdr);
*os_len = image_get_data_size(hdr);
break;
default:
bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);
return -EPROTOTYPE;
}
/*
* copy image header to allow for image overwrites during
* kernel decompression.
*/
memmove(&images->legacy_hdr_os_copy, hdr,
sizeof(struct legacy_img_hdr));
/* save pointer to image header */
images->legacy_hdr_os = hdr;
images->legacy_hdr_valid = 1;
bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE);
break;
#endif
#if CONFIG_IS_ENABLED(FIT)
case IMAGE_FORMAT_FIT:
os_noffset = fit_image_load(images, img_addr,
&fit_uname_kernel, &fit_uname_config,
IH_ARCH_DEFAULT, IH_TYPE_KERNEL,
BOOTSTAGE_ID_FIT_KERNEL_START,
FIT_LOAD_IGNORED, os_data, os_len);
if (os_noffset < 0)
return -ENOENT;
images->fit_hdr_os = map_sysmem(img_addr, 0);
images->fit_uname_os = fit_uname_kernel;
images->fit_uname_cfg = fit_uname_config;
images->fit_noffset_os = os_noffset;
break;
#endif
#ifdef CONFIG_ANDROID_BOOT_IMAGE
case IMAGE_FORMAT_ANDROID: {
int ret;
boot_img = buf;
vendor_boot_img = NULL;
if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) {
boot_img = map_sysmem(get_abootimg_addr(), 0);
vendor_boot_img = map_sysmem(get_avendor_bootimg_addr(), 0);
}
printf("## Booting Android Image at 0x%08lx ...\n", img_addr);
ret = android_image_get_kernel(boot_img, vendor_boot_img,
images->verify, os_data, os_len);
if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) {
unmap_sysmem(vendor_boot_img);
unmap_sysmem(boot_img);
}
if (ret)
return ret;
break;
}
#endif
default:
bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);
return -EPROTOTYPE;
}
debug(" kernel data at 0x%08lx, len = 0x%08lx (%ld)\n",
*os_data, *os_len, *os_len);
*kernp = buf;
return 0;
}
#ifdef CONFIG_LMB
static void boot_start_lmb(struct bootm_headers *images)
{
ulong mem_start;
phys_size_t mem_size;
mem_start = env_get_bootm_low();
mem_size = env_get_bootm_size();
lmb_init_and_reserve_range(&images->lmb, (phys_addr_t)mem_start,
mem_size, NULL);
}
#else
#define lmb_reserve(lmb, base, size)
static inline void boot_start_lmb(struct bootm_headers *images) { }
#endif
static int bootm_start(void)
{
memset((void *)&images, 0, sizeof(images));
images.verify = env_get_yesno("verify");
boot_start_lmb(&images);
bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start");
images.state = BOOTM_STATE_START;
return 0;
}
static ulong bootm_data_addr(const char *addr_str)
{
ulong addr;
if (addr_str)
addr = hextoul(addr_str, NULL);
else
addr = image_load_addr;
return addr;
}
/**
* bootm_pre_load() - Handle the pre-load processing
*
* This can be used to do a full signature check of the image, for example.
* It calls image_pre_load() with the data address of the image to check.
*
* @addr_str: String containing load address in hex, or NULL to use
* image_load_addr
* Return: 0 if OK, CMD_RET_FAILURE on failure
*/
static int bootm_pre_load(const char *addr_str)
{
ulong data_addr = bootm_data_addr(addr_str);
int ret = 0;
if (IS_ENABLED(CONFIG_CMD_BOOTM_PRE_LOAD))
ret = image_pre_load(data_addr);
if (ret)
ret = CMD_RET_FAILURE;
return ret;
}
/**
* bootm_find_os(): Find the OS to boot
*
* @cmd_name: Command name that started this boot, e.g. "bootm"
* @addr_fit: Address and/or FIT specifier (first arg of bootm command)
* Return: 0 on success, -ve on error
*/
static int bootm_find_os(const char *cmd_name, const char *addr_fit)
{
const void *os_hdr;
#ifdef CONFIG_ANDROID_BOOT_IMAGE
const void *vendor_boot_img;
const void *boot_img;
#endif
bool ep_found = false;
int ret;
/* get kernel image header, start address and length */
ret = boot_get_kernel(addr_fit, &images, &images.os.image_start,
&images.os.image_len, &os_hdr);
if (ret) {
if (ret == -EPROTOTYPE)
printf("Wrong Image Type for %s command\n", cmd_name);
printf("ERROR %dE: can't get kernel image!\n", ret);
return 1;
}
/* get image parameters */
switch (genimg_get_format(os_hdr)) {
#if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
case IMAGE_FORMAT_LEGACY:
images.os.type = image_get_type(os_hdr);
images.os.comp = image_get_comp(os_hdr);
images.os.os = image_get_os(os_hdr);
images.os.end = image_get_image_end(os_hdr);
images.os.load = image_get_load(os_hdr);
images.os.arch = image_get_arch(os_hdr);
break;
#endif
#if CONFIG_IS_ENABLED(FIT)
case IMAGE_FORMAT_FIT:
if (fit_image_get_type(images.fit_hdr_os,
images.fit_noffset_os,
&images.os.type)) {
puts("Can't get image type!\n");
bootstage_error(BOOTSTAGE_ID_FIT_TYPE);
return 1;
}
if (fit_image_get_comp(images.fit_hdr_os,
images.fit_noffset_os,
&images.os.comp)) {
puts("Can't get image compression!\n");
bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION);
return 1;
}
if (fit_image_get_os(images.fit_hdr_os, images.fit_noffset_os,
&images.os.os)) {
puts("Can't get image OS!\n");
bootstage_error(BOOTSTAGE_ID_FIT_OS);
return 1;
}
if (fit_image_get_arch(images.fit_hdr_os,
images.fit_noffset_os,
&images.os.arch)) {
puts("Can't get image ARCH!\n");
return 1;
}
images.os.end = fit_get_end(images.fit_hdr_os);
if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os,
&images.os.load)) {
puts("Can't get image load address!\n");
bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR);
return 1;
}
break;
#endif
#ifdef CONFIG_ANDROID_BOOT_IMAGE
case IMAGE_FORMAT_ANDROID:
boot_img = os_hdr;
vendor_boot_img = NULL;
if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) {
boot_img = map_sysmem(get_abootimg_addr(), 0);
vendor_boot_img = map_sysmem(get_avendor_bootimg_addr(), 0);
}
images.os.type = IH_TYPE_KERNEL;
images.os.comp = android_image_get_kcomp(boot_img, vendor_boot_img);
images.os.os = IH_OS_LINUX;
images.os.end = android_image_get_end(boot_img, vendor_boot_img);
images.os.load = android_image_get_kload(boot_img, vendor_boot_img);
images.ep = images.os.load;
ep_found = true;
if (IS_ENABLED(CONFIG_CMD_ABOOTIMG)) {
unmap_sysmem(vendor_boot_img);
unmap_sysmem(boot_img);
}
break;
#endif
default:
puts("ERROR: unknown image format type!\n");
return 1;
}
/* If we have a valid setup.bin, we will use that for entry (x86) */
if (images.os.arch == IH_ARCH_I386 ||
images.os.arch == IH_ARCH_X86_64) {
ulong len;
ret = boot_get_setup(&images, IH_ARCH_I386, &images.ep, &len);
if (ret < 0 && ret != -ENOENT) {
puts("Could not find a valid setup.bin for x86\n");
return 1;
}
/* Kernel entry point is the setup.bin */
} else if (images.legacy_hdr_valid) {
images.ep = image_get_ep(&images.legacy_hdr_os_copy);
#if CONFIG_IS_ENABLED(FIT)
} else if (images.fit_uname_os) {
int ret;
ret = fit_image_get_entry(images.fit_hdr_os,
images.fit_noffset_os, &images.ep);
if (ret) {
puts("Can't get entry point property!\n");
return 1;
}
#endif
} else if (!ep_found) {
puts("Could not find kernel entry point!\n");
return 1;
}
if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
images.os.load = images.os.image_start;
images.ep += images.os.image_start;
}
images.os.start = map_to_sysmem(os_hdr);
return 0;
}
/**
* check_overlap() - Check if an image overlaps the OS
*
* @name: Name of image to check (used to print error)
* @base: Base address of image
* @end: End address of image (+1)
* @os_start: Start of OS
* @os_size: Size of OS in bytes
* Return: 0 if OK, -EXDEV if the image overlaps the OS
*/
static int check_overlap(const char *name, ulong base, ulong end,
ulong os_start, ulong os_size)
{
ulong os_end;
if (!base)
return 0;
os_end = os_start + os_size;
if ((base >= os_start && base < os_end) ||
(end > os_start && end <= os_end) ||
(base < os_start && end >= os_end)) {
printf("ERROR: %s image overlaps OS image (OS=%lx..%lx)\n",
name, os_start, os_end);
return -EXDEV;
}
return 0;
}
int bootm_find_images(ulong img_addr, const char *conf_ramdisk,
const char *conf_fdt, ulong start, ulong size)
{
const char *select = conf_ramdisk;
char addr_str[17];
void *buf;
int ret;
if (IS_ENABLED(CONFIG_ANDROID_BOOT_IMAGE)) {
/* Look for an Android boot image */
buf = map_sysmem(images.os.start, 0);
if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID) {
strcpy(addr_str, simple_xtoa(img_addr));
select = addr_str;
}
}
if (conf_ramdisk)
select = conf_ramdisk;
/* find ramdisk */
ret = boot_get_ramdisk(select, &images, IH_INITRD_ARCH,
&images.rd_start, &images.rd_end);
if (ret) {
puts("Ramdisk image is corrupt or invalid\n");
return 1;
}
/* check if ramdisk overlaps OS image */
if (check_overlap("RD", images.rd_start, images.rd_end, start, size))
return 1;
if (CONFIG_IS_ENABLED(OF_LIBFDT)) {
buf = map_sysmem(img_addr, 0);
/* find flattened device tree */
ret = boot_get_fdt(buf, conf_fdt, IH_ARCH_DEFAULT, &images,
&images.ft_addr, &images.ft_len);
if (ret) {
puts("Could not find a valid device tree\n");
return 1;
}
/* check if FDT overlaps OS image */
if (check_overlap("FDT", map_to_sysmem(images.ft_addr),
images.ft_len, start, size))
return 1;
if (IS_ENABLED(CONFIG_CMD_FDT))
set_working_fdt_addr(map_to_sysmem(images.ft_addr));
}
#if CONFIG_IS_ENABLED(FIT)
if (IS_ENABLED(CONFIG_FPGA)) {
/* find bitstreams */
ret = boot_get_fpga(&images);
if (ret) {
printf("FPGA image is corrupted or invalid\n");
return 1;
}
}
/* find all of the loadables */
ret = boot_get_loadable(&images);
if (ret) {
printf("Loadable(s) is corrupt or invalid\n");
return 1;
}
#endif
return 0;
}
static int bootm_find_other(ulong img_addr, const char *conf_ramdisk,
const char *conf_fdt)
{
if ((images.os.type == IH_TYPE_KERNEL ||
images.os.type == IH_TYPE_KERNEL_NOLOAD ||
images.os.type == IH_TYPE_MULTI) &&
(images.os.os == IH_OS_LINUX || images.os.os == IH_OS_VXWORKS ||
images.os.os == IH_OS_EFI || images.os.os == IH_OS_TEE)) {
return bootm_find_images(img_addr, conf_ramdisk, conf_fdt, 0,
0);
}
return 0;
}
#endif /* USE_HOSTC */
#if !defined(USE_HOSTCC) || defined(CONFIG_FIT_SIGNATURE)
/**
* handle_decomp_error() - display a decompression error
*
* This function tries to produce a useful message. In the case where the
* uncompressed size is the same as the available space, we can assume that
* the image is too large for the buffer.
*
* @comp_type: Compression type being used (IH_COMP_...)
* @uncomp_size: Number of bytes uncompressed
* @buf_size: Number of bytes the decompresion buffer was
* @ret: errno error code received from compression library
* Return: Appropriate BOOTM_ERR_ error code
*/
static int handle_decomp_error(int comp_type, size_t uncomp_size,
size_t buf_size, int ret)
{
const char *name = genimg_get_comp_name(comp_type);
/* ENOSYS means unimplemented compression type, don't reset. */
if (ret == -ENOSYS)
return BOOTM_ERR_UNIMPLEMENTED;
if (uncomp_size >= buf_size)
printf("Image too large: increase CONFIG_SYS_BOOTM_LEN\n");
else
printf("%s: uncompress error %d\n", name, ret);
/*
* The decompression routines are now safe, so will not write beyond
* their bounds. Probably it is not necessary to reset, but maintain
* the current behaviour for now.
*/
printf("Must RESET board to recover\n");
#ifndef USE_HOSTCC
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
#endif
return BOOTM_ERR_RESET;
}
#endif
#ifndef USE_HOSTCC
static int bootm_load_os(struct bootm_headers *images, int boot_progress)
{
struct image_info os = images->os;
ulong load = os.load;
ulong load_end;
ulong blob_start = os.start;
ulong blob_end = os.end;
ulong image_start = os.image_start;
ulong image_len = os.image_len;
ulong flush_start = ALIGN_DOWN(load, ARCH_DMA_MINALIGN);
bool no_overlap;
void *load_buf, *image_buf;
int err;
/*
* For a "noload" compressed kernel we need to allocate a buffer large
* enough to decompress in to and use that as the load address now.
* Assume that the kernel compression is at most a factor of 4 since
* zstd almost achieves that.
* Use an alignment of 2MB since this might help arm64
*/
if (os.type == IH_TYPE_KERNEL_NOLOAD && os.comp != IH_COMP_NONE) {
ulong req_size = ALIGN(image_len * 4, SZ_1M);
load = lmb_alloc(&images->lmb, req_size, SZ_2M);
if (!load)
return 1;
os.load = load;
debug("Allocated %lx bytes at %lx for kernel (size %lx) decompression\n",
req_size, load, image_len);
}
load_buf = map_sysmem(load, 0);
image_buf = map_sysmem(os.image_start, image_len);
err = image_decomp(os.comp, load, os.image_start, os.type,
load_buf, image_buf, image_len,
CONFIG_SYS_BOOTM_LEN, &load_end);
if (err) {
err = handle_decomp_error(os.comp, load_end - load,
CONFIG_SYS_BOOTM_LEN, err);
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
return err;
}
/* We need the decompressed image size in the next steps */
images->os.image_len = load_end - load;
flush_cache(flush_start, ALIGN(load_end, ARCH_DMA_MINALIGN) - flush_start);
debug(" kernel loaded at 0x%08lx, end = 0x%08lx\n", load, load_end);
bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED);
no_overlap = (os.comp == IH_COMP_NONE && load == image_start);
if (!no_overlap && load < blob_end && load_end > blob_start) {
debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n",
blob_start, blob_end);
debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load,
load_end);
/* Check what type of image this is. */
if (images->legacy_hdr_valid) {
if (image_get_type(&images->legacy_hdr_os_copy)
== IH_TYPE_MULTI)
puts("WARNING: legacy format multi component image overwritten\n");
return BOOTM_ERR_OVERLAP;
} else {
puts("ERROR: new format image overwritten - must RESET the board to recover\n");
bootstage_error(BOOTSTAGE_ID_OVERWRITTEN);
return BOOTM_ERR_RESET;
}
}
if (IS_ENABLED(CONFIG_CMD_BOOTI) && images->os.arch == IH_ARCH_ARM64 &&
images->os.os == IH_OS_LINUX) {
ulong relocated_addr;
ulong image_size;
int ret;
ret = booti_setup(load, &relocated_addr, &image_size, false);
if (ret) {
printf("Failed to prep arm64 kernel (err=%d)\n", ret);
return BOOTM_ERR_RESET;
}
/* Handle BOOTM_STATE_LOADOS */
if (relocated_addr != load) {
printf("Moving Image from 0x%lx to 0x%lx, end=%lx\n",
load, relocated_addr,
relocated_addr + image_size);
memmove((void *)relocated_addr, load_buf, image_size);
}
images->ep = relocated_addr;
images->os.start = relocated_addr;
images->os.end = relocated_addr + image_size;
}
lmb_reserve(&images->lmb, images->os.load, (load_end -
images->os.load));
return 0;
}
/**
* bootm_disable_interrupts() - Disable interrupts in preparation for load/boot
*
* Return: interrupt flag (0 if interrupts were disabled, non-zero if they were
* enabled)
*/
ulong bootm_disable_interrupts(void)
{
ulong iflag;
/*
* We have reached the point of no return: we are going to
* overwrite all exception vector code, so we cannot easily
* recover from any failures any more...
*/
iflag = disable_interrupts();
#ifdef CONFIG_NETCONSOLE
/* Stop the ethernet stack if NetConsole could have left it up */
eth_halt();
#endif
#if defined(CONFIG_CMD_USB)
/*
* turn off USB to prevent the host controller from writing to the
* SDRAM while Linux is booting. This could happen (at least for OHCI
* controller), because the HCCA (Host Controller Communication Area)
* lies within the SDRAM and the host controller writes continously to
* this area (as busmaster!). The HccaFrameNumber is for example
* updated every 1 ms within the HCCA structure in SDRAM! For more
* details see the OpenHCI specification.
*/
usb_stop();
#endif
return iflag;
}
#define CONSOLE_ARG "console="
#define NULL_CONSOLE (CONSOLE_ARG "ttynull")
#define CONSOLE_ARG_SIZE sizeof(NULL_CONSOLE)
/**
* fixup_silent_linux() - Handle silencing the linux boot if required
*
* This uses the silent_linux envvar to control whether to add/set a "console="
* parameter to the command line
*
* @buf: Buffer containing the string to process
* @maxlen: Maximum length of buffer
* Return: 0 if OK, -ENOSPC if @maxlen is too small
*/
static int fixup_silent_linux(char *buf, int maxlen)
{
int want_silent;
char *cmdline;
int size;
/*
* Move the input string to the end of buffer. The output string will be
* built up at the start.
*/
size = strlen(buf) + 1;
if (size * 2 > maxlen)
return -ENOSPC;
cmdline = buf + maxlen - size;
memmove(cmdline, buf, size);
/*
* Only fix cmdline when requested. The environment variable can be:
*
* no - we never fixup
* yes - we always fixup
* unset - we rely on the console silent flag
*/
want_silent = env_get_yesno("silent_linux");
if (want_silent == 0)
return 0;
else if (want_silent == -1 && !(gd->flags & GD_FLG_SILENT))
return 0;
debug("before silent fix-up: %s\n", cmdline);
if (*cmdline) {
char *start = strstr(cmdline, CONSOLE_ARG);
/* Check space for maximum possible new command line */
if (size + CONSOLE_ARG_SIZE > maxlen)
return -ENOSPC;
if (start) {
char *end = strchr(start, ' ');
int start_bytes;
start_bytes = start - cmdline;
strncpy(buf, cmdline, start_bytes);
strncpy(buf + start_bytes, NULL_CONSOLE, CONSOLE_ARG_SIZE);
if (end)
strcpy(buf + start_bytes + CONSOLE_ARG_SIZE - 1, end);
else
buf[start_bytes + CONSOLE_ARG_SIZE] = '\0';
} else {
sprintf(buf, "%s %s", cmdline, NULL_CONSOLE);
}
if (buf + strlen(buf) >= cmdline)
return -ENOSPC;
} else {
if (maxlen < CONSOLE_ARG_SIZE)
return -ENOSPC;
strcpy(buf, NULL_CONSOLE);
}
debug("after silent fix-up: %s\n", buf);
return 0;
}
/**
* process_subst() - Handle substitution of ${...} fields in the environment
*
* Handle variable substitution in the provided buffer
*
* @buf: Buffer containing the string to process
* @maxlen: Maximum length of buffer
* Return: 0 if OK, -ENOSPC if @maxlen is too small
*/
static int process_subst(char *buf, int maxlen)
{
char *cmdline;
int size;
int ret;
/* Move to end of buffer */
size = strlen(buf) + 1;
cmdline = buf + maxlen - size;
if (buf + size > cmdline)
return -ENOSPC;
memmove(cmdline, buf, size);
ret = cli_simple_process_macros(cmdline, buf, cmdline - buf);
return ret;
}
int bootm_process_cmdline(char *buf, int maxlen, int flags)
{
int ret;
/* Check config first to enable compiler to eliminate code */
if (IS_ENABLED(CONFIG_SILENT_CONSOLE) &&
!IS_ENABLED(CONFIG_SILENT_U_BOOT_ONLY) &&
(flags & BOOTM_CL_SILENT)) {
ret = fixup_silent_linux(buf, maxlen);
if (ret)
return log_msg_ret("silent", ret);
}
if (IS_ENABLED(CONFIG_BOOTARGS_SUBST) && IS_ENABLED(CONFIG_CMDLINE) &&
(flags & BOOTM_CL_SUBST)) {
ret = process_subst(buf, maxlen);
if (ret)
return log_msg_ret("subst", ret);
}
return 0;
}
int bootm_process_cmdline_env(int flags)
{
const int maxlen = MAX_CMDLINE_SIZE;
bool do_silent;
const char *env;
char *buf;
int ret;
/* First check if any action is needed */
do_silent = IS_ENABLED(CONFIG_SILENT_CONSOLE) &&
!IS_ENABLED(CONFIG_SILENT_U_BOOT_ONLY) && (flags & BOOTM_CL_SILENT);
if (!do_silent && !IS_ENABLED(CONFIG_BOOTARGS_SUBST))
return 0;
env = env_get("bootargs");
if (env && strlen(env) >= maxlen)
return -E2BIG;
buf = malloc(maxlen);
if (!buf)
return -ENOMEM;
if (env)
strcpy(buf, env);
else
*buf = '\0';
ret = bootm_process_cmdline(buf, maxlen, flags);
if (!ret) {
ret = env_set("bootargs", buf);
/*
* If buf is "" and bootargs does not exist, this will produce
* an error trying to delete bootargs. Ignore it
*/
if (ret == -ENOENT)
ret = 0;
}
free(buf);
if (ret)
return log_msg_ret("env", ret);
return 0;
}
int bootm_measure(struct bootm_headers *images)
{
int ret = 0;
/* Skip measurement if EFI is going to do it */
if (images->os.os == IH_OS_EFI &&
IS_ENABLED(CONFIG_EFI_TCG2_PROTOCOL) &&
IS_ENABLED(CONFIG_BOOTM_EFI))
return ret;
if (IS_ENABLED(CONFIG_MEASURED_BOOT)) {
struct tcg2_event_log elog;
struct udevice *dev;
void *initrd_buf;
void *image_buf;
const char *s;
u32 rd_len;
bool ign;
elog.log_size = 0;
ign = IS_ENABLED(CONFIG_MEASURE_IGNORE_LOG);
ret = tcg2_measurement_init(&dev, &elog, ign);
if (ret)
return ret;
image_buf = map_sysmem(images->os.image_start,
images->os.image_len);
ret = tcg2_measure_data(dev, &elog, 8, images->os.image_len,
image_buf, EV_COMPACT_HASH,
strlen("linux") + 1, (u8 *)"linux");
if (ret)
goto unmap_image;
rd_len = images->rd_end - images->rd_start;
initrd_buf = map_sysmem(images->rd_start, rd_len);
ret = tcg2_measure_data(dev, &elog, 9, rd_len, initrd_buf,
EV_COMPACT_HASH, strlen("initrd") + 1,
(u8 *)"initrd");
if (ret)
goto unmap_initrd;
if (IS_ENABLED(CONFIG_MEASURE_DEVICETREE)) {
ret = tcg2_measure_data(dev, &elog, 0, images->ft_len,
(u8 *)images->ft_addr,
EV_TABLE_OF_DEVICES,
strlen("dts") + 1,
(u8 *)"dts");
if (ret)
goto unmap_initrd;
}
s = env_get("bootargs");
if (!s)
s = "";
ret = tcg2_measure_data(dev, &elog, 1, strlen(s) + 1, (u8 *)s,
EV_PLATFORM_CONFIG_FLAGS,
strlen(s) + 1, (u8 *)s);
unmap_initrd:
unmap_sysmem(initrd_buf);
unmap_image:
unmap_sysmem(image_buf);
tcg2_measurement_term(dev, &elog, ret != 0);
}
return ret;
}
/**
* Execute selected states of the bootm command.
*
* Note the arguments to this state must be the first argument, Any 'bootm'
* or sub-command arguments must have already been taken.
*
* Note that if states contains more than one flag it MUST contain
* BOOTM_STATE_START, since this handles and consumes the command line args.
*
* Also note that aside from boot_os_fn functions and bootm_load_os no other
* functions we store the return value of in 'ret' may use a negative return
* value, without special handling.
*
* @param cmdtp Pointer to bootm command table entry
* @param flag Command flags (CMD_FLAG_...)
* @param argc Number of subcommand arguments (0 = no arguments)
* @param argv Arguments
* @param states Mask containing states to run (BOOTM_STATE_...)
* @param images Image header information
* @param boot_progress 1 to show boot progress, 0 to not do this
* Return: 0 if ok, something else on error. Some errors will cause this
* function to perform a reboot! If states contains BOOTM_STATE_OS_GO
* then the intent is to boot an OS, so this function will not return
* unless the image type is standalone.
*/
int do_bootm_states(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[], int states, struct bootm_headers *images,
int boot_progress)
{
boot_os_fn *boot_fn;
ulong iflag = 0;
int ret = 0, need_boot_fn;
images->state |= states;
/*
* Work through the states and see how far we get. We stop on
* any error.
*/
if (states & BOOTM_STATE_START)
ret = bootm_start();
if (!ret && (states & BOOTM_STATE_PRE_LOAD))
ret = bootm_pre_load(argv[0]);
if (!ret && (states & BOOTM_STATE_FINDOS))
ret = bootm_find_os(cmdtp->name, argv[0]);
if (!ret && (states & BOOTM_STATE_FINDOTHER)) {
ulong img_addr;
img_addr = argc ? hextoul(argv[0], NULL) : image_load_addr;
ret = bootm_find_other(img_addr, cmd_arg1(argc, argv),
cmd_arg2(argc, argv));
}
if (IS_ENABLED(CONFIG_MEASURED_BOOT) && !ret &&
(states & BOOTM_STATE_MEASURE))
bootm_measure(images);
/* Load the OS */
if (!ret && (states & BOOTM_STATE_LOADOS)) {
iflag = bootm_disable_interrupts();
ret = bootm_load_os(images, 0);
if (ret && ret != BOOTM_ERR_OVERLAP)
goto err;
else if (ret == BOOTM_ERR_OVERLAP)
ret = 0;
}
/* Relocate the ramdisk */
#ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
if (!ret && (states & BOOTM_STATE_RAMDISK)) {
ulong rd_len = images->rd_end - images->rd_start;
ret = boot_ramdisk_high(&images->lmb, images->rd_start,
rd_len, &images->initrd_start, &images->initrd_end);
if (!ret) {
env_set_hex("initrd_start", images->initrd_start);
env_set_hex("initrd_end", images->initrd_end);
}
}
#endif
#if CONFIG_IS_ENABLED(OF_LIBFDT) && defined(CONFIG_LMB)
if (!ret && (states & BOOTM_STATE_FDT)) {
boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr);
ret = boot_relocate_fdt(&images->lmb, &images->ft_addr,
&images->ft_len);
}
#endif
/* From now on, we need the OS boot function */
if (ret)
return ret;
boot_fn = bootm_os_get_boot_func(images->os.os);
need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE |
BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP |
BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO);
if (boot_fn == NULL && need_boot_fn) {
if (iflag)
enable_interrupts();
printf("ERROR: booting os '%s' (%d) is not supported\n",
genimg_get_os_name(images->os.os), images->os.os);
bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS);
return 1;
}
/* Call various other states that are not generally used */
if (!ret && (states & BOOTM_STATE_OS_CMDLINE))
ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images);
if (!ret && (states & BOOTM_STATE_OS_BD_T))
ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images);
if (!ret && (states & BOOTM_STATE_OS_PREP)) {
ret = bootm_process_cmdline_env(images->os.os == IH_OS_LINUX);
if (ret) {
printf("Cmdline setup failed (err=%d)\n", ret);
ret = CMD_RET_FAILURE;
goto err;
}
ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images);
}
#ifdef CONFIG_TRACE
/* Pretend to run the OS, then run a user command */
if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) {
char *cmd_list = env_get("fakegocmd");
ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_FAKE_GO,
images, boot_fn);
if (!ret && cmd_list)
ret = run_command_list(cmd_list, -1, flag);
}
#endif
/* Check for unsupported subcommand. */
if (ret) {
printf("subcommand failed (err=%d)\n", ret);
return ret;
}
/* Now run the OS! We hope this doesn't return */
if (!ret && (states & BOOTM_STATE_OS_GO))
ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO,
images, boot_fn);
/* Deal with any fallout */
err:
if (iflag)
enable_interrupts();
if (ret == BOOTM_ERR_UNIMPLEMENTED)
bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL);
else if (ret == BOOTM_ERR_RESET)
do_reset(cmdtp, flag, argc, argv);
return ret;
}
int bootm_boot_start(ulong addr, const char *cmdline)
{
static struct cmd_tbl cmd = {"bootm"};
char addr_str[30];
char *argv[] = {addr_str, NULL};
int states;
int ret;
/*
* TODO(sjg@chromium.org): This uses the command-line interface, but
* should not. To clean this up, the various bootm states need to be
* passed an info structure instead of cmdline flags. Then this can
* set up the required info and move through the states without needing
* the command line.
*/
states = BOOTM_STATE_START | BOOTM_STATE_FINDOS | BOOTM_STATE_PRE_LOAD |
BOOTM_STATE_FINDOTHER | BOOTM_STATE_LOADOS |
BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO |
BOOTM_STATE_OS_GO;
if (IS_ENABLED(CONFIG_SYS_BOOT_RAMDISK_HIGH))
states |= BOOTM_STATE_RAMDISK;
if (IS_ENABLED(CONFIG_PPC) || IS_ENABLED(CONFIG_MIPS))
states |= BOOTM_STATE_OS_CMDLINE;
images.state |= states;
snprintf(addr_str, sizeof(addr_str), "%lx", addr);
ret = env_set("bootargs", cmdline);
if (ret) {
printf("Failed to set cmdline\n");
return ret;
}
ret = do_bootm_states(&cmd, 0, 1, argv, states, &images, 1);
return ret;
}
/**
* switch_to_non_secure_mode() - switch to non-secure mode
*
* This routine is overridden by architectures requiring this feature.
*/
void __weak switch_to_non_secure_mode(void)
{
}
#else /* USE_HOSTCC */
#if defined(CONFIG_FIT_SIGNATURE)
static int bootm_host_load_image(const void *fit, int req_image_type,
int cfg_noffset)
{
const char *fit_uname_config = NULL;
ulong data, len;
struct bootm_headers images;
int noffset;
ulong load_end, buf_size;
uint8_t image_type;
uint8_t image_comp;
void *load_buf;
int ret;
fit_uname_config = fdt_get_name(fit, cfg_noffset, NULL);
memset(&images, '\0', sizeof(images));
images.verify = 1;
noffset = fit_image_load(&images, (ulong)fit,
NULL, &fit_uname_config,
IH_ARCH_DEFAULT, req_image_type, -1,
FIT_LOAD_IGNORED, &data, &len);
if (noffset < 0)
return noffset;
if (fit_image_get_type(fit, noffset, &image_type)) {
puts("Can't get image type!\n");
return -EINVAL;
}
if (fit_image_get_comp(fit, noffset, &image_comp))
image_comp = IH_COMP_NONE;
/* Allow the image to expand by a factor of 4, should be safe */
buf_size = (1 << 20) + len * 4;
load_buf = malloc(buf_size);
ret = image_decomp(image_comp, 0, data, image_type, load_buf,
(void *)data, len, buf_size, &load_end);
free(load_buf);
if (ret) {
ret = handle_decomp_error(image_comp, load_end - 0, buf_size, ret);
if (ret != BOOTM_ERR_UNIMPLEMENTED)
return ret;
}
return 0;
}
int bootm_host_load_images(const void *fit, int cfg_noffset)
{
static uint8_t image_types[] = {
IH_TYPE_KERNEL,
IH_TYPE_FLATDT,
IH_TYPE_RAMDISK,
};
int err = 0;
int i;
for (i = 0; i < ARRAY_SIZE(image_types); i++) {
int ret;
ret = bootm_host_load_image(fit, image_types[i], cfg_noffset);
if (!err && ret && ret != -ENOENT)
err = ret;
}
/* Return the first error we found */
return err;
}
#endif
#endif /* ndef USE_HOSTCC */