mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-04 18:41:03 +00:00
0459bc30b6
OMAP5432 did go into production with AVS class0 registers which were mutually exclusive from AVS Class 1.5 registers. Most OMAP5-uEVM boards use the pre-production Class1.5 which has production efuse registers set to 0. However on production devices, these are set to valid data. scale_vcore logic is already smart enough to detect this and use the "Nominal voltage" on devices that do not have efuse registers populated. On a test production device populated as follows: MPU OPP_NOM: => md.l 0x04A0021C4 1 4a0021c4: 03a003e9 .... (0x3e9 = 1.01v) vs nom voltage of 1.06v MPU OPP_HIGH: => md.l 0x04A0021C8 1 4a0021c8: 03400485 ..@. MM OPP_NOM: => md.l 0x04A0021A4 1 4a0021a4: 038003d4 .... (0x3d4 = 980mV) vs nom voltage of 1.025v MM OPP_OD: => md.l 0x04A0021A8 1 4a0021a8: 03600403 ..`. CORE OPP_NOM: => md.l 0x04A0021D8 1 4a0021d8: 000003cf .... (0x3cf = 975mV) vs nom voltage of 1.040v Since the efuse values are'nt currently used, we do not regress on existing pre-production samples (they continue to use nominal voltage). But on boards that do have production samples populated, we can leverage the optimal voltages necessary for proper operation. Tested on: a) 720-2644-001 OMAP5UEVM with production sample. b) 750-2628-222(A) UEVM5432G-02 with pre-production sample. Data based on OMAP5432 Technical reference Manual SWPU282AF (May 2012-Revised Aug 2016) NOTE: All collaterals on OMAP5432 silicon itself seems to have been removed from ti.com, though EVM details are still available: http://www.ti.com/tool/OMAP5432-EVM Signed-off-by: Nishanth Menon <nm@ti.com> Reviewed-by: Lokesh Vutla <lokeshvutla@ti.com> |
||
---|---|---|
.. | ||
abb.c | ||
boot.c | ||
dra7xx_iodelay.c | ||
emif.c | ||
fdt.c | ||
hw_data.c | ||
hwinit.c | ||
Kconfig | ||
Makefile | ||
prcm-regs.c | ||
sdram.c | ||
sec_entry_cpu1.S |