mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-05 19:10:13 +00:00
aa34fbc087
Add an option to enable libfdt in SPL. This can be useful when decoding FIT files in SPL. We need to make sure this option is not enabled in SPL by this change. Also this option needs to be enabled in host builds. Si add a new IMAGE_USE_LIBFDT #define which can be used in files that are built on the host but must also build for U-Boot and SPL. Signed-off-by: Simon Glass <sjg@chromium.org>
959 lines
25 KiB
C
959 lines
25 KiB
C
/*
|
|
* (C) Copyright 2000-2009
|
|
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#ifndef USE_HOSTCC
|
|
#include <common.h>
|
|
#include <bootstage.h>
|
|
#include <bzlib.h>
|
|
#include <errno.h>
|
|
#include <fdt_support.h>
|
|
#include <lmb.h>
|
|
#include <malloc.h>
|
|
#include <mapmem.h>
|
|
#include <asm/io.h>
|
|
#include <linux/lzo.h>
|
|
#include <lzma/LzmaTypes.h>
|
|
#include <lzma/LzmaDec.h>
|
|
#include <lzma/LzmaTools.h>
|
|
#if defined(CONFIG_CMD_USB)
|
|
#include <usb.h>
|
|
#endif
|
|
#else
|
|
#include "mkimage.h"
|
|
#endif
|
|
|
|
#include <command.h>
|
|
#include <bootm.h>
|
|
#include <image.h>
|
|
|
|
#ifndef CONFIG_SYS_BOOTM_LEN
|
|
/* use 8MByte as default max gunzip size */
|
|
#define CONFIG_SYS_BOOTM_LEN 0x800000
|
|
#endif
|
|
|
|
#define IH_INITRD_ARCH IH_ARCH_DEFAULT
|
|
|
|
#ifndef USE_HOSTCC
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc,
|
|
char * const argv[], bootm_headers_t *images,
|
|
ulong *os_data, ulong *os_len);
|
|
|
|
#ifdef CONFIG_LMB
|
|
static void boot_start_lmb(bootm_headers_t *images)
|
|
{
|
|
ulong mem_start;
|
|
phys_size_t mem_size;
|
|
|
|
lmb_init(&images->lmb);
|
|
|
|
mem_start = getenv_bootm_low();
|
|
mem_size = getenv_bootm_size();
|
|
|
|
lmb_add(&images->lmb, (phys_addr_t)mem_start, mem_size);
|
|
|
|
arch_lmb_reserve(&images->lmb);
|
|
board_lmb_reserve(&images->lmb);
|
|
}
|
|
#else
|
|
#define lmb_reserve(lmb, base, size)
|
|
static inline void boot_start_lmb(bootm_headers_t *images) { }
|
|
#endif
|
|
|
|
static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc,
|
|
char * const argv[])
|
|
{
|
|
memset((void *)&images, 0, sizeof(images));
|
|
images.verify = getenv_yesno("verify");
|
|
|
|
boot_start_lmb(&images);
|
|
|
|
bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start");
|
|
images.state = BOOTM_STATE_START;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc,
|
|
char * const argv[])
|
|
{
|
|
const void *os_hdr;
|
|
bool ep_found = false;
|
|
int ret;
|
|
|
|
/* get kernel image header, start address and length */
|
|
os_hdr = boot_get_kernel(cmdtp, flag, argc, argv,
|
|
&images, &images.os.image_start, &images.os.image_len);
|
|
if (images.os.image_len == 0) {
|
|
puts("ERROR: can't get kernel image!\n");
|
|
return 1;
|
|
}
|
|
|
|
/* get image parameters */
|
|
switch (genimg_get_format(os_hdr)) {
|
|
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
|
|
case IMAGE_FORMAT_LEGACY:
|
|
images.os.type = image_get_type(os_hdr);
|
|
images.os.comp = image_get_comp(os_hdr);
|
|
images.os.os = image_get_os(os_hdr);
|
|
|
|
images.os.end = image_get_image_end(os_hdr);
|
|
images.os.load = image_get_load(os_hdr);
|
|
images.os.arch = image_get_arch(os_hdr);
|
|
break;
|
|
#endif
|
|
#if IMAGE_ENABLE_FIT
|
|
case IMAGE_FORMAT_FIT:
|
|
if (fit_image_get_type(images.fit_hdr_os,
|
|
images.fit_noffset_os,
|
|
&images.os.type)) {
|
|
puts("Can't get image type!\n");
|
|
bootstage_error(BOOTSTAGE_ID_FIT_TYPE);
|
|
return 1;
|
|
}
|
|
|
|
if (fit_image_get_comp(images.fit_hdr_os,
|
|
images.fit_noffset_os,
|
|
&images.os.comp)) {
|
|
puts("Can't get image compression!\n");
|
|
bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION);
|
|
return 1;
|
|
}
|
|
|
|
if (fit_image_get_os(images.fit_hdr_os, images.fit_noffset_os,
|
|
&images.os.os)) {
|
|
puts("Can't get image OS!\n");
|
|
bootstage_error(BOOTSTAGE_ID_FIT_OS);
|
|
return 1;
|
|
}
|
|
|
|
if (fit_image_get_arch(images.fit_hdr_os,
|
|
images.fit_noffset_os,
|
|
&images.os.arch)) {
|
|
puts("Can't get image ARCH!\n");
|
|
return 1;
|
|
}
|
|
|
|
images.os.end = fit_get_end(images.fit_hdr_os);
|
|
|
|
if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os,
|
|
&images.os.load)) {
|
|
puts("Can't get image load address!\n");
|
|
bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR);
|
|
return 1;
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_ANDROID_BOOT_IMAGE
|
|
case IMAGE_FORMAT_ANDROID:
|
|
images.os.type = IH_TYPE_KERNEL;
|
|
images.os.comp = IH_COMP_NONE;
|
|
images.os.os = IH_OS_LINUX;
|
|
|
|
images.os.end = android_image_get_end(os_hdr);
|
|
images.os.load = android_image_get_kload(os_hdr);
|
|
images.ep = images.os.load;
|
|
ep_found = true;
|
|
break;
|
|
#endif
|
|
default:
|
|
puts("ERROR: unknown image format type!\n");
|
|
return 1;
|
|
}
|
|
|
|
/* If we have a valid setup.bin, we will use that for entry (x86) */
|
|
if (images.os.arch == IH_ARCH_I386 ||
|
|
images.os.arch == IH_ARCH_X86_64) {
|
|
ulong len;
|
|
|
|
ret = boot_get_setup(&images, IH_ARCH_I386, &images.ep, &len);
|
|
if (ret < 0 && ret != -ENOENT) {
|
|
puts("Could not find a valid setup.bin for x86\n");
|
|
return 1;
|
|
}
|
|
/* Kernel entry point is the setup.bin */
|
|
} else if (images.legacy_hdr_valid) {
|
|
images.ep = image_get_ep(&images.legacy_hdr_os_copy);
|
|
#if IMAGE_ENABLE_FIT
|
|
} else if (images.fit_uname_os) {
|
|
int ret;
|
|
|
|
ret = fit_image_get_entry(images.fit_hdr_os,
|
|
images.fit_noffset_os, &images.ep);
|
|
if (ret) {
|
|
puts("Can't get entry point property!\n");
|
|
return 1;
|
|
}
|
|
#endif
|
|
} else if (!ep_found) {
|
|
puts("Could not find kernel entry point!\n");
|
|
return 1;
|
|
}
|
|
|
|
if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
|
|
images.os.load = images.os.image_start;
|
|
images.ep += images.os.load;
|
|
}
|
|
|
|
images.os.start = map_to_sysmem(os_hdr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bootm_find_images - wrapper to find and locate various images
|
|
* @flag: Ignored Argument
|
|
* @argc: command argument count
|
|
* @argv: command argument list
|
|
*
|
|
* boot_find_images() will attempt to load an available ramdisk,
|
|
* flattened device tree, as well as specifically marked
|
|
* "loadable" images (loadables are FIT only)
|
|
*
|
|
* Note: bootm_find_images will skip an image if it is not found
|
|
*
|
|
* @return:
|
|
* 0, if all existing images were loaded correctly
|
|
* 1, if an image is found but corrupted, or invalid
|
|
*/
|
|
int bootm_find_images(int flag, int argc, char * const argv[])
|
|
{
|
|
int ret;
|
|
|
|
/* find ramdisk */
|
|
ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH,
|
|
&images.rd_start, &images.rd_end);
|
|
if (ret) {
|
|
puts("Ramdisk image is corrupt or invalid\n");
|
|
return 1;
|
|
}
|
|
|
|
#if IMAGE_ENABLE_OF_LIBFDT
|
|
/* find flattened device tree */
|
|
ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images,
|
|
&images.ft_addr, &images.ft_len);
|
|
if (ret) {
|
|
puts("Could not find a valid device tree\n");
|
|
return 1;
|
|
}
|
|
set_working_fdt_addr((ulong)images.ft_addr);
|
|
#endif
|
|
|
|
#if IMAGE_ENABLE_FIT
|
|
/* find all of the loadables */
|
|
ret = boot_get_loadable(argc, argv, &images, IH_ARCH_DEFAULT,
|
|
NULL, NULL);
|
|
if (ret) {
|
|
printf("Loadable(s) is corrupt or invalid\n");
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bootm_find_other(cmd_tbl_t *cmdtp, int flag, int argc,
|
|
char * const argv[])
|
|
{
|
|
if (((images.os.type == IH_TYPE_KERNEL) ||
|
|
(images.os.type == IH_TYPE_KERNEL_NOLOAD) ||
|
|
(images.os.type == IH_TYPE_MULTI)) &&
|
|
(images.os.os == IH_OS_LINUX ||
|
|
images.os.os == IH_OS_VXWORKS))
|
|
return bootm_find_images(flag, argc, argv);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* USE_HOSTC */
|
|
|
|
/**
|
|
* print_decomp_msg() - Print a suitable decompression/loading message
|
|
*
|
|
* @type: OS type (IH_OS_...)
|
|
* @comp_type: Compression type being used (IH_COMP_...)
|
|
* @is_xip: true if the load address matches the image start
|
|
*/
|
|
static void print_decomp_msg(int comp_type, int type, bool is_xip)
|
|
{
|
|
const char *name = genimg_get_type_name(type);
|
|
|
|
if (comp_type == IH_COMP_NONE)
|
|
printf(" %s %s ... ", is_xip ? "XIP" : "Loading", name);
|
|
else
|
|
printf(" Uncompressing %s ... ", name);
|
|
}
|
|
|
|
/**
|
|
* handle_decomp_error() - display a decompression error
|
|
*
|
|
* This function tries to produce a useful message. In the case where the
|
|
* uncompressed size is the same as the available space, we can assume that
|
|
* the image is too large for the buffer.
|
|
*
|
|
* @comp_type: Compression type being used (IH_COMP_...)
|
|
* @uncomp_size: Number of bytes uncompressed
|
|
* @unc_len: Amount of space available for decompression
|
|
* @ret: Error code to report
|
|
* @return BOOTM_ERR_RESET, indicating that the board must be reset
|
|
*/
|
|
static int handle_decomp_error(int comp_type, size_t uncomp_size,
|
|
size_t unc_len, int ret)
|
|
{
|
|
const char *name = genimg_get_comp_name(comp_type);
|
|
|
|
if (uncomp_size >= unc_len)
|
|
printf("Image too large: increase CONFIG_SYS_BOOTM_LEN\n");
|
|
else
|
|
printf("%s: uncompress error %d\n", name, ret);
|
|
|
|
/*
|
|
* The decompression routines are now safe, so will not write beyond
|
|
* their bounds. Probably it is not necessary to reset, but maintain
|
|
* the current behaviour for now.
|
|
*/
|
|
printf("Must RESET board to recover\n");
|
|
#ifndef USE_HOSTCC
|
|
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
|
|
#endif
|
|
|
|
return BOOTM_ERR_RESET;
|
|
}
|
|
|
|
int bootm_decomp_image(int comp, ulong load, ulong image_start, int type,
|
|
void *load_buf, void *image_buf, ulong image_len,
|
|
uint unc_len, ulong *load_end)
|
|
{
|
|
int ret = 0;
|
|
|
|
*load_end = load;
|
|
print_decomp_msg(comp, type, load == image_start);
|
|
|
|
/*
|
|
* Load the image to the right place, decompressing if needed. After
|
|
* this, image_len will be set to the number of uncompressed bytes
|
|
* loaded, ret will be non-zero on error.
|
|
*/
|
|
switch (comp) {
|
|
case IH_COMP_NONE:
|
|
if (load == image_start)
|
|
break;
|
|
if (image_len <= unc_len)
|
|
memmove_wd(load_buf, image_buf, image_len, CHUNKSZ);
|
|
else
|
|
ret = 1;
|
|
break;
|
|
#ifdef CONFIG_GZIP
|
|
case IH_COMP_GZIP: {
|
|
ret = gunzip(load_buf, unc_len, image_buf, &image_len);
|
|
break;
|
|
}
|
|
#endif /* CONFIG_GZIP */
|
|
#ifdef CONFIG_BZIP2
|
|
case IH_COMP_BZIP2: {
|
|
uint size = unc_len;
|
|
|
|
/*
|
|
* If we've got less than 4 MB of malloc() space,
|
|
* use slower decompression algorithm which requires
|
|
* at most 2300 KB of memory.
|
|
*/
|
|
ret = BZ2_bzBuffToBuffDecompress(load_buf, &size,
|
|
image_buf, image_len,
|
|
CONFIG_SYS_MALLOC_LEN < (4096 * 1024), 0);
|
|
image_len = size;
|
|
break;
|
|
}
|
|
#endif /* CONFIG_BZIP2 */
|
|
#ifdef CONFIG_LZMA
|
|
case IH_COMP_LZMA: {
|
|
SizeT lzma_len = unc_len;
|
|
|
|
ret = lzmaBuffToBuffDecompress(load_buf, &lzma_len,
|
|
image_buf, image_len);
|
|
image_len = lzma_len;
|
|
break;
|
|
}
|
|
#endif /* CONFIG_LZMA */
|
|
#ifdef CONFIG_LZO
|
|
case IH_COMP_LZO: {
|
|
size_t size = unc_len;
|
|
|
|
ret = lzop_decompress(image_buf, image_len, load_buf, &size);
|
|
image_len = size;
|
|
break;
|
|
}
|
|
#endif /* CONFIG_LZO */
|
|
#ifdef CONFIG_LZ4
|
|
case IH_COMP_LZ4: {
|
|
size_t size = unc_len;
|
|
|
|
ret = ulz4fn(image_buf, image_len, load_buf, &size);
|
|
image_len = size;
|
|
break;
|
|
}
|
|
#endif /* CONFIG_LZ4 */
|
|
default:
|
|
printf("Unimplemented compression type %d\n", comp);
|
|
return BOOTM_ERR_UNIMPLEMENTED;
|
|
}
|
|
|
|
if (ret)
|
|
return handle_decomp_error(comp, image_len, unc_len, ret);
|
|
*load_end = load + image_len;
|
|
|
|
puts("OK\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifndef USE_HOSTCC
|
|
static int bootm_load_os(bootm_headers_t *images, unsigned long *load_end,
|
|
int boot_progress)
|
|
{
|
|
image_info_t os = images->os;
|
|
ulong load = os.load;
|
|
ulong blob_start = os.start;
|
|
ulong blob_end = os.end;
|
|
ulong image_start = os.image_start;
|
|
ulong image_len = os.image_len;
|
|
bool no_overlap;
|
|
void *load_buf, *image_buf;
|
|
int err;
|
|
|
|
load_buf = map_sysmem(load, 0);
|
|
image_buf = map_sysmem(os.image_start, image_len);
|
|
err = bootm_decomp_image(os.comp, load, os.image_start, os.type,
|
|
load_buf, image_buf, image_len,
|
|
CONFIG_SYS_BOOTM_LEN, load_end);
|
|
if (err) {
|
|
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
|
|
return err;
|
|
}
|
|
flush_cache(load, *load_end - load);
|
|
|
|
debug(" kernel loaded at 0x%08lx, end = 0x%08lx\n", load, *load_end);
|
|
bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED);
|
|
|
|
no_overlap = (os.comp == IH_COMP_NONE && load == image_start);
|
|
|
|
if (!no_overlap && (load < blob_end) && (*load_end > blob_start)) {
|
|
debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n",
|
|
blob_start, blob_end);
|
|
debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load,
|
|
*load_end);
|
|
|
|
/* Check what type of image this is. */
|
|
if (images->legacy_hdr_valid) {
|
|
if (image_get_type(&images->legacy_hdr_os_copy)
|
|
== IH_TYPE_MULTI)
|
|
puts("WARNING: legacy format multi component image overwritten\n");
|
|
return BOOTM_ERR_OVERLAP;
|
|
} else {
|
|
puts("ERROR: new format image overwritten - must RESET the board to recover\n");
|
|
bootstage_error(BOOTSTAGE_ID_OVERWRITTEN);
|
|
return BOOTM_ERR_RESET;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bootm_disable_interrupts() - Disable interrupts in preparation for load/boot
|
|
*
|
|
* @return interrupt flag (0 if interrupts were disabled, non-zero if they were
|
|
* enabled)
|
|
*/
|
|
ulong bootm_disable_interrupts(void)
|
|
{
|
|
ulong iflag;
|
|
|
|
/*
|
|
* We have reached the point of no return: we are going to
|
|
* overwrite all exception vector code, so we cannot easily
|
|
* recover from any failures any more...
|
|
*/
|
|
iflag = disable_interrupts();
|
|
#ifdef CONFIG_NETCONSOLE
|
|
/* Stop the ethernet stack if NetConsole could have left it up */
|
|
eth_halt();
|
|
# ifndef CONFIG_DM_ETH
|
|
eth_unregister(eth_get_dev());
|
|
# endif
|
|
#endif
|
|
|
|
#if defined(CONFIG_CMD_USB)
|
|
/*
|
|
* turn off USB to prevent the host controller from writing to the
|
|
* SDRAM while Linux is booting. This could happen (at least for OHCI
|
|
* controller), because the HCCA (Host Controller Communication Area)
|
|
* lies within the SDRAM and the host controller writes continously to
|
|
* this area (as busmaster!). The HccaFrameNumber is for example
|
|
* updated every 1 ms within the HCCA structure in SDRAM! For more
|
|
* details see the OpenHCI specification.
|
|
*/
|
|
usb_stop();
|
|
#endif
|
|
return iflag;
|
|
}
|
|
|
|
#if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
|
|
|
|
#define CONSOLE_ARG "console="
|
|
#define CONSOLE_ARG_LEN (sizeof(CONSOLE_ARG) - 1)
|
|
|
|
static void fixup_silent_linux(void)
|
|
{
|
|
char *buf;
|
|
const char *env_val;
|
|
char *cmdline = getenv("bootargs");
|
|
int want_silent;
|
|
|
|
/*
|
|
* Only fix cmdline when requested. The environment variable can be:
|
|
*
|
|
* no - we never fixup
|
|
* yes - we always fixup
|
|
* unset - we rely on the console silent flag
|
|
*/
|
|
want_silent = getenv_yesno("silent_linux");
|
|
if (want_silent == 0)
|
|
return;
|
|
else if (want_silent == -1 && !(gd->flags & GD_FLG_SILENT))
|
|
return;
|
|
|
|
debug("before silent fix-up: %s\n", cmdline);
|
|
if (cmdline && (cmdline[0] != '\0')) {
|
|
char *start = strstr(cmdline, CONSOLE_ARG);
|
|
|
|
/* Allocate space for maximum possible new command line */
|
|
buf = malloc(strlen(cmdline) + 1 + CONSOLE_ARG_LEN + 1);
|
|
if (!buf) {
|
|
debug("%s: out of memory\n", __func__);
|
|
return;
|
|
}
|
|
|
|
if (start) {
|
|
char *end = strchr(start, ' ');
|
|
int num_start_bytes = start - cmdline + CONSOLE_ARG_LEN;
|
|
|
|
strncpy(buf, cmdline, num_start_bytes);
|
|
if (end)
|
|
strcpy(buf + num_start_bytes, end);
|
|
else
|
|
buf[num_start_bytes] = '\0';
|
|
} else {
|
|
sprintf(buf, "%s %s", cmdline, CONSOLE_ARG);
|
|
}
|
|
env_val = buf;
|
|
} else {
|
|
buf = NULL;
|
|
env_val = CONSOLE_ARG;
|
|
}
|
|
|
|
setenv("bootargs", env_val);
|
|
debug("after silent fix-up: %s\n", env_val);
|
|
free(buf);
|
|
}
|
|
#endif /* CONFIG_SILENT_CONSOLE */
|
|
|
|
/**
|
|
* Execute selected states of the bootm command.
|
|
*
|
|
* Note the arguments to this state must be the first argument, Any 'bootm'
|
|
* or sub-command arguments must have already been taken.
|
|
*
|
|
* Note that if states contains more than one flag it MUST contain
|
|
* BOOTM_STATE_START, since this handles and consumes the command line args.
|
|
*
|
|
* Also note that aside from boot_os_fn functions and bootm_load_os no other
|
|
* functions we store the return value of in 'ret' may use a negative return
|
|
* value, without special handling.
|
|
*
|
|
* @param cmdtp Pointer to bootm command table entry
|
|
* @param flag Command flags (CMD_FLAG_...)
|
|
* @param argc Number of subcommand arguments (0 = no arguments)
|
|
* @param argv Arguments
|
|
* @param states Mask containing states to run (BOOTM_STATE_...)
|
|
* @param images Image header information
|
|
* @param boot_progress 1 to show boot progress, 0 to not do this
|
|
* @return 0 if ok, something else on error. Some errors will cause this
|
|
* function to perform a reboot! If states contains BOOTM_STATE_OS_GO
|
|
* then the intent is to boot an OS, so this function will not return
|
|
* unless the image type is standalone.
|
|
*/
|
|
int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[],
|
|
int states, bootm_headers_t *images, int boot_progress)
|
|
{
|
|
boot_os_fn *boot_fn;
|
|
ulong iflag = 0;
|
|
int ret = 0, need_boot_fn;
|
|
|
|
images->state |= states;
|
|
|
|
/*
|
|
* Work through the states and see how far we get. We stop on
|
|
* any error.
|
|
*/
|
|
if (states & BOOTM_STATE_START)
|
|
ret = bootm_start(cmdtp, flag, argc, argv);
|
|
|
|
if (!ret && (states & BOOTM_STATE_FINDOS))
|
|
ret = bootm_find_os(cmdtp, flag, argc, argv);
|
|
|
|
if (!ret && (states & BOOTM_STATE_FINDOTHER)) {
|
|
ret = bootm_find_other(cmdtp, flag, argc, argv);
|
|
argc = 0; /* consume the args */
|
|
}
|
|
|
|
/* Load the OS */
|
|
if (!ret && (states & BOOTM_STATE_LOADOS)) {
|
|
ulong load_end;
|
|
|
|
iflag = bootm_disable_interrupts();
|
|
ret = bootm_load_os(images, &load_end, 0);
|
|
if (ret == 0)
|
|
lmb_reserve(&images->lmb, images->os.load,
|
|
(load_end - images->os.load));
|
|
else if (ret && ret != BOOTM_ERR_OVERLAP)
|
|
goto err;
|
|
else if (ret == BOOTM_ERR_OVERLAP)
|
|
ret = 0;
|
|
#if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
|
|
if (images->os.os == IH_OS_LINUX)
|
|
fixup_silent_linux();
|
|
#endif
|
|
}
|
|
|
|
/* Relocate the ramdisk */
|
|
#ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
|
|
if (!ret && (states & BOOTM_STATE_RAMDISK)) {
|
|
ulong rd_len = images->rd_end - images->rd_start;
|
|
|
|
ret = boot_ramdisk_high(&images->lmb, images->rd_start,
|
|
rd_len, &images->initrd_start, &images->initrd_end);
|
|
if (!ret) {
|
|
setenv_hex("initrd_start", images->initrd_start);
|
|
setenv_hex("initrd_end", images->initrd_end);
|
|
}
|
|
}
|
|
#endif
|
|
#if IMAGE_ENABLE_OF_LIBFDT && defined(CONFIG_LMB)
|
|
if (!ret && (states & BOOTM_STATE_FDT)) {
|
|
boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr);
|
|
ret = boot_relocate_fdt(&images->lmb, &images->ft_addr,
|
|
&images->ft_len);
|
|
}
|
|
#endif
|
|
|
|
/* From now on, we need the OS boot function */
|
|
if (ret)
|
|
return ret;
|
|
boot_fn = bootm_os_get_boot_func(images->os.os);
|
|
need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE |
|
|
BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP |
|
|
BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO);
|
|
if (boot_fn == NULL && need_boot_fn) {
|
|
if (iflag)
|
|
enable_interrupts();
|
|
printf("ERROR: booting os '%s' (%d) is not supported\n",
|
|
genimg_get_os_name(images->os.os), images->os.os);
|
|
bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS);
|
|
return 1;
|
|
}
|
|
|
|
/* Call various other states that are not generally used */
|
|
if (!ret && (states & BOOTM_STATE_OS_CMDLINE))
|
|
ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images);
|
|
if (!ret && (states & BOOTM_STATE_OS_BD_T))
|
|
ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images);
|
|
if (!ret && (states & BOOTM_STATE_OS_PREP))
|
|
ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images);
|
|
|
|
#ifdef CONFIG_TRACE
|
|
/* Pretend to run the OS, then run a user command */
|
|
if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) {
|
|
char *cmd_list = getenv("fakegocmd");
|
|
|
|
ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_FAKE_GO,
|
|
images, boot_fn);
|
|
if (!ret && cmd_list)
|
|
ret = run_command_list(cmd_list, -1, flag);
|
|
}
|
|
#endif
|
|
|
|
/* Check for unsupported subcommand. */
|
|
if (ret) {
|
|
puts("subcommand not supported\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Now run the OS! We hope this doesn't return */
|
|
if (!ret && (states & BOOTM_STATE_OS_GO))
|
|
ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO,
|
|
images, boot_fn);
|
|
|
|
/* Deal with any fallout */
|
|
err:
|
|
if (iflag)
|
|
enable_interrupts();
|
|
|
|
if (ret == BOOTM_ERR_UNIMPLEMENTED)
|
|
bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL);
|
|
else if (ret == BOOTM_ERR_RESET)
|
|
do_reset(cmdtp, flag, argc, argv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
|
|
/**
|
|
* image_get_kernel - verify legacy format kernel image
|
|
* @img_addr: in RAM address of the legacy format image to be verified
|
|
* @verify: data CRC verification flag
|
|
*
|
|
* image_get_kernel() verifies legacy image integrity and returns pointer to
|
|
* legacy image header if image verification was completed successfully.
|
|
*
|
|
* returns:
|
|
* pointer to a legacy image header if valid image was found
|
|
* otherwise return NULL
|
|
*/
|
|
static image_header_t *image_get_kernel(ulong img_addr, int verify)
|
|
{
|
|
image_header_t *hdr = (image_header_t *)img_addr;
|
|
|
|
if (!image_check_magic(hdr)) {
|
|
puts("Bad Magic Number\n");
|
|
bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC);
|
|
return NULL;
|
|
}
|
|
bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER);
|
|
|
|
if (!image_check_hcrc(hdr)) {
|
|
puts("Bad Header Checksum\n");
|
|
bootstage_error(BOOTSTAGE_ID_CHECK_HEADER);
|
|
return NULL;
|
|
}
|
|
|
|
bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM);
|
|
image_print_contents(hdr);
|
|
|
|
if (verify) {
|
|
puts(" Verifying Checksum ... ");
|
|
if (!image_check_dcrc(hdr)) {
|
|
printf("Bad Data CRC\n");
|
|
bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM);
|
|
return NULL;
|
|
}
|
|
puts("OK\n");
|
|
}
|
|
bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH);
|
|
|
|
if (!image_check_target_arch(hdr)) {
|
|
printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr));
|
|
bootstage_error(BOOTSTAGE_ID_CHECK_ARCH);
|
|
return NULL;
|
|
}
|
|
return hdr;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* boot_get_kernel - find kernel image
|
|
* @os_data: pointer to a ulong variable, will hold os data start address
|
|
* @os_len: pointer to a ulong variable, will hold os data length
|
|
*
|
|
* boot_get_kernel() tries to find a kernel image, verifies its integrity
|
|
* and locates kernel data.
|
|
*
|
|
* returns:
|
|
* pointer to image header if valid image was found, plus kernel start
|
|
* address and length, otherwise NULL
|
|
*/
|
|
static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc,
|
|
char * const argv[], bootm_headers_t *images,
|
|
ulong *os_data, ulong *os_len)
|
|
{
|
|
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
|
|
image_header_t *hdr;
|
|
#endif
|
|
ulong img_addr;
|
|
const void *buf;
|
|
const char *fit_uname_config = NULL;
|
|
const char *fit_uname_kernel = NULL;
|
|
#if IMAGE_ENABLE_FIT
|
|
int os_noffset;
|
|
#endif
|
|
|
|
img_addr = genimg_get_kernel_addr_fit(argc < 1 ? NULL : argv[0],
|
|
&fit_uname_config,
|
|
&fit_uname_kernel);
|
|
|
|
bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC);
|
|
|
|
/* copy from dataflash if needed */
|
|
img_addr = genimg_get_image(img_addr);
|
|
|
|
/* check image type, for FIT images get FIT kernel node */
|
|
*os_data = *os_len = 0;
|
|
buf = map_sysmem(img_addr, 0);
|
|
switch (genimg_get_format(buf)) {
|
|
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
|
|
case IMAGE_FORMAT_LEGACY:
|
|
printf("## Booting kernel from Legacy Image at %08lx ...\n",
|
|
img_addr);
|
|
hdr = image_get_kernel(img_addr, images->verify);
|
|
if (!hdr)
|
|
return NULL;
|
|
bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE);
|
|
|
|
/* get os_data and os_len */
|
|
switch (image_get_type(hdr)) {
|
|
case IH_TYPE_KERNEL:
|
|
case IH_TYPE_KERNEL_NOLOAD:
|
|
*os_data = image_get_data(hdr);
|
|
*os_len = image_get_data_size(hdr);
|
|
break;
|
|
case IH_TYPE_MULTI:
|
|
image_multi_getimg(hdr, 0, os_data, os_len);
|
|
break;
|
|
case IH_TYPE_STANDALONE:
|
|
*os_data = image_get_data(hdr);
|
|
*os_len = image_get_data_size(hdr);
|
|
break;
|
|
default:
|
|
printf("Wrong Image Type for %s command\n",
|
|
cmdtp->name);
|
|
bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* copy image header to allow for image overwrites during
|
|
* kernel decompression.
|
|
*/
|
|
memmove(&images->legacy_hdr_os_copy, hdr,
|
|
sizeof(image_header_t));
|
|
|
|
/* save pointer to image header */
|
|
images->legacy_hdr_os = hdr;
|
|
|
|
images->legacy_hdr_valid = 1;
|
|
bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE);
|
|
break;
|
|
#endif
|
|
#if IMAGE_ENABLE_FIT
|
|
case IMAGE_FORMAT_FIT:
|
|
os_noffset = fit_image_load(images, img_addr,
|
|
&fit_uname_kernel, &fit_uname_config,
|
|
IH_ARCH_DEFAULT, IH_TYPE_KERNEL,
|
|
BOOTSTAGE_ID_FIT_KERNEL_START,
|
|
FIT_LOAD_IGNORED, os_data, os_len);
|
|
if (os_noffset < 0)
|
|
return NULL;
|
|
|
|
images->fit_hdr_os = map_sysmem(img_addr, 0);
|
|
images->fit_uname_os = fit_uname_kernel;
|
|
images->fit_uname_cfg = fit_uname_config;
|
|
images->fit_noffset_os = os_noffset;
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_ANDROID_BOOT_IMAGE
|
|
case IMAGE_FORMAT_ANDROID:
|
|
printf("## Booting Android Image at 0x%08lx ...\n", img_addr);
|
|
if (android_image_get_kernel(buf, images->verify,
|
|
os_data, os_len))
|
|
return NULL;
|
|
break;
|
|
#endif
|
|
default:
|
|
printf("Wrong Image Format for %s command\n", cmdtp->name);
|
|
bootstage_error(BOOTSTAGE_ID_FIT_KERNEL_INFO);
|
|
return NULL;
|
|
}
|
|
|
|
debug(" kernel data at 0x%08lx, len = 0x%08lx (%ld)\n",
|
|
*os_data, *os_len, *os_len);
|
|
|
|
return buf;
|
|
}
|
|
#else /* USE_HOSTCC */
|
|
|
|
void memmove_wd(void *to, void *from, size_t len, ulong chunksz)
|
|
{
|
|
memmove(to, from, len);
|
|
}
|
|
|
|
static int bootm_host_load_image(const void *fit, int req_image_type)
|
|
{
|
|
const char *fit_uname_config = NULL;
|
|
ulong data, len;
|
|
bootm_headers_t images;
|
|
int noffset;
|
|
ulong load_end;
|
|
uint8_t image_type;
|
|
uint8_t imape_comp;
|
|
void *load_buf;
|
|
int ret;
|
|
|
|
memset(&images, '\0', sizeof(images));
|
|
images.verify = 1;
|
|
noffset = fit_image_load(&images, (ulong)fit,
|
|
NULL, &fit_uname_config,
|
|
IH_ARCH_DEFAULT, req_image_type, -1,
|
|
FIT_LOAD_IGNORED, &data, &len);
|
|
if (noffset < 0)
|
|
return noffset;
|
|
if (fit_image_get_type(fit, noffset, &image_type)) {
|
|
puts("Can't get image type!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (fit_image_get_comp(fit, noffset, &imape_comp)) {
|
|
puts("Can't get image compression!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Allow the image to expand by a factor of 4, should be safe */
|
|
load_buf = malloc((1 << 20) + len * 4);
|
|
ret = bootm_decomp_image(imape_comp, 0, data, image_type, load_buf,
|
|
(void *)data, len, CONFIG_SYS_BOOTM_LEN,
|
|
&load_end);
|
|
free(load_buf);
|
|
|
|
if (ret && ret != BOOTM_ERR_UNIMPLEMENTED)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bootm_host_load_images(const void *fit, int cfg_noffset)
|
|
{
|
|
static uint8_t image_types[] = {
|
|
IH_TYPE_KERNEL,
|
|
IH_TYPE_FLATDT,
|
|
IH_TYPE_RAMDISK,
|
|
};
|
|
int err = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(image_types); i++) {
|
|
int ret;
|
|
|
|
ret = bootm_host_load_image(fit, image_types[i]);
|
|
if (!err && ret && ret != -ENOENT)
|
|
err = ret;
|
|
}
|
|
|
|
/* Return the first error we found */
|
|
return err;
|
|
}
|
|
|
|
#endif /* ndef USE_HOSTCC */
|