u-boot/cmd/bootefi.c
Heinrich Schuchardt 0c9ac06a28 efi_loader: create fdt reservation before copy
When copying the device we must ensure that the copy does not fall into a
memory area reserved by the same.

So let's change the sequence: first create memory reservations and then
copy the device tree.

Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
2018-12-02 21:59:37 +01:00

680 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* EFI application loader
*
* Copyright (c) 2016 Alexander Graf
*/
#include <charset.h>
#include <common.h>
#include <command.h>
#include <dm.h>
#include <efi_loader.h>
#include <efi_selftest.h>
#include <errno.h>
#include <linux/libfdt.h>
#include <linux/libfdt_env.h>
#include <mapmem.h>
#include <memalign.h>
#include <asm/global_data.h>
#include <asm-generic/sections.h>
#include <asm-generic/unaligned.h>
#include <linux/linkage.h>
#ifdef CONFIG_ARMV7_NONSEC
#include <asm/armv7.h>
#include <asm/secure.h>
#endif
DECLARE_GLOBAL_DATA_PTR;
#define OBJ_LIST_NOT_INITIALIZED 1
static efi_status_t efi_obj_list_initialized = OBJ_LIST_NOT_INITIALIZED;
static struct efi_device_path *bootefi_image_path;
static struct efi_device_path *bootefi_device_path;
/* Initialize and populate EFI object list */
efi_status_t efi_init_obj_list(void)
{
efi_status_t ret = EFI_SUCCESS;
/*
* On the ARM architecture gd is mapped to a fixed register (r9 or x18).
* As this register may be overwritten by an EFI payload we save it here
* and restore it on every callback entered.
*/
efi_save_gd();
/* Initialize once only */
if (efi_obj_list_initialized != OBJ_LIST_NOT_INITIALIZED)
return efi_obj_list_initialized;
/* Initialize system table */
ret = efi_initialize_system_table();
if (ret != EFI_SUCCESS)
goto out;
/* Initialize root node */
ret = efi_root_node_register();
if (ret != EFI_SUCCESS)
goto out;
/* Initialize EFI driver uclass */
ret = efi_driver_init();
if (ret != EFI_SUCCESS)
goto out;
ret = efi_console_register();
if (ret != EFI_SUCCESS)
goto out;
#ifdef CONFIG_PARTITIONS
ret = efi_disk_register();
if (ret != EFI_SUCCESS)
goto out;
#endif
#if defined(CONFIG_LCD) || defined(CONFIG_DM_VIDEO)
ret = efi_gop_register();
if (ret != EFI_SUCCESS)
goto out;
#endif
#ifdef CONFIG_NET
ret = efi_net_register();
if (ret != EFI_SUCCESS)
goto out;
#endif
#ifdef CONFIG_GENERATE_ACPI_TABLE
ret = efi_acpi_register();
if (ret != EFI_SUCCESS)
goto out;
#endif
#ifdef CONFIG_GENERATE_SMBIOS_TABLE
ret = efi_smbios_register();
if (ret != EFI_SUCCESS)
goto out;
#endif
ret = efi_watchdog_register();
if (ret != EFI_SUCCESS)
goto out;
/* Initialize EFI runtime services */
ret = efi_reset_system_init();
if (ret != EFI_SUCCESS)
goto out;
out:
efi_obj_list_initialized = ret;
return ret;
}
/*
* Allow unaligned memory access.
*
* This routine is overridden by architectures providing this feature.
*/
void __weak allow_unaligned(void)
{
}
/*
* Set the load options of an image from an environment variable.
*
* @loaded_image_info: the image
* @env_var: name of the environment variable
*/
static void set_load_options(struct efi_loaded_image *loaded_image_info,
const char *env_var)
{
size_t size;
const char *env = env_get(env_var);
u16 *pos;
loaded_image_info->load_options = NULL;
loaded_image_info->load_options_size = 0;
if (!env)
return;
size = utf8_utf16_strlen(env) + 1;
loaded_image_info->load_options = calloc(size, sizeof(u16));
if (!loaded_image_info->load_options) {
printf("ERROR: Out of memory\n");
return;
}
pos = loaded_image_info->load_options;
utf8_utf16_strcpy(&pos, env);
loaded_image_info->load_options_size = size * 2;
}
/**
* copy_fdt() - Copy the device tree to a new location available to EFI
*
* The FDT is copied to a suitable location within the EFI memory map.
* Additional 12 KiB are added to the space in case the device tree needs to be
* expanded later with fdt_open_into().
*
* @fdtp: On entry a pointer to the flattened device tree.
* On exit a pointer to the copy of the flattened device tree.
* FDT start
* Return: status code
*/
static efi_status_t copy_fdt(void **fdtp)
{
unsigned long fdt_ram_start = -1L, fdt_pages;
efi_status_t ret = 0;
void *fdt, *new_fdt;
u64 new_fdt_addr;
uint fdt_size;
int i;
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
u64 ram_start = gd->bd->bi_dram[i].start;
u64 ram_size = gd->bd->bi_dram[i].size;
if (!ram_size)
continue;
if (ram_start < fdt_ram_start)
fdt_ram_start = ram_start;
}
/*
* Give us at least 12 KiB of breathing room in case the device tree
* needs to be expanded later.
*/
fdt = *fdtp;
fdt_pages = efi_size_in_pages(fdt_totalsize(fdt) + 0x3000);
fdt_size = fdt_pages << EFI_PAGE_SHIFT;
/*
* Safe fdt location is at 127 MiB.
* On the sandbox convert from the sandbox address space.
*/
new_fdt_addr = (uintptr_t)map_sysmem(fdt_ram_start + 0x7f00000 +
fdt_size, 0);
ret = efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS,
EFI_RUNTIME_SERVICES_DATA, fdt_pages,
&new_fdt_addr);
if (ret != EFI_SUCCESS) {
/* If we can't put it there, put it somewhere */
new_fdt_addr = (ulong)memalign(EFI_PAGE_SIZE, fdt_size);
ret = efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS,
EFI_RUNTIME_SERVICES_DATA, fdt_pages,
&new_fdt_addr);
if (ret != EFI_SUCCESS) {
printf("ERROR: Failed to reserve space for FDT\n");
goto done;
}
}
new_fdt = (void *)(uintptr_t)new_fdt_addr;
memcpy(new_fdt, fdt, fdt_totalsize(fdt));
fdt_set_totalsize(new_fdt, fdt_size);
*fdtp = (void *)(uintptr_t)new_fdt_addr;
done:
return ret;
}
static efi_status_t efi_do_enter(
efi_handle_t image_handle, struct efi_system_table *st,
EFIAPI efi_status_t (*entry)(
efi_handle_t image_handle,
struct efi_system_table *st))
{
efi_status_t ret = EFI_LOAD_ERROR;
if (entry)
ret = entry(image_handle, st);
st->boottime->exit(image_handle, ret, 0, NULL);
return ret;
}
#ifdef CONFIG_ARM64
static efi_status_t efi_run_in_el2(EFIAPI efi_status_t (*entry)(
efi_handle_t image_handle, struct efi_system_table *st),
efi_handle_t image_handle, struct efi_system_table *st)
{
/* Enable caches again */
dcache_enable();
return efi_do_enter(image_handle, st, entry);
}
#endif
#ifdef CONFIG_ARMV7_NONSEC
static bool is_nonsec;
static efi_status_t efi_run_in_hyp(EFIAPI efi_status_t (*entry)(
efi_handle_t image_handle, struct efi_system_table *st),
efi_handle_t image_handle, struct efi_system_table *st)
{
/* Enable caches again */
dcache_enable();
is_nonsec = true;
return efi_do_enter(image_handle, st, entry);
}
#endif
/*
* efi_carve_out_dt_rsv() - Carve out DT reserved memory ranges
*
* The mem_rsv entries of the FDT are added to the memory map. Any failures are
* ignored because this is not critical and we would rather continue to try to
* boot.
*
* @fdt: Pointer to device tree
*/
static void efi_carve_out_dt_rsv(void *fdt)
{
int nr_rsv, i;
uint64_t addr, size, pages;
nr_rsv = fdt_num_mem_rsv(fdt);
/* Look for an existing entry and add it to the efi mem map. */
for (i = 0; i < nr_rsv; i++) {
if (fdt_get_mem_rsv(fdt, i, &addr, &size) != 0)
continue;
/* Convert from sandbox address space. */
addr = (uintptr_t)map_sysmem(addr, 0);
pages = efi_size_in_pages(size + (addr & EFI_PAGE_MASK));
addr &= ~EFI_PAGE_MASK;
if (!efi_add_memory_map(addr, pages, EFI_RESERVED_MEMORY_TYPE,
false))
printf("FDT memrsv map %d: Failed to add to map\n", i);
}
}
static efi_status_t efi_install_fdt(ulong fdt_addr)
{
bootm_headers_t img = { 0 };
efi_status_t ret;
void *fdt;
fdt = map_sysmem(fdt_addr, 0);
if (fdt_check_header(fdt)) {
printf("ERROR: invalid device tree\n");
return EFI_INVALID_PARAMETER;
}
/* Create memory reservation as indicated by the device tree */
efi_carve_out_dt_rsv(fdt);
/* Prepare fdt for payload */
ret = copy_fdt(&fdt);
if (ret)
return ret;
if (image_setup_libfdt(&img, fdt, 0, NULL)) {
printf("ERROR: failed to process device tree\n");
return EFI_LOAD_ERROR;
}
/* Link to it in the efi tables */
ret = efi_install_configuration_table(&efi_guid_fdt, fdt);
if (ret != EFI_SUCCESS)
return EFI_OUT_OF_RESOURCES;
return ret;
}
static efi_status_t bootefi_run_prepare(const char *load_options_path,
struct efi_device_path *device_path,
struct efi_device_path *image_path,
struct efi_loaded_image_obj **image_objp,
struct efi_loaded_image **loaded_image_infop)
{
efi_status_t ret;
ret = efi_setup_loaded_image(device_path, image_path, image_objp,
loaded_image_infop);
if (ret != EFI_SUCCESS)
return ret;
/* Transfer environment variable as load options */
set_load_options(*loaded_image_infop, load_options_path);
return 0;
}
/**
* bootefi_run_finish() - finish up after running an EFI test
*
* @loaded_image_info: Pointer to a struct which holds the loaded image info
* @image_objj: Pointer to a struct which holds the loaded image object
*/
static void bootefi_run_finish(struct efi_loaded_image_obj *image_obj,
struct efi_loaded_image *loaded_image_info)
{
efi_restore_gd();
free(loaded_image_info->load_options);
efi_delete_handle(&image_obj->header);
}
/**
* do_bootefi_exec() - execute EFI binary
*
* @efi: address of the binary
* @device_path: path of the device from which the binary was loaded
* @image_path: device path of the binary
* Return: status code
*
* Load the EFI binary into a newly assigned memory unwinding the relocation
* information, install the loaded image protocol, and call the binary.
*/
static efi_status_t do_bootefi_exec(void *efi,
struct efi_device_path *device_path,
struct efi_device_path *image_path)
{
efi_handle_t mem_handle = NULL;
struct efi_device_path *memdp = NULL;
efi_status_t ret;
struct efi_loaded_image_obj *image_obj = NULL;
struct efi_loaded_image *loaded_image_info = NULL;
EFIAPI efi_status_t (*entry)(efi_handle_t image_handle,
struct efi_system_table *st);
/*
* Special case for efi payload not loaded from disk, such as
* 'bootefi hello' or for example payload loaded directly into
* memory via JTAG, etc:
*/
if (!device_path && !image_path) {
printf("WARNING: using memory device/image path, this may confuse some payloads!\n");
/* actual addresses filled in after efi_load_pe() */
memdp = efi_dp_from_mem(0, 0, 0);
device_path = image_path = memdp;
/*
* Grub expects that the device path of the loaded image is
* installed on a handle.
*/
ret = efi_create_handle(&mem_handle);
if (ret != EFI_SUCCESS)
return ret; /* TODO: leaks device_path */
ret = efi_add_protocol(mem_handle, &efi_guid_device_path,
device_path);
if (ret != EFI_SUCCESS)
goto err_add_protocol;
} else {
assert(device_path && image_path);
}
ret = bootefi_run_prepare("bootargs", device_path, image_path,
&image_obj, &loaded_image_info);
if (ret)
goto err_prepare;
/* Load the EFI payload */
entry = efi_load_pe(image_obj, efi, loaded_image_info);
if (!entry) {
ret = EFI_LOAD_ERROR;
goto err_prepare;
}
if (memdp) {
struct efi_device_path_memory *mdp = (void *)memdp;
mdp->memory_type = loaded_image_info->image_code_type;
mdp->start_address = (uintptr_t)loaded_image_info->image_base;
mdp->end_address = mdp->start_address +
loaded_image_info->image_size;
}
/* we don't support much: */
env_set("efi_8be4df61-93ca-11d2-aa0d-00e098032b8c_OsIndicationsSupported",
"{ro,boot}(blob)0000000000000000");
/* Call our payload! */
debug("%s:%d Jumping to 0x%lx\n", __func__, __LINE__, (long)entry);
if (setjmp(&image_obj->exit_jmp)) {
ret = image_obj->exit_status;
goto err_prepare;
}
#ifdef CONFIG_ARM64
/* On AArch64 we need to make sure we call our payload in < EL3 */
if (current_el() == 3) {
smp_kick_all_cpus();
dcache_disable(); /* flush cache before switch to EL2 */
/* Move into EL2 and keep running there */
armv8_switch_to_el2((ulong)entry,
(ulong)&image_obj->header,
(ulong)&systab, 0, (ulong)efi_run_in_el2,
ES_TO_AARCH64);
/* Should never reach here, efi exits with longjmp */
while (1) { }
}
#endif
#ifdef CONFIG_ARMV7_NONSEC
if (armv7_boot_nonsec() && !is_nonsec) {
dcache_disable(); /* flush cache before switch to HYP */
armv7_init_nonsec();
secure_ram_addr(_do_nonsec_entry)(
efi_run_in_hyp,
(uintptr_t)entry,
(uintptr_t)&image_obj->header,
(uintptr_t)&systab);
/* Should never reach here, efi exits with longjmp */
while (1) { }
}
#endif
ret = efi_do_enter(&image_obj->header, &systab, entry);
err_prepare:
/* image has returned, loaded-image obj goes *poof*: */
bootefi_run_finish(image_obj, loaded_image_info);
err_add_protocol:
if (mem_handle)
efi_delete_handle(mem_handle);
return ret;
}
#ifdef CONFIG_CMD_BOOTEFI_SELFTEST
/**
* bootefi_test_prepare() - prepare to run an EFI test
*
* This sets things up so we can call EFI functions. This involves preparing
* the 'gd' pointer and setting up the load ed image data structures.
*
* @image_objp: loaded_image_infop: Pointer to a struct which will hold the
* loaded image object. This struct will be inited by this function before
* use.
* @loaded_image_infop: Pointer to a struct which will hold the loaded image
* info. This struct will be inited by this function before use.
* @path: File path to the test being run (often just the test name with a
* backslash before it
* @test_func: Address of the test function that is being run
* @load_options_path: U-Boot environment variable to use as load options
* @return 0 if OK, -ve on error
*/
static efi_status_t bootefi_test_prepare
(struct efi_loaded_image_obj **image_objp,
struct efi_loaded_image **loaded_image_infop, const char *path,
ulong test_func, const char *load_options_path)
{
/* Construct a dummy device path */
bootefi_device_path = efi_dp_from_mem(EFI_RESERVED_MEMORY_TYPE,
(uintptr_t)test_func,
(uintptr_t)test_func);
if (!bootefi_device_path)
return EFI_OUT_OF_RESOURCES;
bootefi_image_path = efi_dp_from_file(NULL, 0, path);
if (!bootefi_image_path)
return EFI_OUT_OF_RESOURCES;
return bootefi_run_prepare(load_options_path, bootefi_device_path,
bootefi_image_path, image_objp,
loaded_image_infop);
}
#endif /* CONFIG_CMD_BOOTEFI_SELFTEST */
static int do_bootefi_bootmgr_exec(void)
{
struct efi_device_path *device_path, *file_path;
void *addr;
efi_status_t r;
addr = efi_bootmgr_load(&device_path, &file_path);
if (!addr)
return 1;
printf("## Starting EFI application at %p ...\n", addr);
r = do_bootefi_exec(addr, device_path, file_path);
printf("## Application terminated, r = %lu\n",
r & ~EFI_ERROR_MASK);
if (r != EFI_SUCCESS)
return 1;
return 0;
}
/* Interpreter command to boot an arbitrary EFI image from memory */
static int do_bootefi(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
unsigned long addr;
char *saddr;
efi_status_t r;
unsigned long fdt_addr;
/* Allow unaligned memory access */
allow_unaligned();
/* Initialize EFI drivers */
r = efi_init_obj_list();
if (r != EFI_SUCCESS) {
printf("Error: Cannot set up EFI drivers, r = %lu\n",
r & ~EFI_ERROR_MASK);
return CMD_RET_FAILURE;
}
if (argc < 2)
return CMD_RET_USAGE;
if (argc > 2) {
fdt_addr = simple_strtoul(argv[2], NULL, 16);
if (!fdt_addr && *argv[2] != '0')
return CMD_RET_USAGE;
/* Install device tree */
r = efi_install_fdt(fdt_addr);
if (r != EFI_SUCCESS) {
printf("ERROR: failed to install device tree\n");
return CMD_RET_FAILURE;
}
} else {
/* Remove device tree. EFI_NOT_FOUND can be ignored here */
efi_install_configuration_table(&efi_guid_fdt, NULL);
printf("WARNING: booting without device tree\n");
}
#ifdef CONFIG_CMD_BOOTEFI_HELLO
if (!strcmp(argv[1], "hello")) {
ulong size = __efi_helloworld_end - __efi_helloworld_begin;
saddr = env_get("loadaddr");
if (saddr)
addr = simple_strtoul(saddr, NULL, 16);
else
addr = CONFIG_SYS_LOAD_ADDR;
memcpy(map_sysmem(addr, size), __efi_helloworld_begin, size);
} else
#endif
#ifdef CONFIG_CMD_BOOTEFI_SELFTEST
if (!strcmp(argv[1], "selftest")) {
struct efi_loaded_image_obj *image_obj;
struct efi_loaded_image *loaded_image_info;
if (bootefi_test_prepare(&image_obj, &loaded_image_info,
"\\selftest", (uintptr_t)&efi_selftest,
"efi_selftest"))
return CMD_RET_FAILURE;
/* Execute the test */
r = efi_selftest(&image_obj->header, &systab);
bootefi_run_finish(image_obj, loaded_image_info);
return r != EFI_SUCCESS;
} else
#endif
if (!strcmp(argv[1], "bootmgr")) {
return do_bootefi_bootmgr_exec();
} else {
saddr = argv[1];
addr = simple_strtoul(saddr, NULL, 16);
/* Check that a numeric value was passed */
if (!addr && *saddr != '0')
return CMD_RET_USAGE;
}
printf("## Starting EFI application at %08lx ...\n", addr);
r = do_bootefi_exec(map_sysmem(addr, 0), bootefi_device_path,
bootefi_image_path);
printf("## Application terminated, r = %lu\n",
r & ~EFI_ERROR_MASK);
if (r != EFI_SUCCESS)
return 1;
else
return 0;
}
#ifdef CONFIG_SYS_LONGHELP
static char bootefi_help_text[] =
"<image address> [fdt address]\n"
" - boot EFI payload stored at address <image address>.\n"
" If specified, the device tree located at <fdt address> gets\n"
" exposed as EFI configuration table.\n"
#ifdef CONFIG_CMD_BOOTEFI_HELLO
"bootefi hello\n"
" - boot a sample Hello World application stored within U-Boot\n"
#endif
#ifdef CONFIG_CMD_BOOTEFI_SELFTEST
"bootefi selftest [fdt address]\n"
" - boot an EFI selftest application stored within U-Boot\n"
" Use environment variable efi_selftest to select a single test.\n"
" Use 'setenv efi_selftest list' to enumerate all tests.\n"
#endif
"bootefi bootmgr [fdt addr]\n"
" - load and boot EFI payload based on BootOrder/BootXXXX variables.\n"
"\n"
" If specified, the device tree located at <fdt address> gets\n"
" exposed as EFI configuration table.\n";
#endif
U_BOOT_CMD(
bootefi, 3, 0, do_bootefi,
"Boots an EFI payload from memory",
bootefi_help_text
);
void efi_set_bootdev(const char *dev, const char *devnr, const char *path)
{
struct efi_device_path *device, *image;
efi_status_t ret;
/* efi_set_bootdev is typically called repeatedly, recover memory */
efi_free_pool(bootefi_device_path);
efi_free_pool(bootefi_image_path);
ret = efi_dp_from_name(dev, devnr, path, &device, &image);
if (ret == EFI_SUCCESS) {
bootefi_device_path = device;
bootefi_image_path = image;
} else {
bootefi_device_path = NULL;
bootefi_image_path = NULL;
}
}