mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-01 07:48:49 +00:00
caa4daa2ae
We use 'priv' for private data but often use 'platdata' for platform data. We can't really use 'pdata' since that is ambiguous (it could mean private or platform data). Rename some of the latter variables to end with 'plat' for consistency. Signed-off-by: Simon Glass <sjg@chromium.org>
198 lines
6 KiB
C
198 lines
6 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Tests for the driver model ADC API
|
|
*
|
|
* Copyright (c) 2015 Samsung Electronics
|
|
* Przemyslaw Marczak <p.marczak@samsung.com>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <adc.h>
|
|
#include <dm.h>
|
|
#include <dm/root.h>
|
|
#include <dm/util.h>
|
|
#include <dm/test.h>
|
|
#include <errno.h>
|
|
#include <fdtdec.h>
|
|
#include <power/regulator.h>
|
|
#include <power/sandbox_pmic.h>
|
|
#include <sandbox-adc.h>
|
|
#include <test/test.h>
|
|
#include <test/ut.h>
|
|
|
|
static int dm_test_adc_bind(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
unsigned int channel_mask;
|
|
|
|
ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc@0", &dev));
|
|
ut_asserteq_str(SANDBOX_ADC_DEVNAME, dev->name);
|
|
|
|
ut_assertok(adc_channel_mask(dev, &channel_mask));
|
|
ut_asserteq((1 << SANDBOX_ADC_CHANNELS) - 1, channel_mask);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_adc_bind, UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_adc_wrong_channel_selection(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
|
|
ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc@0", &dev));
|
|
ut_asserteq(-EINVAL, adc_start_channel(dev, SANDBOX_ADC_CHANNELS));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_adc_wrong_channel_selection, UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_adc_supply(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *supply;
|
|
struct udevice *dev;
|
|
int uV;
|
|
|
|
ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc@0", &dev));
|
|
|
|
/* Test Vss value - predefined 0 uV */
|
|
ut_assertok(adc_vss_value(dev, &uV));
|
|
ut_asserteq(SANDBOX_ADC_VSS_VALUE, uV);
|
|
|
|
/* Test Vdd initial value - buck2 */
|
|
ut_assertok(adc_vdd_value(dev, &uV));
|
|
ut_asserteq(SANDBOX_BUCK2_INITIAL_EXPECTED_UV, uV);
|
|
|
|
/* Change Vdd value - buck2 manual preset */
|
|
ut_assertok(regulator_get_by_devname(SANDBOX_BUCK2_DEVNAME, &supply));
|
|
ut_assertok(regulator_set_value(supply, SANDBOX_BUCK2_SET_UV));
|
|
ut_asserteq(SANDBOX_BUCK2_SET_UV, regulator_get_value(supply));
|
|
|
|
/* Update ADC plat and get new Vdd value */
|
|
ut_assertok(adc_vdd_value(dev, &uV));
|
|
ut_asserteq(SANDBOX_BUCK2_SET_UV, uV);
|
|
|
|
/* Disable buck2 and test ADC supply enable function */
|
|
ut_assertok(regulator_set_enable(supply, false));
|
|
ut_asserteq(false, regulator_get_enable(supply));
|
|
/* adc_start_channel() should enable the supply regulator */
|
|
ut_assertok(adc_start_channel(dev, 0));
|
|
ut_asserteq(true, regulator_get_enable(supply));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_adc_supply, UT_TESTF_SCAN_FDT);
|
|
|
|
struct adc_channel adc_channel_test_data[] = {
|
|
{ 0, SANDBOX_ADC_CHANNEL0_DATA },
|
|
{ 1, SANDBOX_ADC_CHANNEL1_DATA },
|
|
{ 2, SANDBOX_ADC_CHANNEL2_DATA },
|
|
{ 3, SANDBOX_ADC_CHANNEL3_DATA },
|
|
};
|
|
|
|
static int dm_test_adc_single_channel_conversion(struct unit_test_state *uts)
|
|
{
|
|
struct adc_channel *tdata = adc_channel_test_data;
|
|
unsigned int i, data;
|
|
struct udevice *dev;
|
|
|
|
ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc@0", &dev));
|
|
/* Test each ADC channel's value */
|
|
for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++) {
|
|
ut_assertok(adc_start_channel(dev, tdata->id));
|
|
ut_assertok(adc_channel_data(dev, tdata->id, &data));
|
|
ut_asserteq(tdata->data, data);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_adc_single_channel_conversion, UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_adc_multi_channel_conversion(struct unit_test_state *uts)
|
|
{
|
|
struct adc_channel channels[SANDBOX_ADC_CHANNELS];
|
|
struct udevice *dev;
|
|
struct adc_channel *tdata = adc_channel_test_data;
|
|
unsigned int i, channel_mask;
|
|
|
|
channel_mask = ADC_CHANNEL(0) | ADC_CHANNEL(1) |
|
|
ADC_CHANNEL(2) | ADC_CHANNEL(3);
|
|
|
|
/* Start multi channel conversion */
|
|
ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc@0", &dev));
|
|
ut_assertok(adc_start_channels(dev, channel_mask));
|
|
ut_assertok(adc_channels_data(dev, channel_mask, channels));
|
|
|
|
/* Compare the expected and returned conversion data. */
|
|
for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++)
|
|
ut_asserteq(tdata->data, channels[i].data);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_adc_multi_channel_conversion, UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_adc_single_channel_shot(struct unit_test_state *uts)
|
|
{
|
|
struct adc_channel *tdata = adc_channel_test_data;
|
|
unsigned int i, data;
|
|
|
|
for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++) {
|
|
/* Start single channel conversion */
|
|
ut_assertok(adc_channel_single_shot("adc@0", tdata->id, &data));
|
|
/* Compare the expected and returned conversion data. */
|
|
ut_asserteq(tdata->data, data);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_adc_single_channel_shot, UT_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_adc_multi_channel_shot(struct unit_test_state *uts)
|
|
{
|
|
struct adc_channel channels[SANDBOX_ADC_CHANNELS];
|
|
struct adc_channel *tdata = adc_channel_test_data;
|
|
unsigned int i, channel_mask;
|
|
|
|
channel_mask = ADC_CHANNEL(0) | ADC_CHANNEL(1) |
|
|
ADC_CHANNEL(2) | ADC_CHANNEL(3);
|
|
|
|
/* Start single call and multi channel conversion */
|
|
ut_assertok(adc_channels_single_shot("adc@0", channel_mask, channels));
|
|
|
|
/* Compare the expected and returned conversion data. */
|
|
for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++)
|
|
ut_asserteq(tdata->data, channels[i].data);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_adc_multi_channel_shot, UT_TESTF_SCAN_FDT);
|
|
|
|
static const int dm_test_adc_uV_data[SANDBOX_ADC_CHANNELS] = {
|
|
((u64)SANDBOX_ADC_CHANNEL0_DATA * SANDBOX_BUCK2_INITIAL_EXPECTED_UV) /
|
|
SANDBOX_ADC_DATA_MASK,
|
|
((u64)SANDBOX_ADC_CHANNEL1_DATA * SANDBOX_BUCK2_INITIAL_EXPECTED_UV) /
|
|
SANDBOX_ADC_DATA_MASK,
|
|
((u64)SANDBOX_ADC_CHANNEL2_DATA * SANDBOX_BUCK2_INITIAL_EXPECTED_UV) /
|
|
SANDBOX_ADC_DATA_MASK,
|
|
((u64)SANDBOX_ADC_CHANNEL3_DATA * SANDBOX_BUCK2_INITIAL_EXPECTED_UV) /
|
|
SANDBOX_ADC_DATA_MASK,
|
|
};
|
|
|
|
static int dm_test_adc_raw_to_uV(struct unit_test_state *uts)
|
|
{
|
|
struct adc_channel *tdata = adc_channel_test_data;
|
|
unsigned int i, data;
|
|
struct udevice *dev;
|
|
int uV;
|
|
|
|
ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc@0", &dev));
|
|
/* Test each ADC channel's value in microvolts */
|
|
for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++) {
|
|
ut_assertok(adc_start_channel(dev, tdata->id));
|
|
ut_assertok(adc_channel_data(dev, tdata->id, &data));
|
|
ut_assertok(adc_raw_to_uV(dev, data, &uV));
|
|
ut_asserteq(dm_test_adc_uV_data[i], uV);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_adc_raw_to_uV, UT_TESTF_SCAN_FDT);
|