u-boot/drivers/mtd/spi/spi-nor-core.c
Patrick Delaunay 0f9595b9fa configs: Migrate CONFIG_SYS_MAX_FLASH_BANKS to Kconfig
Use moveconfig.py script to convert define CONFIG_SYS_MAX_FLASH_BANKS
and CONFIG_SYS_MAX_FLASH_BANKS_DETECT to Kconfig and move these entries
to defconfigs.

Signed-off-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Stefan Roese <sr@denx.de>
[trini: Re-switch to IS_ENABLED check in spi-nor-core.c, re-run migration]
Signed-off-by: Tom Rini <trini@konsulko.com>
2022-01-21 14:01:35 -05:00

3899 lines
103 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
* influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*
* Synced from Linux v4.19
*/
#include <common.h>
#include <flash.h>
#include <log.h>
#include <watchdog.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <dm/devres.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/log2.h>
#include <linux/math64.h>
#include <linux/sizes.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/spi-nor.h>
#include <mtd/cfi_flash.h>
#include <spi-mem.h>
#include <spi.h>
#include "sf_internal.h"
/* Define max times to check status register before we give up. */
/*
* For everything but full-chip erase; probably could be much smaller, but kept
* around for safety for now
*/
#define HZ CONFIG_SYS_HZ
#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
#define ROUND_UP_TO(x, y) (((x) + (y) - 1) / (y) * (y))
struct sfdp_parameter_header {
u8 id_lsb;
u8 minor;
u8 major;
u8 length; /* in double words */
u8 parameter_table_pointer[3]; /* byte address */
u8 id_msb;
};
#define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
#define SFDP_PARAM_HEADER_PTP(p) \
(((p)->parameter_table_pointer[2] << 16) | \
((p)->parameter_table_pointer[1] << 8) | \
((p)->parameter_table_pointer[0] << 0))
#define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */
#define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */
#define SFDP_SST_ID 0x01bf /* Manufacturer specific Table */
#define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 Table */
#define SFDP_SIGNATURE 0x50444653U
#define SFDP_JESD216_MAJOR 1
#define SFDP_JESD216_MINOR 0
#define SFDP_JESD216A_MINOR 5
#define SFDP_JESD216B_MINOR 6
struct sfdp_header {
u32 signature; /* Ox50444653U <=> "SFDP" */
u8 minor;
u8 major;
u8 nph; /* 0-base number of parameter headers */
u8 unused;
/* Basic Flash Parameter Table. */
struct sfdp_parameter_header bfpt_header;
};
/* Basic Flash Parameter Table */
/*
* JESD216 rev D defines a Basic Flash Parameter Table of 20 DWORDs.
* They are indexed from 1 but C arrays are indexed from 0.
*/
#define BFPT_DWORD(i) ((i) - 1)
#define BFPT_DWORD_MAX 20
/* The first version of JESB216 defined only 9 DWORDs. */
#define BFPT_DWORD_MAX_JESD216 9
#define BFPT_DWORD_MAX_JESD216B 16
/* 1st DWORD. */
#define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16)
#define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17)
#define BFPT_DWORD1_DTR BIT(19)
#define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20)
#define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21)
#define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22)
/* 5th DWORD. */
#define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0)
#define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4)
/* 11th DWORD. */
#define BFPT_DWORD11_PAGE_SIZE_SHIFT 4
#define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4)
/* 15th DWORD. */
/*
* (from JESD216 rev B)
* Quad Enable Requirements (QER):
* - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
* reads based on instruction. DQ3/HOLD# functions are hold during
* instruction phase.
* - 001b: QE is bit 1 of status register 2. It is set via Write Status with
* two data bytes where bit 1 of the second byte is one.
* [...]
* Writing only one byte to the status register has the side-effect of
* clearing status register 2, including the QE bit. The 100b code is
* used if writing one byte to the status register does not modify
* status register 2.
* - 010b: QE is bit 6 of status register 1. It is set via Write Status with
* one data byte where bit 6 is one.
* [...]
* - 011b: QE is bit 7 of status register 2. It is set via Write status
* register 2 instruction 3Eh with one data byte where bit 7 is one.
* [...]
* The status register 2 is read using instruction 3Fh.
* - 100b: QE is bit 1 of status register 2. It is set via Write Status with
* two data bytes where bit 1 of the second byte is one.
* [...]
* In contrast to the 001b code, writing one byte to the status
* register does not modify status register 2.
* - 101b: QE is bit 1 of status register 2. Status register 1 is read using
* Read Status instruction 05h. Status register2 is read using
* instruction 35h. QE is set via Writ Status instruction 01h with
* two data bytes where bit 1 of the second byte is one.
* [...]
*/
#define BFPT_DWORD15_QER_MASK GENMASK(22, 20)
#define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */
#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20)
#define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */
#define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */
#define BFPT_DWORD16_SOFT_RST BIT(12)
#define BFPT_DWORD18_CMD_EXT_MASK GENMASK(30, 29)
#define BFPT_DWORD18_CMD_EXT_REP (0x0UL << 29) /* Repeat */
#define BFPT_DWORD18_CMD_EXT_INV (0x1UL << 29) /* Invert */
#define BFPT_DWORD18_CMD_EXT_RES (0x2UL << 29) /* Reserved */
#define BFPT_DWORD18_CMD_EXT_16B (0x3UL << 29) /* 16-bit opcode */
/* xSPI Profile 1.0 table (from JESD216D.01). */
#define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8)
#define PROFILE1_DWORD1_RDSR_DUMMY BIT(28)
#define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29)
#define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7)
#define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27)
#define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17)
#define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7)
#define PROFILE1_DUMMY_DEFAULT 20
struct sfdp_bfpt {
u32 dwords[BFPT_DWORD_MAX];
};
/**
* struct spi_nor_fixups - SPI NOR fixup hooks
* @default_init: called after default flash parameters init. Used to tweak
* flash parameters when information provided by the flash_info
* table is incomplete or wrong.
* @post_bfpt: called after the BFPT table has been parsed
* @post_sfdp: called after SFDP has been parsed (is also called for SPI NORs
* that do not support RDSFDP). Typically used to tweak various
* parameters that could not be extracted by other means (i.e.
* when information provided by the SFDP/flash_info tables are
* incomplete or wrong).
*
* Those hooks can be used to tweak the SPI NOR configuration when the SFDP
* table is broken or not available.
*/
struct spi_nor_fixups {
void (*default_init)(struct spi_nor *nor);
int (*post_bfpt)(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params);
void (*post_sfdp)(struct spi_nor *nor,
struct spi_nor_flash_parameter *params);
};
#define SPI_NOR_SRST_SLEEP_LEN 200
/**
* spi_nor_get_cmd_ext() - Get the command opcode extension based on the
* extension type.
* @nor: pointer to a 'struct spi_nor'
* @op: pointer to the 'struct spi_mem_op' whose properties
* need to be initialized.
*
* Right now, only "repeat" and "invert" are supported.
*
* Return: The opcode extension.
*/
static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
const struct spi_mem_op *op)
{
switch (nor->cmd_ext_type) {
case SPI_NOR_EXT_INVERT:
return ~op->cmd.opcode;
case SPI_NOR_EXT_REPEAT:
return op->cmd.opcode;
default:
dev_dbg(nor->dev, "Unknown command extension type\n");
return 0;
}
}
/**
* spi_nor_setup_op() - Set up common properties of a spi-mem op.
* @nor: pointer to a 'struct spi_nor'
* @op: pointer to the 'struct spi_mem_op' whose properties
* need to be initialized.
* @proto: the protocol from which the properties need to be set.
*/
static void spi_nor_setup_op(const struct spi_nor *nor,
struct spi_mem_op *op,
const enum spi_nor_protocol proto)
{
u8 ext;
op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
if (op->addr.nbytes)
op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
if (op->dummy.nbytes)
op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
if (op->data.nbytes)
op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
if (spi_nor_protocol_is_dtr(proto)) {
/*
* spi-mem supports mixed DTR modes, but right now we can only
* have all phases either DTR or STR. IOW, spi-mem can have
* something like 4S-4D-4D, but spi-nor can't. So, set all 4
* phases to either DTR or STR.
*/
op->cmd.dtr = op->addr.dtr = op->dummy.dtr =
op->data.dtr = true;
/* 2 bytes per clock cycle in DTR mode. */
op->dummy.nbytes *= 2;
ext = spi_nor_get_cmd_ext(nor, op);
op->cmd.opcode = (op->cmd.opcode << 8) | ext;
op->cmd.nbytes = 2;
}
}
static int spi_nor_read_write_reg(struct spi_nor *nor, struct spi_mem_op
*op, void *buf)
{
if (op->data.dir == SPI_MEM_DATA_IN)
op->data.buf.in = buf;
else
op->data.buf.out = buf;
return spi_mem_exec_op(nor->spi, op);
}
static int spi_nor_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
{
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 0),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(len, NULL, 0));
int ret;
spi_nor_setup_op(nor, &op, nor->reg_proto);
ret = spi_nor_read_write_reg(nor, &op, val);
if (ret < 0)
dev_dbg(nor->dev, "error %d reading %x\n", ret, code);
return ret;
}
static int spi_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(len, NULL, 0));
spi_nor_setup_op(nor, &op, nor->reg_proto);
if (len == 0)
op.data.dir = SPI_MEM_NO_DATA;
return spi_nor_read_write_reg(nor, &op, buf);
}
#ifdef CONFIG_SPI_FLASH_SPANSION
static int spansion_read_any_reg(struct spi_nor *nor, u32 addr, u8 dummy,
u8 *val)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDAR, 1),
SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
SPI_MEM_OP_DUMMY(dummy / 8, 1),
SPI_MEM_OP_DATA_IN(1, NULL, 1));
return spi_nor_read_write_reg(nor, &op, val);
}
static int spansion_write_any_reg(struct spi_nor *nor, u32 addr, u8 val)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRAR, 1),
SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1, NULL, 1));
return spi_nor_read_write_reg(nor, &op, &val);
}
#endif
static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
u_char *buf)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
SPI_MEM_OP_ADDR(nor->addr_width, from, 0),
SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
SPI_MEM_OP_DATA_IN(len, buf, 0));
size_t remaining = len;
int ret;
spi_nor_setup_op(nor, &op, nor->read_proto);
/* convert the dummy cycles to the number of bytes */
op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
if (spi_nor_protocol_is_dtr(nor->read_proto))
op.dummy.nbytes *= 2;
while (remaining) {
op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
ret = spi_mem_adjust_op_size(nor->spi, &op);
if (ret)
return ret;
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
op.addr.val += op.data.nbytes;
remaining -= op.data.nbytes;
op.data.buf.in += op.data.nbytes;
}
return len;
}
static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
const u_char *buf)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
SPI_MEM_OP_ADDR(nor->addr_width, to, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(len, buf, 0));
int ret;
if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
op.addr.nbytes = 0;
spi_nor_setup_op(nor, &op, nor->write_proto);
ret = spi_mem_adjust_op_size(nor->spi, &op);
if (ret)
return ret;
op.data.nbytes = len < op.data.nbytes ? len : op.data.nbytes;
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
return op.data.nbytes;
}
/*
* Read the status register, returning its value in the location
* Return the status register value.
* Returns negative if error occurred.
*/
static int read_sr(struct spi_nor *nor)
{
struct spi_mem_op op;
int ret;
u8 val[2];
u8 addr_nbytes, dummy;
if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
addr_nbytes = nor->rdsr_addr_nbytes;
dummy = nor->rdsr_dummy;
} else {
addr_nbytes = 0;
dummy = 0;
}
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 0),
SPI_MEM_OP_ADDR(addr_nbytes, 0, 0),
SPI_MEM_OP_DUMMY(dummy, 0),
SPI_MEM_OP_DATA_IN(1, NULL, 0));
spi_nor_setup_op(nor, &op, nor->reg_proto);
/*
* We don't want to read only one byte in DTR mode. So, read 2 and then
* discard the second byte.
*/
if (spi_nor_protocol_is_dtr(nor->reg_proto))
op.data.nbytes = 2;
ret = spi_nor_read_write_reg(nor, &op, val);
if (ret < 0) {
pr_debug("error %d reading SR\n", (int)ret);
return ret;
}
return *val;
}
/*
* Read the flag status register, returning its value in the location
* Return the status register value.
* Returns negative if error occurred.
*/
static int read_fsr(struct spi_nor *nor)
{
struct spi_mem_op op;
int ret;
u8 val[2];
u8 addr_nbytes, dummy;
if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
addr_nbytes = nor->rdsr_addr_nbytes;
dummy = nor->rdsr_dummy;
} else {
addr_nbytes = 0;
dummy = 0;
}
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0),
SPI_MEM_OP_ADDR(addr_nbytes, 0, 0),
SPI_MEM_OP_DUMMY(dummy, 0),
SPI_MEM_OP_DATA_IN(1, NULL, 0));
spi_nor_setup_op(nor, &op, nor->reg_proto);
/*
* We don't want to read only one byte in DTR mode. So, read 2 and then
* discard the second byte.
*/
if (spi_nor_protocol_is_dtr(nor->reg_proto))
op.data.nbytes = 2;
ret = spi_nor_read_write_reg(nor, &op, val);
if (ret < 0) {
pr_debug("error %d reading FSR\n", ret);
return ret;
}
return *val;
}
/*
* Read configuration register, returning its value in the
* location. Return the configuration register value.
* Returns negative if error occurred.
*/
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
static int read_cr(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
if (ret < 0) {
dev_dbg(nor->dev, "error %d reading CR\n", ret);
return ret;
}
return val;
}
#endif
/*
* Write status register 1 byte
* Returns negative if error occurred.
*/
static int write_sr(struct spi_nor *nor, u8 val)
{
nor->cmd_buf[0] = val;
return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
}
/*
* Set write enable latch with Write Enable command.
* Returns negative if error occurred.
*/
static int write_enable(struct spi_nor *nor)
{
return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
}
/*
* Send write disable instruction to the chip.
*/
static int write_disable(struct spi_nor *nor)
{
return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
}
static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
return mtd->priv;
}
#ifndef CONFIG_SPI_FLASH_BAR
static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
size_t i;
for (i = 0; i < size; i++)
if (table[i][0] == opcode)
return table[i][1];
/* No conversion found, keep input op code. */
return opcode;
}
static u8 spi_nor_convert_3to4_read(u8 opcode)
{
static const u8 spi_nor_3to4_read[][2] = {
{ SPINOR_OP_READ, SPINOR_OP_READ_4B },
{ SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
{ SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
{ SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
{ SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
{ SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
{ SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
{ SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
{ SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
{ SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
{ SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
ARRAY_SIZE(spi_nor_3to4_read));
}
static u8 spi_nor_convert_3to4_program(u8 opcode)
{
static const u8 spi_nor_3to4_program[][2] = {
{ SPINOR_OP_PP, SPINOR_OP_PP_4B },
{ SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
{ SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
{ SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
{ SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
ARRAY_SIZE(spi_nor_3to4_program));
}
static u8 spi_nor_convert_3to4_erase(u8 opcode)
{
static const u8 spi_nor_3to4_erase[][2] = {
{ SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
{ SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
{ SPINOR_OP_SE, SPINOR_OP_SE_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
ARRAY_SIZE(spi_nor_3to4_erase));
}
static void spi_nor_set_4byte_opcodes(struct spi_nor *nor,
const struct flash_info *info)
{
/* Do some manufacturer fixups first */
switch (JEDEC_MFR(info)) {
case SNOR_MFR_SPANSION:
/* No small sector erase for 4-byte command set */
nor->erase_opcode = SPINOR_OP_SE;
nor->mtd.erasesize = info->sector_size;
break;
default:
break;
}
nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
}
#endif /* !CONFIG_SPI_FLASH_BAR */
/* Enable/disable 4-byte addressing mode. */
static int set_4byte(struct spi_nor *nor, const struct flash_info *info,
int enable)
{
int status;
bool need_wren = false;
u8 cmd;
switch (JEDEC_MFR(info)) {
case SNOR_MFR_ST:
case SNOR_MFR_MICRON:
/* Some Micron need WREN command; all will accept it */
need_wren = true;
case SNOR_MFR_ISSI:
case SNOR_MFR_MACRONIX:
case SNOR_MFR_WINBOND:
if (need_wren)
write_enable(nor);
cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
status = nor->write_reg(nor, cmd, NULL, 0);
if (need_wren)
write_disable(nor);
if (!status && !enable &&
JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
/*
* On Winbond W25Q256FV, leaving 4byte mode causes
* the Extended Address Register to be set to 1, so all
* 3-byte-address reads come from the second 16M.
* We must clear the register to enable normal behavior.
*/
write_enable(nor);
nor->cmd_buf[0] = 0;
nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
write_disable(nor);
}
return status;
case SNOR_MFR_CYPRESS:
cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B_CYPRESS;
return nor->write_reg(nor, cmd, NULL, 0);
default:
/* Spansion style */
nor->cmd_buf[0] = enable << 7;
return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
}
}
#ifdef CONFIG_SPI_FLASH_SPANSION
/*
* Read status register 1 by using Read Any Register command to support multi
* die package parts.
*/
static int spansion_sr_ready(struct spi_nor *nor, u32 addr_base, u8 dummy)
{
u32 reg_addr = addr_base + SPINOR_REG_ADDR_STR1V;
u8 sr;
int ret;
ret = spansion_read_any_reg(nor, reg_addr, dummy, &sr);
if (ret < 0)
return ret;
if (sr & (SR_E_ERR | SR_P_ERR)) {
if (sr & SR_E_ERR)
dev_dbg(nor->dev, "Erase Error occurred\n");
else
dev_dbg(nor->dev, "Programming Error occurred\n");
nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
return -EIO;
}
return !(sr & SR_WIP);
}
#endif
static int spi_nor_sr_ready(struct spi_nor *nor)
{
int sr = read_sr(nor);
if (sr < 0)
return sr;
if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
if (sr & SR_E_ERR)
dev_dbg(nor->dev, "Erase Error occurred\n");
else
dev_dbg(nor->dev, "Programming Error occurred\n");
nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
return -EIO;
}
return !(sr & SR_WIP);
}
static int spi_nor_fsr_ready(struct spi_nor *nor)
{
int fsr = read_fsr(nor);
if (fsr < 0)
return fsr;
if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
if (fsr & FSR_E_ERR)
dev_err(nor->dev, "Erase operation failed.\n");
else
dev_err(nor->dev, "Program operation failed.\n");
if (fsr & FSR_PT_ERR)
dev_err(nor->dev,
"Attempted to modify a protected sector.\n");
nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
return -EIO;
}
return fsr & FSR_READY;
}
static int spi_nor_default_ready(struct spi_nor *nor)
{
int sr, fsr;
sr = spi_nor_sr_ready(nor);
if (sr < 0)
return sr;
fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
if (fsr < 0)
return fsr;
return sr && fsr;
}
static int spi_nor_ready(struct spi_nor *nor)
{
if (nor->ready)
return nor->ready(nor);
return spi_nor_default_ready(nor);
}
/*
* Service routine to read status register until ready, or timeout occurs.
* Returns non-zero if error.
*/
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
unsigned long timeout)
{
unsigned long timebase;
int ret;
timebase = get_timer(0);
while (get_timer(timebase) < timeout) {
ret = spi_nor_ready(nor);
if (ret < 0)
return ret;
if (ret)
return 0;
}
dev_err(nor->dev, "flash operation timed out\n");
return -ETIMEDOUT;
}
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
return spi_nor_wait_till_ready_with_timeout(nor,
DEFAULT_READY_WAIT_JIFFIES);
}
#ifdef CONFIG_SPI_FLASH_BAR
/*
* This "clean_bar" is necessary in a situation when one was accessing
* spi flash memory > 16 MiB by using Bank Address Register's BA24 bit.
*
* After it the BA24 bit shall be cleared to allow access to correct
* memory region after SW reset (by calling "reset" command).
*
* Otherwise, the BA24 bit may be left set and then after reset, the
* ROM would read/write/erase SPL from 16 MiB * bank_sel address.
*/
static int clean_bar(struct spi_nor *nor)
{
u8 cmd, bank_sel = 0;
if (nor->bank_curr == 0)
return 0;
cmd = nor->bank_write_cmd;
nor->bank_curr = 0;
write_enable(nor);
return nor->write_reg(nor, cmd, &bank_sel, 1);
}
static int write_bar(struct spi_nor *nor, u32 offset)
{
u8 cmd, bank_sel;
int ret;
bank_sel = offset / SZ_16M;
if (bank_sel == nor->bank_curr)
goto bar_end;
cmd = nor->bank_write_cmd;
write_enable(nor);
ret = nor->write_reg(nor, cmd, &bank_sel, 1);
if (ret < 0) {
debug("SF: fail to write bank register\n");
return ret;
}
bar_end:
nor->bank_curr = bank_sel;
return nor->bank_curr;
}
static int read_bar(struct spi_nor *nor, const struct flash_info *info)
{
u8 curr_bank = 0;
int ret;
switch (JEDEC_MFR(info)) {
case SNOR_MFR_SPANSION:
nor->bank_read_cmd = SPINOR_OP_BRRD;
nor->bank_write_cmd = SPINOR_OP_BRWR;
break;
default:
nor->bank_read_cmd = SPINOR_OP_RDEAR;
nor->bank_write_cmd = SPINOR_OP_WREAR;
}
ret = nor->read_reg(nor, nor->bank_read_cmd,
&curr_bank, 1);
if (ret) {
debug("SF: fail to read bank addr register\n");
return ret;
}
nor->bank_curr = curr_bank;
return 0;
}
#endif
/*
* Initiate the erasure of a single sector. Returns the number of bytes erased
* on success, a negative error code on error.
*/
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0),
SPI_MEM_OP_ADDR(nor->addr_width, addr, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_DATA);
int ret;
spi_nor_setup_op(nor, &op, nor->write_proto);
if (nor->erase)
return nor->erase(nor, addr);
/*
* Default implementation, if driver doesn't have a specialized HW
* control
*/
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
return nor->mtd.erasesize;
}
/*
* Erase an address range on the nor chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
*/
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
bool addr_known = false;
u32 addr, len, rem;
int ret, err;
dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
(long long)instr->len);
div_u64_rem(instr->len, mtd->erasesize, &rem);
if (rem) {
ret = -EINVAL;
goto err;
}
addr = instr->addr;
len = instr->len;
instr->state = MTD_ERASING;
addr_known = true;
while (len) {
WATCHDOG_RESET();
if (ctrlc()) {
addr_known = false;
ret = -EINTR;
goto erase_err;
}
#ifdef CONFIG_SPI_FLASH_BAR
ret = write_bar(nor, addr);
if (ret < 0)
goto erase_err;
#endif
ret = write_enable(nor);
if (ret < 0)
goto erase_err;
ret = spi_nor_erase_sector(nor, addr);
if (ret < 0)
goto erase_err;
addr += ret;
len -= ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto erase_err;
}
addr_known = false;
erase_err:
#ifdef CONFIG_SPI_FLASH_BAR
err = clean_bar(nor);
if (!ret)
ret = err;
#endif
err = write_disable(nor);
if (!ret)
ret = err;
err:
if (ret) {
instr->fail_addr = addr_known ? addr : MTD_FAIL_ADDR_UNKNOWN;
instr->state = MTD_ERASE_FAILED;
} else {
instr->state = MTD_ERASE_DONE;
}
return ret;
}
#ifdef CONFIG_SPI_FLASH_SPANSION
/**
* spansion_erase_non_uniform() - erase non-uniform sectors for Spansion/Cypress
* chips
* @nor: pointer to a 'struct spi_nor'
* @addr: address of the sector to erase
* @opcode_4k: opcode for 4K sector erase
* @ovlsz_top: size of overlaid portion at the top address
* @ovlsz_btm: size of overlaid portion at the bottom address
*
* Erase an address range on the nor chip that can contain 4KB sectors overlaid
* on top and/or bottom. The appropriate erase opcode and size are chosen by
* address to erase and size of overlaid portion.
*
* Return: number of bytes erased on success, -errno otherwise.
*/
static int spansion_erase_non_uniform(struct spi_nor *nor, u32 addr,
u8 opcode_4k, u32 ovlsz_top,
u32 ovlsz_btm)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0),
SPI_MEM_OP_ADDR(nor->addr_width, addr, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_DATA);
struct mtd_info *mtd = &nor->mtd;
u32 erasesize;
int ret;
/* 4KB sectors */
if (op.addr.val < ovlsz_btm ||
op.addr.val >= mtd->size - ovlsz_top) {
op.cmd.opcode = opcode_4k;
erasesize = SZ_4K;
/* Non-overlaid portion in the normal sector at the bottom */
} else if (op.addr.val == ovlsz_btm) {
op.cmd.opcode = nor->erase_opcode;
erasesize = mtd->erasesize - ovlsz_btm;
/* Non-overlaid portion in the normal sector at the top */
} else if (op.addr.val == mtd->size - mtd->erasesize) {
op.cmd.opcode = nor->erase_opcode;
erasesize = mtd->erasesize - ovlsz_top;
/* Normal sectors */
} else {
op.cmd.opcode = nor->erase_opcode;
erasesize = mtd->erasesize;
}
spi_nor_setup_op(nor, &op, nor->write_proto);
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
return erasesize;
}
#endif
#if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
/* Write status register and ensure bits in mask match written values */
static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
{
int ret;
write_enable(nor);
ret = write_sr(nor, status_new);
if (ret)
return ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
ret = read_sr(nor);
if (ret < 0)
return ret;
return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
}
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
uint64_t *len)
{
struct mtd_info *mtd = &nor->mtd;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
int shift = ffs(mask) - 1;
int pow;
if (!(sr & mask)) {
/* No protection */
*ofs = 0;
*len = 0;
} else {
pow = ((sr & mask) ^ mask) >> shift;
*len = mtd->size >> pow;
if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
*ofs = 0;
else
*ofs = mtd->size - *len;
}
}
/*
* Return 1 if the entire region is locked (if @locked is true) or unlocked (if
* @locked is false); 0 otherwise
*/
static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, u64 len,
u8 sr, bool locked)
{
loff_t lock_offs;
uint64_t lock_len;
if (!len)
return 1;
stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
if (locked)
/* Requested range is a sub-range of locked range */
return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
else
/* Requested range does not overlap with locked range */
return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}
static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
u8 sr)
{
return stm_check_lock_status_sr(nor, ofs, len, sr, true);
}
static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
u8 sr)
{
return stm_check_lock_status_sr(nor, ofs, len, sr, false);
}
/*
* Lock a region of the flash. Compatible with ST Micro and similar flash.
* Supports the block protection bits BP{0,1,2} in the status register
* (SR). Does not support these features found in newer SR bitfields:
* - SEC: sector/block protect - only handle SEC=0 (block protect)
* - CMP: complement protect - only support CMP=0 (range is not complemented)
*
* Support for the following is provided conditionally for some flash:
* - TB: top/bottom protect
*
* Sample table portion for 8MB flash (Winbond w25q64fw):
*
* SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
* --------------------------------------------------------------------------
* X | X | 0 | 0 | 0 | NONE | NONE
* 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
* 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
* 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
* 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
* 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
* 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
* X | X | 1 | 1 | 1 | 8 MB | ALL
* ------|-------|-------|-------|-------|---------------|-------------------
* 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
* 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
* 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
* 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
* 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
* 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
*
* Returns negative on errors, 0 on success.
*/
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
struct mtd_info *mtd = &nor->mtd;
int status_old, status_new;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 shift = ffs(mask) - 1, pow, val;
loff_t lock_len;
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
bool use_top;
status_old = read_sr(nor);
if (status_old < 0)
return status_old;
/* If nothing in our range is unlocked, we don't need to do anything */
if (stm_is_locked_sr(nor, ofs, len, status_old))
return 0;
/* If anything below us is unlocked, we can't use 'bottom' protection */
if (!stm_is_locked_sr(nor, 0, ofs, status_old))
can_be_bottom = false;
/* If anything above us is unlocked, we can't use 'top' protection */
if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
status_old))
can_be_top = false;
if (!can_be_bottom && !can_be_top)
return -EINVAL;
/* Prefer top, if both are valid */
use_top = can_be_top;
/* lock_len: length of region that should end up locked */
if (use_top)
lock_len = mtd->size - ofs;
else
lock_len = ofs + len;
/*
* Need smallest pow such that:
*
* 1 / (2^pow) <= (len / size)
*
* so (assuming power-of-2 size) we do:
*
* pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
*/
pow = ilog2(mtd->size) - ilog2(lock_len);
val = mask - (pow << shift);
if (val & ~mask)
return -EINVAL;
/* Don't "lock" with no region! */
if (!(val & mask))
return -EINVAL;
status_new = (status_old & ~mask & ~SR_TB) | val;
/* Disallow further writes if WP pin is asserted */
status_new |= SR_SRWD;
if (!use_top)
status_new |= SR_TB;
/* Don't bother if they're the same */
if (status_new == status_old)
return 0;
/* Only modify protection if it will not unlock other areas */
if ((status_new & mask) < (status_old & mask))
return -EINVAL;
return write_sr_and_check(nor, status_new, mask);
}
/*
* Unlock a region of the flash. See stm_lock() for more info
*
* Returns negative on errors, 0 on success.
*/
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
struct mtd_info *mtd = &nor->mtd;
int status_old, status_new;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 shift = ffs(mask) - 1, pow, val;
loff_t lock_len;
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
bool use_top;
status_old = read_sr(nor);
if (status_old < 0)
return status_old;
/* If nothing in our range is locked, we don't need to do anything */
if (stm_is_unlocked_sr(nor, ofs, len, status_old))
return 0;
/* If anything below us is locked, we can't use 'top' protection */
if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
can_be_top = false;
/* If anything above us is locked, we can't use 'bottom' protection */
if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
status_old))
can_be_bottom = false;
if (!can_be_bottom && !can_be_top)
return -EINVAL;
/* Prefer top, if both are valid */
use_top = can_be_top;
/* lock_len: length of region that should remain locked */
if (use_top)
lock_len = mtd->size - (ofs + len);
else
lock_len = ofs;
/*
* Need largest pow such that:
*
* 1 / (2^pow) >= (len / size)
*
* so (assuming power-of-2 size) we do:
*
* pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
*/
pow = ilog2(mtd->size) - order_base_2(lock_len);
if (lock_len == 0) {
val = 0; /* fully unlocked */
} else {
val = mask - (pow << shift);
/* Some power-of-two sizes are not supported */
if (val & ~mask)
return -EINVAL;
}
status_new = (status_old & ~mask & ~SR_TB) | val;
/* Don't protect status register if we're fully unlocked */
if (lock_len == 0)
status_new &= ~SR_SRWD;
if (!use_top)
status_new |= SR_TB;
/* Don't bother if they're the same */
if (status_new == status_old)
return 0;
/* Only modify protection if it will not lock other areas */
if ((status_new & mask) > (status_old & mask))
return -EINVAL;
return write_sr_and_check(nor, status_new, mask);
}
/*
* Check if a region of the flash is (completely) locked. See stm_lock() for
* more info.
*
* Returns 1 if entire region is locked, 0 if any portion is unlocked, and
* negative on errors.
*/
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
int status;
status = read_sr(nor);
if (status < 0)
return status;
return stm_is_locked_sr(nor, ofs, len, status);
}
#endif /* CONFIG_SPI_FLASH_STMICRO */
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
{
int tmp;
u8 id[SPI_NOR_MAX_ID_LEN];
const struct flash_info *info;
tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
if (tmp < 0) {
dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
return ERR_PTR(tmp);
}
info = spi_nor_ids;
for (; info->name; info++) {
if (info->id_len) {
if (!memcmp(info->id, id, info->id_len))
return info;
}
}
dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
id[0], id[1], id[2]);
return ERR_PTR(-ENODEV);
}
static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
while (len) {
loff_t addr = from;
size_t read_len = len;
#ifdef CONFIG_SPI_FLASH_BAR
u32 remain_len;
ret = write_bar(nor, addr);
if (ret < 0)
return log_ret(ret);
remain_len = (SZ_16M * (nor->bank_curr + 1)) - addr;
if (len < remain_len)
read_len = len;
else
read_len = remain_len;
#endif
ret = nor->read(nor, addr, read_len, buf);
if (ret == 0) {
/* We shouldn't see 0-length reads */
ret = -EIO;
goto read_err;
}
if (ret < 0)
goto read_err;
*retlen += ret;
buf += ret;
from += ret;
len -= ret;
}
ret = 0;
read_err:
#ifdef CONFIG_SPI_FLASH_BAR
ret = clean_bar(nor);
#endif
return ret;
}
#ifdef CONFIG_SPI_FLASH_SST
/*
* sst26 flash series has its own block protection implementation:
* 4x - 8 KByte blocks - read & write protection bits - upper addresses
* 1x - 32 KByte blocks - write protection bits
* rest - 64 KByte blocks - write protection bits
* 1x - 32 KByte blocks - write protection bits
* 4x - 8 KByte blocks - read & write protection bits - lower addresses
*
* We'll support only per 64k lock/unlock so lower and upper 64 KByte region
* will be treated as single block.
*/
#define SST26_BPR_8K_NUM 4
#define SST26_MAX_BPR_REG_LEN (18 + 1)
#define SST26_BOUND_REG_SIZE ((32 + SST26_BPR_8K_NUM * 8) * SZ_1K)
enum lock_ctl {
SST26_CTL_LOCK,
SST26_CTL_UNLOCK,
SST26_CTL_CHECK
};
static bool sst26_process_bpr(u32 bpr_size, u8 *cmd, u32 bit, enum lock_ctl ctl)
{
switch (ctl) {
case SST26_CTL_LOCK:
cmd[bpr_size - (bit / 8) - 1] |= BIT(bit % 8);
break;
case SST26_CTL_UNLOCK:
cmd[bpr_size - (bit / 8) - 1] &= ~BIT(bit % 8);
break;
case SST26_CTL_CHECK:
return !!(cmd[bpr_size - (bit / 8) - 1] & BIT(bit % 8));
}
return false;
}
/*
* Lock, unlock or check lock status of the flash region of the flash (depending
* on the lock_ctl value)
*/
static int sst26_lock_ctl(struct spi_nor *nor, loff_t ofs, uint64_t len, enum lock_ctl ctl)
{
struct mtd_info *mtd = &nor->mtd;
u32 i, bpr_ptr, rptr_64k, lptr_64k, bpr_size;
bool lower_64k = false, upper_64k = false;
u8 bpr_buff[SST26_MAX_BPR_REG_LEN] = {};
int ret;
/* Check length and offset for 64k alignment */
if ((ofs & (SZ_64K - 1)) || (len & (SZ_64K - 1))) {
dev_err(nor->dev, "length or offset is not 64KiB allighned\n");
return -EINVAL;
}
if (ofs + len > mtd->size) {
dev_err(nor->dev, "range is more than device size: %#llx + %#llx > %#llx\n",
ofs, len, mtd->size);
return -EINVAL;
}
/* SST26 family has only 16 Mbit, 32 Mbit and 64 Mbit IC */
if (mtd->size != SZ_2M &&
mtd->size != SZ_4M &&
mtd->size != SZ_8M)
return -EINVAL;
bpr_size = 2 + (mtd->size / SZ_64K / 8);
ret = nor->read_reg(nor, SPINOR_OP_READ_BPR, bpr_buff, bpr_size);
if (ret < 0) {
dev_err(nor->dev, "fail to read block-protection register\n");
return ret;
}
rptr_64k = min_t(u32, ofs + len, mtd->size - SST26_BOUND_REG_SIZE);
lptr_64k = max_t(u32, ofs, SST26_BOUND_REG_SIZE);
upper_64k = ((ofs + len) > (mtd->size - SST26_BOUND_REG_SIZE));
lower_64k = (ofs < SST26_BOUND_REG_SIZE);
/* Lower bits in block-protection register are about 64k region */
bpr_ptr = lptr_64k / SZ_64K - 1;
/* Process 64K blocks region */
while (lptr_64k < rptr_64k) {
if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
return EACCES;
bpr_ptr++;
lptr_64k += SZ_64K;
}
/* 32K and 8K region bits in BPR are after 64k region bits */
bpr_ptr = (mtd->size - 2 * SST26_BOUND_REG_SIZE) / SZ_64K;
/* Process lower 32K block region */
if (lower_64k)
if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
return EACCES;
bpr_ptr++;
/* Process upper 32K block region */
if (upper_64k)
if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
return EACCES;
bpr_ptr++;
/* Process lower 8K block regions */
for (i = 0; i < SST26_BPR_8K_NUM; i++) {
if (lower_64k)
if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
return EACCES;
/* In 8K area BPR has both read and write protection bits */
bpr_ptr += 2;
}
/* Process upper 8K block regions */
for (i = 0; i < SST26_BPR_8K_NUM; i++) {
if (upper_64k)
if (sst26_process_bpr(bpr_size, bpr_buff, bpr_ptr, ctl))
return EACCES;
/* In 8K area BPR has both read and write protection bits */
bpr_ptr += 2;
}
/* If we check region status we don't need to write BPR back */
if (ctl == SST26_CTL_CHECK)
return 0;
ret = nor->write_reg(nor, SPINOR_OP_WRITE_BPR, bpr_buff, bpr_size);
if (ret < 0) {
dev_err(nor->dev, "fail to write block-protection register\n");
return ret;
}
return 0;
}
static int sst26_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
return sst26_lock_ctl(nor, ofs, len, SST26_CTL_UNLOCK);
}
static int sst26_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
return sst26_lock_ctl(nor, ofs, len, SST26_CTL_LOCK);
}
/*
* Returns EACCES (positive value) if region is locked, 0 if region is unlocked,
* and negative on errors.
*/
static int sst26_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
/*
* is_locked function is used for check before reading or erasing flash
* region, so offset and length might be not 64k allighned, so adjust
* them to be 64k allighned as sst26_lock_ctl works only with 64k
* allighned regions.
*/
ofs -= ofs & (SZ_64K - 1);
len = len & (SZ_64K - 1) ? (len & ~(SZ_64K - 1)) + SZ_64K : len;
return sst26_lock_ctl(nor, ofs, len, SST26_CTL_CHECK);
}
static int sst_write_byteprogram(struct spi_nor *nor, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
size_t actual;
int ret = 0;
for (actual = 0; actual < len; actual++) {
nor->program_opcode = SPINOR_OP_BP;
write_enable(nor);
/* write one byte. */
ret = nor->write(nor, to, 1, buf + actual);
if (ret < 0)
goto sst_write_err;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
to++;
}
sst_write_err:
write_disable(nor);
return ret;
}
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
struct spi_slave *spi = nor->spi;
size_t actual;
int ret;
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
if (spi->mode & SPI_TX_BYTE)
return sst_write_byteprogram(nor, to, len, retlen, buf);
write_enable(nor);
nor->sst_write_second = false;
actual = to % 2;
/* Start write from odd address. */
if (actual) {
nor->program_opcode = SPINOR_OP_BP;
/* write one byte. */
ret = nor->write(nor, to, 1, buf);
if (ret < 0)
goto sst_write_err;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
}
to += actual;
/* Write out most of the data here. */
for (; actual < len - 1; actual += 2) {
nor->program_opcode = SPINOR_OP_AAI_WP;
/* write two bytes. */
ret = nor->write(nor, to, 2, buf + actual);
if (ret < 0)
goto sst_write_err;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
to += 2;
nor->sst_write_second = true;
}
nor->sst_write_second = false;
write_disable(nor);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
/* Write out trailing byte if it exists. */
if (actual != len) {
write_enable(nor);
nor->program_opcode = SPINOR_OP_BP;
ret = nor->write(nor, to, 1, buf + actual);
if (ret < 0)
goto sst_write_err;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
write_disable(nor);
actual += 1;
}
sst_write_err:
*retlen += actual;
return ret;
}
#endif
/*
* Write an address range to the nor chip. Data must be written in
* FLASH_PAGESIZE chunks. The address range may be any size provided
* it is within the physical boundaries.
*/
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
size_t page_offset, page_remain, i;
ssize_t ret;
#ifdef CONFIG_SPI_FLASH_SST
/* sst nor chips use AAI word program */
if (nor->info->flags & SST_WRITE)
return sst_write(mtd, to, len, retlen, buf);
#endif
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
for (i = 0; i < len; ) {
ssize_t written;
loff_t addr = to + i;
WATCHDOG_RESET();
/*
* If page_size is a power of two, the offset can be quickly
* calculated with an AND operation. On the other cases we
* need to do a modulus operation (more expensive).
*/
if (is_power_of_2(nor->page_size)) {
page_offset = addr & (nor->page_size - 1);
} else {
u64 aux = addr;
page_offset = do_div(aux, nor->page_size);
}
/* the size of data remaining on the first page */
page_remain = min_t(size_t,
nor->page_size - page_offset, len - i);
#ifdef CONFIG_SPI_FLASH_BAR
ret = write_bar(nor, addr);
if (ret < 0)
return ret;
#endif
write_enable(nor);
ret = nor->write(nor, addr, page_remain, buf + i);
if (ret < 0)
goto write_err;
written = ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto write_err;
*retlen += written;
i += written;
}
write_err:
#ifdef CONFIG_SPI_FLASH_BAR
ret = clean_bar(nor);
#endif
return ret;
}
#if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
/**
* macronix_quad_enable() - set QE bit in Status Register.
* @nor: pointer to a 'struct spi_nor'
*
* Set the Quad Enable (QE) bit in the Status Register.
*
* bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
*
* Return: 0 on success, -errno otherwise.
*/
static int macronix_quad_enable(struct spi_nor *nor)
{
int ret, val;
val = read_sr(nor);
if (val < 0)
return val;
if (val & SR_QUAD_EN_MX)
return 0;
write_enable(nor);
write_sr(nor, val | SR_QUAD_EN_MX);
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
ret = read_sr(nor);
if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
dev_err(nor->dev, "Macronix Quad bit not set\n");
return -EINVAL;
}
return 0;
}
#endif
#ifdef CONFIG_SPI_FLASH_SPANSION
/**
* spansion_quad_enable_volatile() - enable Quad I/O mode in volatile register.
* @nor: pointer to a 'struct spi_nor'
* @addr_base: base address of register (can be >0 in multi-die parts)
* @dummy: number of dummy cycles for register read
*
* It is recommended to update volatile registers in the field application due
* to a risk of the non-volatile registers corruption by power interrupt. This
* function sets Quad Enable bit in CFR1 volatile.
*
* Return: 0 on success, -errno otherwise.
*/
static int spansion_quad_enable_volatile(struct spi_nor *nor, u32 addr_base,
u8 dummy)
{
u32 addr = addr_base + SPINOR_REG_ADDR_CFR1V;
u8 cr;
int ret;
/* Check current Quad Enable bit value. */
ret = spansion_read_any_reg(nor, addr, dummy, &cr);
if (ret < 0) {
dev_dbg(nor->dev,
"error while reading configuration register\n");
return -EINVAL;
}
if (cr & CR_QUAD_EN_SPAN)
return 0;
cr |= CR_QUAD_EN_SPAN;
write_enable(nor);
ret = spansion_write_any_reg(nor, addr, cr);
if (ret < 0) {
dev_dbg(nor->dev,
"error while writing configuration register\n");
return -EINVAL;
}
/* Read back and check it. */
ret = spansion_read_any_reg(nor, addr, dummy, &cr);
if (ret || !(cr & CR_QUAD_EN_SPAN)) {
dev_dbg(nor->dev, "Spansion Quad bit not set\n");
return -EINVAL;
}
return 0;
}
#endif
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
/*
* Write status Register and configuration register with 2 bytes
* The first byte will be written to the status register, while the
* second byte will be written to the configuration register.
* Return negative if error occurred.
*/
static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
{
int ret;
write_enable(nor);
ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
if (ret < 0) {
dev_dbg(nor->dev,
"error while writing configuration register\n");
return -EINVAL;
}
ret = spi_nor_wait_till_ready(nor);
if (ret) {
dev_dbg(nor->dev,
"timeout while writing configuration register\n");
return ret;
}
return 0;
}
/**
* spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
* @nor: pointer to a 'struct spi_nor'
*
* Set the Quad Enable (QE) bit in the Configuration Register.
* This function should be used with QSPI memories supporting the Read
* Configuration Register (35h) instruction.
*
* bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
* memories.
*
* Return: 0 on success, -errno otherwise.
*/
static int spansion_read_cr_quad_enable(struct spi_nor *nor)
{
u8 sr_cr[2];
int ret;
/* Check current Quad Enable bit value. */
ret = read_cr(nor);
if (ret < 0) {
dev_dbg(nor->dev,
"error while reading configuration register\n");
return -EINVAL;
}
if (ret & CR_QUAD_EN_SPAN)
return 0;
sr_cr[1] = ret | CR_QUAD_EN_SPAN;
/* Keep the current value of the Status Register. */
ret = read_sr(nor);
if (ret < 0) {
dev_dbg(nor->dev, "error while reading status register\n");
return -EINVAL;
}
sr_cr[0] = ret;
ret = write_sr_cr(nor, sr_cr);
if (ret)
return ret;
/* Read back and check it. */
ret = read_cr(nor);
if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
dev_dbg(nor->dev, "Spansion Quad bit not set\n");
return -EINVAL;
}
return 0;
}
#if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
/**
* spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
* @nor: pointer to a 'struct spi_nor'
*
* Set the Quad Enable (QE) bit in the Configuration Register.
* This function should be used with QSPI memories not supporting the Read
* Configuration Register (35h) instruction.
*
* bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
* memories.
*
* Return: 0 on success, -errno otherwise.
*/
static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
{
u8 sr_cr[2];
int ret;
/* Keep the current value of the Status Register. */
ret = read_sr(nor);
if (ret < 0) {
dev_dbg(nor->dev, "error while reading status register\n");
return -EINVAL;
}
sr_cr[0] = ret;
sr_cr[1] = CR_QUAD_EN_SPAN;
return write_sr_cr(nor, sr_cr);
}
#endif /* CONFIG_SPI_FLASH_SFDP_SUPPORT */
#endif /* CONFIG_SPI_FLASH_SPANSION */
static void
spi_nor_set_read_settings(struct spi_nor_read_command *read,
u8 num_mode_clocks,
u8 num_wait_states,
u8 opcode,
enum spi_nor_protocol proto)
{
read->num_mode_clocks = num_mode_clocks;
read->num_wait_states = num_wait_states;
read->opcode = opcode;
read->proto = proto;
}
static void
spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
u8 opcode,
enum spi_nor_protocol proto)
{
pp->opcode = opcode;
pp->proto = proto;
}
#if CONFIG_IS_ENABLED(SPI_FLASH_SFDP_SUPPORT)
/*
* Serial Flash Discoverable Parameters (SFDP) parsing.
*/
/**
* spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the SFDP area to start reading data from
* @len: number of bytes to read
* @buf: buffer where the SFDP data are copied into (dma-safe memory)
*
* Whatever the actual numbers of bytes for address and dummy cycles are
* for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
* followed by a 3-byte address and 8 dummy clock cycles.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
size_t len, void *buf)
{
u8 addr_width, read_opcode, read_dummy;
int ret;
read_opcode = nor->read_opcode;
addr_width = nor->addr_width;
read_dummy = nor->read_dummy;
nor->read_opcode = SPINOR_OP_RDSFDP;
nor->addr_width = 3;
nor->read_dummy = 8;
while (len) {
ret = nor->read(nor, addr, len, (u8 *)buf);
if (!ret || ret > len) {
ret = -EIO;
goto read_err;
}
if (ret < 0)
goto read_err;
buf += ret;
addr += ret;
len -= ret;
}
ret = 0;
read_err:
nor->read_opcode = read_opcode;
nor->addr_width = addr_width;
nor->read_dummy = read_dummy;
return ret;
}
/* Fast Read settings. */
static void
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
u16 half,
enum spi_nor_protocol proto)
{
read->num_mode_clocks = (half >> 5) & 0x07;
read->num_wait_states = (half >> 0) & 0x1f;
read->opcode = (half >> 8) & 0xff;
read->proto = proto;
}
struct sfdp_bfpt_read {
/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
u32 hwcaps;
/*
* The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
* whether the Fast Read x-y-z command is supported.
*/
u32 supported_dword;
u32 supported_bit;
/*
* The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
* encodes the op code, the number of mode clocks and the number of wait
* states to be used by Fast Read x-y-z command.
*/
u32 settings_dword;
u32 settings_shift;
/* The SPI protocol for this Fast Read x-y-z command. */
enum spi_nor_protocol proto;
};
static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
/* Fast Read 1-1-2 */
{
SNOR_HWCAPS_READ_1_1_2,
BFPT_DWORD(1), BIT(16), /* Supported bit */
BFPT_DWORD(4), 0, /* Settings */
SNOR_PROTO_1_1_2,
},
/* Fast Read 1-2-2 */
{
SNOR_HWCAPS_READ_1_2_2,
BFPT_DWORD(1), BIT(20), /* Supported bit */
BFPT_DWORD(4), 16, /* Settings */
SNOR_PROTO_1_2_2,
},
/* Fast Read 2-2-2 */
{
SNOR_HWCAPS_READ_2_2_2,
BFPT_DWORD(5), BIT(0), /* Supported bit */
BFPT_DWORD(6), 16, /* Settings */
SNOR_PROTO_2_2_2,
},
/* Fast Read 1-1-4 */
{
SNOR_HWCAPS_READ_1_1_4,
BFPT_DWORD(1), BIT(22), /* Supported bit */
BFPT_DWORD(3), 16, /* Settings */
SNOR_PROTO_1_1_4,
},
/* Fast Read 1-4-4 */
{
SNOR_HWCAPS_READ_1_4_4,
BFPT_DWORD(1), BIT(21), /* Supported bit */
BFPT_DWORD(3), 0, /* Settings */
SNOR_PROTO_1_4_4,
},
/* Fast Read 4-4-4 */
{
SNOR_HWCAPS_READ_4_4_4,
BFPT_DWORD(5), BIT(4), /* Supported bit */
BFPT_DWORD(7), 16, /* Settings */
SNOR_PROTO_4_4_4,
},
};
struct sfdp_bfpt_erase {
/*
* The half-word at offset <shift> in DWORD <dwoard> encodes the
* op code and erase sector size to be used by Sector Erase commands.
*/
u32 dword;
u32 shift;
};
static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
/* Erase Type 1 in DWORD8 bits[15:0] */
{BFPT_DWORD(8), 0},
/* Erase Type 2 in DWORD8 bits[31:16] */
{BFPT_DWORD(8), 16},
/* Erase Type 3 in DWORD9 bits[15:0] */
{BFPT_DWORD(9), 0},
/* Erase Type 4 in DWORD9 bits[31:16] */
{BFPT_DWORD(9), 16},
};
static int spi_nor_hwcaps_read2cmd(u32 hwcaps);
static int
spi_nor_post_bfpt_fixups(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params)
{
if (nor->fixups && nor->fixups->post_bfpt)
return nor->fixups->post_bfpt(nor, bfpt_header, bfpt, params);
return 0;
}
/**
* spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
* @nor: pointer to a 'struct spi_nor'
* @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing
* the Basic Flash Parameter Table length and version
* @params: pointer to the 'struct spi_nor_flash_parameter' to be
* filled
*
* The Basic Flash Parameter Table is the main and only mandatory table as
* defined by the SFDP (JESD216) specification.
* It provides us with the total size (memory density) of the data array and
* the number of address bytes for Fast Read, Page Program and Sector Erase
* commands.
* For Fast READ commands, it also gives the number of mode clock cycles and
* wait states (regrouped in the number of dummy clock cycles) for each
* supported instruction op code.
* For Page Program, the page size is now available since JESD216 rev A, however
* the supported instruction op codes are still not provided.
* For Sector Erase commands, this table stores the supported instruction op
* codes and the associated sector sizes.
* Finally, the Quad Enable Requirements (QER) are also available since JESD216
* rev A. The QER bits encode the manufacturer dependent procedure to be
* executed to set the Quad Enable (QE) bit in some internal register of the
* Quad SPI memory. Indeed the QE bit, when it exists, must be set before
* sending any Quad SPI command to the memory. Actually, setting the QE bit
* tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
* and IO3 hence enabling 4 (Quad) I/O lines.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_bfpt(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
struct spi_nor_flash_parameter *params)
{
struct mtd_info *mtd = &nor->mtd;
struct sfdp_bfpt bfpt;
size_t len;
int i, cmd, err;
u32 addr;
u16 half;
/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
return -EINVAL;
/* Read the Basic Flash Parameter Table. */
len = min_t(size_t, sizeof(bfpt),
bfpt_header->length * sizeof(u32));
addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
memset(&bfpt, 0, sizeof(bfpt));
err = spi_nor_read_sfdp(nor, addr, len, &bfpt);
if (err < 0)
return err;
/* Fix endianness of the BFPT DWORDs. */
for (i = 0; i < BFPT_DWORD_MAX; i++)
bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
/* Number of address bytes. */
switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
nor->addr_width = 3;
break;
case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
nor->addr_width = 4;
break;
default:
break;
}
/* Flash Memory Density (in bits). */
params->size = bfpt.dwords[BFPT_DWORD(2)];
if (params->size & BIT(31)) {
params->size &= ~BIT(31);
/*
* Prevent overflows on params->size. Anyway, a NOR of 2^64
* bits is unlikely to exist so this error probably means
* the BFPT we are reading is corrupted/wrong.
*/
if (params->size > 63)
return -EINVAL;
params->size = 1ULL << params->size;
} else {
params->size++;
}
params->size >>= 3; /* Convert to bytes. */
/* Fast Read settings. */
for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
struct spi_nor_read_command *read;
if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
params->hwcaps.mask &= ~rd->hwcaps;
continue;
}
params->hwcaps.mask |= rd->hwcaps;
cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
read = &params->reads[cmd];
half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
}
/* Sector Erase settings. */
for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
u32 erasesize;
u8 opcode;
half = bfpt.dwords[er->dword] >> er->shift;
erasesize = half & 0xff;
/* erasesize == 0 means this Erase Type is not supported. */
if (!erasesize)
continue;
erasesize = 1U << erasesize;
opcode = (half >> 8) & 0xff;
#ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
if (erasesize == SZ_4K) {
nor->erase_opcode = opcode;
mtd->erasesize = erasesize;
break;
}
#endif
if (!mtd->erasesize || mtd->erasesize < erasesize) {
nor->erase_opcode = opcode;
mtd->erasesize = erasesize;
}
}
/* Stop here if not JESD216 rev A or later. */
if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
params);
/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
params->page_size = bfpt.dwords[BFPT_DWORD(11)];
params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
params->page_size = 1U << params->page_size;
/* Quad Enable Requirements. */
switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
case BFPT_DWORD15_QER_NONE:
params->quad_enable = NULL;
break;
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
params->quad_enable = spansion_no_read_cr_quad_enable;
break;
#endif
#if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
case BFPT_DWORD15_QER_SR1_BIT6:
params->quad_enable = macronix_quad_enable;
break;
#endif
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
case BFPT_DWORD15_QER_SR2_BIT1:
params->quad_enable = spansion_read_cr_quad_enable;
break;
#endif
default:
dev_dbg(nor->dev, "BFPT QER reserved value used\n");
break;
}
/* Soft Reset support. */
if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SOFT_RST)
nor->flags |= SNOR_F_SOFT_RESET;
/* Stop here if JESD216 rev B. */
if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
params);
/* 8D-8D-8D command extension. */
switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
case BFPT_DWORD18_CMD_EXT_REP:
nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
break;
case BFPT_DWORD18_CMD_EXT_INV:
nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
break;
case BFPT_DWORD18_CMD_EXT_RES:
return -EINVAL;
case BFPT_DWORD18_CMD_EXT_16B:
dev_err(nor->dev, "16-bit opcodes not supported\n");
return -ENOTSUPP;
}
return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params);
}
/**
* spi_nor_parse_microchip_sfdp() - parse the Microchip manufacturer specific
* SFDP table.
* @nor: pointer to a 'struct spi_nor'.
* @param_header: pointer to the SFDP parameter header.
*
* Return: 0 on success, -errno otherwise.
*/
static int
spi_nor_parse_microchip_sfdp(struct spi_nor *nor,
const struct sfdp_parameter_header *param_header)
{
size_t size;
u32 addr;
int ret;
size = param_header->length * sizeof(u32);
addr = SFDP_PARAM_HEADER_PTP(param_header);
nor->manufacturer_sfdp = devm_kmalloc(nor->dev, size, GFP_KERNEL);
if (!nor->manufacturer_sfdp)
return -ENOMEM;
ret = spi_nor_read_sfdp(nor, addr, size, nor->manufacturer_sfdp);
return ret;
}
/**
* spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
* @nor: pointer to a 'struct spi_nor'
* @profile1_header: pointer to the 'struct sfdp_parameter_header' describing
* the 4-Byte Address Instruction Table length and version.
* @params: pointer to the 'struct spi_nor_flash_parameter' to be.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_profile1(struct spi_nor *nor,
const struct sfdp_parameter_header *profile1_header,
struct spi_nor_flash_parameter *params)
{
u32 *table, opcode, addr;
size_t len;
int ret, i;
u8 dummy;
len = profile1_header->length * sizeof(*table);
table = kmalloc(len, GFP_KERNEL);
if (!table)
return -ENOMEM;
addr = SFDP_PARAM_HEADER_PTP(profile1_header);
ret = spi_nor_read_sfdp(nor, addr, len, table);
if (ret)
goto out;
/* Fix endianness of the table DWORDs. */
for (i = 0; i < profile1_header->length; i++)
table[i] = le32_to_cpu(table[i]);
/* Get 8D-8D-8D fast read opcode and dummy cycles. */
opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, table[0]);
/*
* We don't know what speed the controller is running at. Find the
* dummy cycles for the fastest frequency the flash can run at to be
* sure we are never short of dummy cycles. A value of 0 means the
* frequency is not supported.
*
* Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
* flashes set the correct value if needed in their fixup hooks.
*/
dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, table[3]);
if (!dummy)
dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, table[4]);
if (!dummy)
dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, table[4]);
if (!dummy)
dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, table[4]);
if (!dummy)
dummy = PROFILE1_DUMMY_DEFAULT;
/* Round up to an even value to avoid tripping controllers up. */
dummy = ROUND_UP_TO(dummy, 2);
/* Update the fast read settings. */
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_8_8_8_DTR],
0, dummy, opcode,
SNOR_PROTO_8_8_8_DTR);
/*
* Set the Read Status Register dummy cycles and dummy address bytes.
*/
if (table[0] & PROFILE1_DWORD1_RDSR_DUMMY)
params->rdsr_dummy = 8;
else
params->rdsr_dummy = 4;
if (table[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
params->rdsr_addr_nbytes = 4;
else
params->rdsr_addr_nbytes = 0;
out:
kfree(table);
return ret;
}
/**
* spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
* @nor: pointer to a 'struct spi_nor'
* @params: pointer to the 'struct spi_nor_flash_parameter' to be
* filled
*
* The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
* specification. This is a standard which tends to supported by almost all
* (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
* runtime the main parameters needed to perform basic SPI flash operations such
* as Fast Read, Page Program or Sector Erase commands.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_sfdp(struct spi_nor *nor,
struct spi_nor_flash_parameter *params)
{
const struct sfdp_parameter_header *param_header, *bfpt_header;
struct sfdp_parameter_header *param_headers = NULL;
struct sfdp_header header;
size_t psize;
int i, err;
/* Get the SFDP header. */
err = spi_nor_read_sfdp(nor, 0, sizeof(header), &header);
if (err < 0)
return err;
/* Check the SFDP header version. */
if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
header.major != SFDP_JESD216_MAJOR)
return -EINVAL;
/*
* Verify that the first and only mandatory parameter header is a
* Basic Flash Parameter Table header as specified in JESD216.
*/
bfpt_header = &header.bfpt_header;
if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
bfpt_header->major != SFDP_JESD216_MAJOR)
return -EINVAL;
/*
* Allocate memory then read all parameter headers with a single
* Read SFDP command. These parameter headers will actually be parsed
* twice: a first time to get the latest revision of the basic flash
* parameter table, then a second time to handle the supported optional
* tables.
* Hence we read the parameter headers once for all to reduce the
* processing time. Also we use kmalloc() instead of devm_kmalloc()
* because we don't need to keep these parameter headers: the allocated
* memory is always released with kfree() before exiting this function.
*/
if (header.nph) {
psize = header.nph * sizeof(*param_headers);
param_headers = kmalloc(psize, GFP_KERNEL);
if (!param_headers)
return -ENOMEM;
err = spi_nor_read_sfdp(nor, sizeof(header),
psize, param_headers);
if (err < 0) {
dev_err(nor->dev,
"failed to read SFDP parameter headers\n");
goto exit;
}
}
/*
* Check other parameter headers to get the latest revision of
* the basic flash parameter table.
*/
for (i = 0; i < header.nph; i++) {
param_header = &param_headers[i];
if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
param_header->major == SFDP_JESD216_MAJOR &&
(param_header->minor > bfpt_header->minor ||
(param_header->minor == bfpt_header->minor &&
param_header->length > bfpt_header->length)))
bfpt_header = param_header;
}
err = spi_nor_parse_bfpt(nor, bfpt_header, params);
if (err)
goto exit;
/* Parse other parameter headers. */
for (i = 0; i < header.nph; i++) {
param_header = &param_headers[i];
switch (SFDP_PARAM_HEADER_ID(param_header)) {
case SFDP_SECTOR_MAP_ID:
dev_info(nor->dev,
"non-uniform erase sector maps are not supported yet.\n");
break;
case SFDP_SST_ID:
err = spi_nor_parse_microchip_sfdp(nor, param_header);
break;
case SFDP_PROFILE1_ID:
err = spi_nor_parse_profile1(nor, param_header, params);
break;
default:
break;
}
if (err) {
dev_warn(nor->dev,
"Failed to parse optional parameter table: %04x\n",
SFDP_PARAM_HEADER_ID(param_header));
/*
* Let's not drop all information we extracted so far
* if optional table parsers fail. In case of failing,
* each optional parser is responsible to roll back to
* the previously known spi_nor data.
*/
err = 0;
}
}
exit:
kfree(param_headers);
return err;
}
#else
static int spi_nor_parse_sfdp(struct spi_nor *nor,
struct spi_nor_flash_parameter *params)
{
return -EINVAL;
}
#endif /* SPI_FLASH_SFDP_SUPPORT */
/**
* spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
* after SFDP has been parsed (is also called for SPI NORs that do not
* support RDSFDP).
* @nor: pointer to a 'struct spi_nor'
*
* Typically used to tweak various parameters that could not be extracted by
* other means (i.e. when information provided by the SFDP/flash_info tables
* are incomplete or wrong).
*/
static void spi_nor_post_sfdp_fixups(struct spi_nor *nor,
struct spi_nor_flash_parameter *params)
{
if (nor->fixups && nor->fixups->post_sfdp)
nor->fixups->post_sfdp(nor, params);
}
static void spi_nor_default_init_fixups(struct spi_nor *nor)
{
if (nor->fixups && nor->fixups->default_init)
nor->fixups->default_init(nor);
}
static int spi_nor_init_params(struct spi_nor *nor,
const struct flash_info *info,
struct spi_nor_flash_parameter *params)
{
/* Set legacy flash parameters as default. */
memset(params, 0, sizeof(*params));
/* Set SPI NOR sizes. */
params->size = info->sector_size * info->n_sectors;
params->page_size = info->page_size;
if (!(info->flags & SPI_NOR_NO_FR)) {
/* Default to Fast Read for DT and non-DT platform devices. */
params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
/* Mask out Fast Read if not requested at DT instantiation. */
#if CONFIG_IS_ENABLED(DM_SPI)
if (!ofnode_read_bool(dev_ofnode(nor->spi->dev),
"m25p,fast-read"))
params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
#endif
}
/* (Fast) Read settings. */
params->hwcaps.mask |= SNOR_HWCAPS_READ;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
0, 0, SPINOR_OP_READ,
SNOR_PROTO_1_1_1);
if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
0, 8, SPINOR_OP_READ_FAST,
SNOR_PROTO_1_1_1);
if (info->flags & SPI_NOR_DUAL_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
0, 8, SPINOR_OP_READ_1_1_2,
SNOR_PROTO_1_1_2);
}
if (info->flags & SPI_NOR_QUAD_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
0, 8, SPINOR_OP_READ_1_1_4,
SNOR_PROTO_1_1_4);
}
if (info->flags & SPI_NOR_OCTAL_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
0, 8, SPINOR_OP_READ_1_1_8,
SNOR_PROTO_1_1_8);
}
if (info->flags & SPI_NOR_OCTAL_DTR_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_8_8_8_DTR],
0, 20, SPINOR_OP_READ_FAST,
SNOR_PROTO_8_8_8_DTR);
}
/* Page Program settings. */
params->hwcaps.mask |= SNOR_HWCAPS_PP;
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
SPINOR_OP_PP, SNOR_PROTO_1_1_1);
/*
* Since xSPI Page Program opcode is backward compatible with
* Legacy SPI, use Legacy SPI opcode there as well.
*/
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
if (info->flags & SPI_NOR_QUAD_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
}
/* Select the procedure to set the Quad Enable bit. */
if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
SNOR_HWCAPS_PP_QUAD)) {
switch (JEDEC_MFR(info)) {
#if defined(CONFIG_SPI_FLASH_MACRONIX) || defined(CONFIG_SPI_FLASH_ISSI)
case SNOR_MFR_MACRONIX:
case SNOR_MFR_ISSI:
params->quad_enable = macronix_quad_enable;
break;
#endif
case SNOR_MFR_ST:
case SNOR_MFR_MICRON:
break;
default:
#if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
/* Kept only for backward compatibility purpose. */
params->quad_enable = spansion_read_cr_quad_enable;
#endif
break;
}
}
spi_nor_default_init_fixups(nor);
/* Override the parameters with data read from SFDP tables. */
nor->addr_width = 0;
nor->mtd.erasesize = 0;
if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_OCTAL_DTR_READ)) &&
!(info->flags & SPI_NOR_SKIP_SFDP)) {
struct spi_nor_flash_parameter sfdp_params;
memcpy(&sfdp_params, params, sizeof(sfdp_params));
if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
nor->addr_width = 0;
nor->mtd.erasesize = 0;
} else {
memcpy(params, &sfdp_params, sizeof(*params));
}
}
spi_nor_post_sfdp_fixups(nor, params);
return 0;
}
static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
{
size_t i;
for (i = 0; i < size; i++)
if (table[i][0] == (int)hwcaps)
return table[i][1];
return -EINVAL;
}
static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
{
static const int hwcaps_read2cmd[][2] = {
{ SNOR_HWCAPS_READ, SNOR_CMD_READ },
{ SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
{ SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
{ SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
{ SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
{ SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
{ SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
{ SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
{ SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
{ SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
{ SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
{ SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
{ SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
{ SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
{ SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
{ SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR },
};
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
ARRAY_SIZE(hwcaps_read2cmd));
}
static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
{
static const int hwcaps_pp2cmd[][2] = {
{ SNOR_HWCAPS_PP, SNOR_CMD_PP },
{ SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
{ SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
{ SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
{ SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
{ SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
{ SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
{ SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR },
};
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
ARRAY_SIZE(hwcaps_pp2cmd));
}
#ifdef CONFIG_SPI_FLASH_SMART_HWCAPS
/**
* spi_nor_check_op - check if the operation is supported by controller
* @nor: pointer to a 'struct spi_nor'
* @op: pointer to op template to be checked
*
* Returns 0 if operation is supported, -ENOTSUPP otherwise.
*/
static int spi_nor_check_op(struct spi_nor *nor,
struct spi_mem_op *op)
{
/*
* First test with 4 address bytes. The opcode itself might be a 3B
* addressing opcode but we don't care, because SPI controller
* implementation should not check the opcode, but just the sequence.
*/
op->addr.nbytes = 4;
if (!spi_mem_supports_op(nor->spi, op)) {
if (nor->mtd.size > SZ_16M)
return -ENOTSUPP;
/* If flash size <= 16MB, 3 address bytes are sufficient */
op->addr.nbytes = 3;
if (!spi_mem_supports_op(nor->spi, op))
return -ENOTSUPP;
}
return 0;
}
/**
* spi_nor_check_readop - check if the read op is supported by controller
* @nor: pointer to a 'struct spi_nor'
* @read: pointer to op template to be checked
*
* Returns 0 if operation is supported, -ENOTSUPP otherwise.
*/
static int spi_nor_check_readop(struct spi_nor *nor,
const struct spi_nor_read_command *read)
{
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 0),
SPI_MEM_OP_ADDR(3, 0, 0),
SPI_MEM_OP_DUMMY(1, 0),
SPI_MEM_OP_DATA_IN(2, NULL, 0));
spi_nor_setup_op(nor, &op, read->proto);
op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
op.dummy.buswidth / 8;
if (spi_nor_protocol_is_dtr(nor->read_proto))
op.dummy.nbytes *= 2;
return spi_nor_check_op(nor, &op);
}
/**
* spi_nor_check_pp - check if the page program op is supported by controller
* @nor: pointer to a 'struct spi_nor'
* @pp: pointer to op template to be checked
*
* Returns 0 if operation is supported, -ENOTSUPP otherwise.
*/
static int spi_nor_check_pp(struct spi_nor *nor,
const struct spi_nor_pp_command *pp)
{
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 0),
SPI_MEM_OP_ADDR(3, 0, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(2, NULL, 0));
spi_nor_setup_op(nor, &op, pp->proto);
return spi_nor_check_op(nor, &op);
}
/**
* spi_nor_adjust_hwcaps - Find optimal Read/Write protocol based on SPI
* controller capabilities
* @nor: pointer to a 'struct spi_nor'
* @params: pointer to the 'struct spi_nor_flash_parameter'
* representing SPI NOR flash capabilities
* @hwcaps: pointer to resulting capabilities after adjusting
* according to controller and flash's capability
*
* Discard caps based on what the SPI controller actually supports (using
* spi_mem_supports_op()).
*/
static void
spi_nor_adjust_hwcaps(struct spi_nor *nor,
const struct spi_nor_flash_parameter *params,
u32 *hwcaps)
{
unsigned int cap;
/*
* Start by assuming the controller supports every capability.
* We will mask them after checking what's really supported
* using spi_mem_supports_op().
*/
*hwcaps = SNOR_HWCAPS_ALL & params->hwcaps.mask;
/* X-X-X modes are not supported yet, mask them all. */
*hwcaps &= ~SNOR_HWCAPS_X_X_X;
/*
* If the reset line is broken, we do not want to enter a stateful
* mode.
*/
if (nor->flags & SNOR_F_BROKEN_RESET)
*hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
int rdidx, ppidx;
if (!(*hwcaps & BIT(cap)))
continue;
rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
if (rdidx >= 0 &&
spi_nor_check_readop(nor, &params->reads[rdidx]))
*hwcaps &= ~BIT(cap);
ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
if (ppidx < 0)
continue;
if (spi_nor_check_pp(nor, &params->page_programs[ppidx]))
*hwcaps &= ~BIT(cap);
}
}
#else
/**
* spi_nor_adjust_hwcaps - Find optimal Read/Write protocol based on SPI
* controller capabilities
* @nor: pointer to a 'struct spi_nor'
* @params: pointer to the 'struct spi_nor_flash_parameter'
* representing SPI NOR flash capabilities
* @hwcaps: pointer to resulting capabilities after adjusting
* according to controller and flash's capability
*
* Select caps based on what the SPI controller and SPI flash both support.
*/
static void
spi_nor_adjust_hwcaps(struct spi_nor *nor,
const struct spi_nor_flash_parameter *params,
u32 *hwcaps)
{
struct spi_slave *spi = nor->spi;
u32 ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
SNOR_HWCAPS_READ_4_4_4 |
SNOR_HWCAPS_READ_8_8_8 |
SNOR_HWCAPS_PP_4_4_4 |
SNOR_HWCAPS_PP_8_8_8);
u32 spi_hwcaps = (SNOR_HWCAPS_READ | SNOR_HWCAPS_READ_FAST |
SNOR_HWCAPS_PP);
/* Get the hardware capabilities the SPI controller supports. */
if (spi->mode & SPI_RX_OCTAL) {
spi_hwcaps |= SNOR_HWCAPS_READ_1_1_8;
if (spi->mode & SPI_TX_OCTAL)
spi_hwcaps |= (SNOR_HWCAPS_READ_1_8_8 |
SNOR_HWCAPS_PP_1_1_8 |
SNOR_HWCAPS_PP_1_8_8);
} else if (spi->mode & SPI_RX_QUAD) {
spi_hwcaps |= SNOR_HWCAPS_READ_1_1_4;
if (spi->mode & SPI_TX_QUAD)
spi_hwcaps |= (SNOR_HWCAPS_READ_1_4_4 |
SNOR_HWCAPS_PP_1_1_4 |
SNOR_HWCAPS_PP_1_4_4);
} else if (spi->mode & SPI_RX_DUAL) {
spi_hwcaps |= SNOR_HWCAPS_READ_1_1_2;
if (spi->mode & SPI_TX_DUAL)
spi_hwcaps |= SNOR_HWCAPS_READ_1_2_2;
}
/*
* Keep only the hardware capabilities supported by both the SPI
* controller and the SPI flash memory.
*/
*hwcaps = spi_hwcaps & params->hwcaps.mask;
if (*hwcaps & ignored_mask) {
dev_dbg(nor->dev,
"SPI n-n-n protocols are not supported yet.\n");
*hwcaps &= ~ignored_mask;
}
}
#endif /* CONFIG_SPI_FLASH_SMART_HWCAPS */
static int spi_nor_select_read(struct spi_nor *nor,
const struct spi_nor_flash_parameter *params,
u32 shared_hwcaps)
{
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
const struct spi_nor_read_command *read;
if (best_match < 0)
return -EINVAL;
cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
if (cmd < 0)
return -EINVAL;
read = &params->reads[cmd];
nor->read_opcode = read->opcode;
nor->read_proto = read->proto;
/*
* In the spi-nor framework, we don't need to make the difference
* between mode clock cycles and wait state clock cycles.
* Indeed, the value of the mode clock cycles is used by a QSPI
* flash memory to know whether it should enter or leave its 0-4-4
* (Continuous Read / XIP) mode.
* eXecution In Place is out of the scope of the mtd sub-system.
* Hence we choose to merge both mode and wait state clock cycles
* into the so called dummy clock cycles.
*/
nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
return 0;
}
static int spi_nor_select_pp(struct spi_nor *nor,
const struct spi_nor_flash_parameter *params,
u32 shared_hwcaps)
{
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
const struct spi_nor_pp_command *pp;
if (best_match < 0)
return -EINVAL;
cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
if (cmd < 0)
return -EINVAL;
pp = &params->page_programs[cmd];
nor->program_opcode = pp->opcode;
nor->write_proto = pp->proto;
return 0;
}
static int spi_nor_select_erase(struct spi_nor *nor,
const struct flash_info *info)
{
struct mtd_info *mtd = &nor->mtd;
/* Do nothing if already configured from SFDP. */
if (mtd->erasesize)
return 0;
#ifdef CONFIG_SPI_FLASH_USE_4K_SECTORS
/* prefer "small sector" erase if possible */
if (info->flags & SECT_4K) {
nor->erase_opcode = SPINOR_OP_BE_4K;
mtd->erasesize = 4096;
} else if (info->flags & SECT_4K_PMC) {
nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
mtd->erasesize = 4096;
} else
#endif
{
nor->erase_opcode = SPINOR_OP_SE;
mtd->erasesize = info->sector_size;
}
return 0;
}
static int spi_nor_default_setup(struct spi_nor *nor,
const struct flash_info *info,
const struct spi_nor_flash_parameter *params)
{
u32 shared_mask;
bool enable_quad_io;
int err;
spi_nor_adjust_hwcaps(nor, params, &shared_mask);
/* Select the (Fast) Read command. */
err = spi_nor_select_read(nor, params, shared_mask);
if (err) {
dev_dbg(nor->dev,
"can't select read settings supported by both the SPI controller and memory.\n");
return err;
}
/* Select the Page Program command. */
err = spi_nor_select_pp(nor, params, shared_mask);
if (err) {
dev_dbg(nor->dev,
"can't select write settings supported by both the SPI controller and memory.\n");
return err;
}
/* Select the Sector Erase command. */
err = spi_nor_select_erase(nor, info);
if (err) {
dev_dbg(nor->dev,
"can't select erase settings supported by both the SPI controller and memory.\n");
return err;
}
/* Enable Quad I/O if needed. */
enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
spi_nor_get_protocol_width(nor->write_proto) == 4);
if (enable_quad_io && params->quad_enable)
nor->quad_enable = params->quad_enable;
else
nor->quad_enable = NULL;
return 0;
}
static int spi_nor_setup(struct spi_nor *nor, const struct flash_info *info,
const struct spi_nor_flash_parameter *params)
{
if (!nor->setup)
return 0;
return nor->setup(nor, info, params);
}
#ifdef CONFIG_SPI_FLASH_SPANSION
static int s25hx_t_mdp_ready(struct spi_nor *nor)
{
u32 addr;
int ret;
for (addr = 0; addr < nor->mtd.size; addr += SZ_128M) {
ret = spansion_sr_ready(nor, addr, 0);
if (!ret)
return ret;
}
return 1;
}
static int s25hx_t_quad_enable(struct spi_nor *nor)
{
u32 addr;
int ret;
for (addr = 0; addr < nor->mtd.size; addr += SZ_128M) {
ret = spansion_quad_enable_volatile(nor, addr, 0);
if (ret)
return ret;
}
return 0;
}
static int s25hx_t_erase_non_uniform(struct spi_nor *nor, loff_t addr)
{
/* Support 32 x 4KB sectors at bottom */
return spansion_erase_non_uniform(nor, addr, SPINOR_OP_BE_4K_4B, 0,
SZ_128K);
}
static int s25hx_t_setup(struct spi_nor *nor, const struct flash_info *info,
const struct spi_nor_flash_parameter *params)
{
int ret;
u8 cfr3v;
#ifdef CONFIG_SPI_FLASH_BAR
return -ENOTSUPP; /* Bank Address Register is not supported */
#endif
/*
* Read CFR3V to check if uniform sector is selected. If not, assign an
* erase hook that supports non-uniform erase.
*/
ret = spansion_read_any_reg(nor, SPINOR_REG_ADDR_CFR3V, 0, &cfr3v);
if (ret)
return ret;
if (!(cfr3v & CFR3V_UNHYSA))
nor->erase = s25hx_t_erase_non_uniform;
/*
* For the multi-die package parts, the ready() hook is needed to check
* all dies' status via read any register.
*/
if (nor->mtd.size > SZ_128M)
nor->ready = s25hx_t_mdp_ready;
return spi_nor_default_setup(nor, info, params);
}
static void s25hx_t_default_init(struct spi_nor *nor)
{
nor->setup = s25hx_t_setup;
}
static int s25hx_t_post_bfpt_fixup(struct spi_nor *nor,
const struct sfdp_parameter_header *header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params)
{
int ret;
u32 addr;
u8 cfr3v;
/* erase size in case it is set to 4K from BFPT */
nor->erase_opcode = SPINOR_OP_SE_4B;
nor->mtd.erasesize = nor->info->sector_size;
ret = set_4byte(nor, nor->info, 1);
if (ret)
return ret;
nor->addr_width = 4;
/*
* The page_size is set to 512B from BFPT, but it actually depends on
* the configuration register. Look up the CFR3V and determine the
* page_size. For multi-die package parts, use 512B only when the all
* dies are configured to 512B buffer.
*/
for (addr = 0; addr < params->size; addr += SZ_128M) {
ret = spansion_read_any_reg(nor, addr + SPINOR_REG_ADDR_CFR3V,
0, &cfr3v);
if (ret)
return ret;
if (!(cfr3v & CFR3V_PGMBUF)) {
params->page_size = 256;
return 0;
}
}
params->page_size = 512;
return 0;
}
static void s25hx_t_post_sfdp_fixup(struct spi_nor *nor,
struct spi_nor_flash_parameter *params)
{
/* READ_FAST_4B (0Ch) requires mode cycles*/
params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
/* PP_1_1_4 is not supported */
params->hwcaps.mask &= ~SNOR_HWCAPS_PP_1_1_4;
/* Use volatile register to enable quad */
params->quad_enable = s25hx_t_quad_enable;
}
static struct spi_nor_fixups s25hx_t_fixups = {
.default_init = s25hx_t_default_init,
.post_bfpt = s25hx_t_post_bfpt_fixup,
.post_sfdp = s25hx_t_post_sfdp_fixup,
};
static int s25fl256l_setup(struct spi_nor *nor, const struct flash_info *info,
const struct spi_nor_flash_parameter *params)
{
return -ENOTSUPP; /* Bank Address Register is not supported */
}
static void s25fl256l_default_init(struct spi_nor *nor)
{
nor->setup = s25fl256l_setup;
}
static struct spi_nor_fixups s25fl256l_fixups = {
.default_init = s25fl256l_default_init,
};
#endif
#ifdef CONFIG_SPI_FLASH_S28HS512T
/**
* spi_nor_cypress_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
* @nor: pointer to a 'struct spi_nor'
*
* This also sets the memory access latency cycles to 24 to allow the flash to
* run at up to 200MHz.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_cypress_octal_dtr_enable(struct spi_nor *nor)
{
struct spi_mem_op op;
u8 buf;
u8 addr_width = 3;
int ret;
/* Use 24 dummy cycles for memory array reads. */
ret = write_enable(nor);
if (ret)
return ret;
buf = SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24;
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_CYPRESS_CFR2V, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1, &buf, 1));
ret = spi_mem_exec_op(nor->spi, &op);
if (ret) {
dev_warn(nor->dev,
"failed to set default memory latency value: %d\n",
ret);
return ret;
}
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
nor->read_dummy = 24;
/* Set the octal and DTR enable bits. */
ret = write_enable(nor);
if (ret)
return ret;
buf = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN;
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_CYPRESS_CFR5V, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1, &buf, 1));
ret = spi_mem_exec_op(nor->spi, &op);
if (ret) {
dev_warn(nor->dev, "Failed to enable octal DTR mode\n");
return ret;
}
return 0;
}
static int s28hs512t_erase_non_uniform(struct spi_nor *nor, loff_t addr)
{
/* Factory default configuration: 32 x 4 KiB sectors at bottom. */
return spansion_erase_non_uniform(nor, addr, SPINOR_OP_S28_SE_4K,
0, SZ_128K);
}
static int s28hs512t_setup(struct spi_nor *nor, const struct flash_info *info,
const struct spi_nor_flash_parameter *params)
{
struct spi_mem_op op;
u8 buf;
u8 addr_width = 3;
int ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
/*
* Check CFR3V to check if non-uniform sector mode is selected. If it
* is, set the erase hook to the non-uniform erase procedure.
*/
op = (struct spi_mem_op)
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 1),
SPI_MEM_OP_ADDR(addr_width,
SPINOR_REG_CYPRESS_CFR3V, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(1, &buf, 1));
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
if (!(buf & SPINOR_REG_CYPRESS_CFR3V_UNISECT))
nor->erase = s28hs512t_erase_non_uniform;
return spi_nor_default_setup(nor, info, params);
}
static void s28hs512t_default_init(struct spi_nor *nor)
{
nor->octal_dtr_enable = spi_nor_cypress_octal_dtr_enable;
nor->setup = s28hs512t_setup;
}
static void s28hs512t_post_sfdp_fixup(struct spi_nor *nor,
struct spi_nor_flash_parameter *params)
{
/*
* On older versions of the flash the xSPI Profile 1.0 table has the
* 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
*/
if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
SPINOR_OP_CYPRESS_RD_FAST;
params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
/* This flash is also missing the 4-byte Page Program opcode bit. */
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
/*
* Since xSPI Page Program opcode is backward compatible with
* Legacy SPI, use Legacy SPI opcode there as well.
*/
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
/*
* The xSPI Profile 1.0 table advertises the number of additional
* address bytes needed for Read Status Register command as 0 but the
* actual value for that is 4.
*/
params->rdsr_addr_nbytes = 4;
}
static int s28hs512t_post_bfpt_fixup(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params)
{
struct spi_mem_op op;
u8 buf;
u8 addr_width = 3;
int ret;
/*
* The BFPT table advertises a 512B page size but the page size is
* actually configurable (with the default being 256B). Read from
* CFR3V[4] and set the correct size.
*/
op = (struct spi_mem_op)
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 1),
SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_CYPRESS_CFR3V, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(1, &buf, 1));
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
if (buf & SPINOR_REG_CYPRESS_CFR3V_PGSZ)
params->page_size = 512;
else
params->page_size = 256;
/*
* The BFPT advertises that it supports 4k erases, and the datasheet
* says the same. But 4k erases did not work when testing. So, use 256k
* erases for now.
*/
nor->erase_opcode = SPINOR_OP_SE_4B;
nor->mtd.erasesize = 0x40000;
return 0;
}
static struct spi_nor_fixups s28hs512t_fixups = {
.default_init = s28hs512t_default_init,
.post_sfdp = s28hs512t_post_sfdp_fixup,
.post_bfpt = s28hs512t_post_bfpt_fixup,
};
#endif /* CONFIG_SPI_FLASH_S28HS512T */
#ifdef CONFIG_SPI_FLASH_MT35XU
static int spi_nor_micron_octal_dtr_enable(struct spi_nor *nor)
{
struct spi_mem_op op;
u8 buf;
u8 addr_width = 3;
int ret;
/* Set dummy cycles for Fast Read to the default of 20. */
ret = write_enable(nor);
if (ret)
return ret;
buf = 20;
op = (struct spi_mem_op)
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1),
SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_MT_CFR1V, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1, &buf, 1));
ret = spi_mem_exec_op(nor->spi, &op);
if (ret)
return ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
nor->read_dummy = 20;
ret = write_enable(nor);
if (ret)
return ret;
buf = SPINOR_MT_OCT_DTR;
op = (struct spi_mem_op)
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1),
SPI_MEM_OP_ADDR(addr_width, SPINOR_REG_MT_CFR0V, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1, &buf, 1));
ret = spi_mem_exec_op(nor->spi, &op);
if (ret) {
dev_err(nor->dev, "Failed to enable octal DTR mode\n");
return ret;
}
return 0;
}
static void mt35xu512aba_default_init(struct spi_nor *nor)
{
nor->octal_dtr_enable = spi_nor_micron_octal_dtr_enable;
}
static void mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor,
struct spi_nor_flash_parameter *params)
{
/* Set the Fast Read settings. */
params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_8_8_8_DTR],
0, 20, SPINOR_OP_MT_DTR_RD,
SNOR_PROTO_8_8_8_DTR);
params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
params->rdsr_dummy = 8;
params->rdsr_addr_nbytes = 0;
/*
* The BFPT quad enable field is set to a reserved value so the quad
* enable function is ignored by spi_nor_parse_bfpt(). Make sure we
* disable it.
*/
params->quad_enable = NULL;
}
static struct spi_nor_fixups mt35xu512aba_fixups = {
.default_init = mt35xu512aba_default_init,
.post_sfdp = mt35xu512aba_post_sfdp_fixup,
};
#endif /* CONFIG_SPI_FLASH_MT35XU */
/** spi_nor_octal_dtr_enable() - enable Octal DTR I/O if needed
* @nor: pointer to a 'struct spi_nor'
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_octal_dtr_enable(struct spi_nor *nor)
{
int ret;
if (!nor->octal_dtr_enable)
return 0;
if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
nor->write_proto == SNOR_PROTO_8_8_8_DTR))
return 0;
ret = nor->octal_dtr_enable(nor);
if (ret)
return ret;
nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
return 0;
}
static int spi_nor_init(struct spi_nor *nor)
{
int err;
err = spi_nor_octal_dtr_enable(nor);
if (err) {
dev_dbg(nor->dev, "Octal DTR mode not supported\n");
return err;
}
/*
* Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
* with the software protection bits set
*/
if (IS_ENABLED(CONFIG_SPI_FLASH_UNLOCK_ALL) &&
(JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
nor->info->flags & SPI_NOR_HAS_LOCK)) {
write_enable(nor);
write_sr(nor, 0);
spi_nor_wait_till_ready(nor);
}
if (nor->quad_enable) {
err = nor->quad_enable(nor);
if (err) {
dev_dbg(nor->dev, "quad mode not supported\n");
return err;
}
}
if (nor->addr_width == 4 &&
!(nor->info->flags & SPI_NOR_OCTAL_DTR_READ) &&
(JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
!(nor->info->flags & SPI_NOR_4B_OPCODES)) {
/*
* If the RESET# pin isn't hooked up properly, or the system
* otherwise doesn't perform a reset command in the boot
* sequence, it's impossible to 100% protect against unexpected
* reboots (e.g., crashes). Warn the user (or hopefully, system
* designer) that this is bad.
*/
if (nor->flags & SNOR_F_BROKEN_RESET)
debug("enabling reset hack; may not recover from unexpected reboots\n");
set_4byte(nor, nor->info, 1);
}
return 0;
}
#ifdef CONFIG_SPI_FLASH_SOFT_RESET
/**
* spi_nor_soft_reset() - perform the JEDEC Software Reset sequence
* @nor: the spi_nor structure
*
* This function can be used to switch from Octal DTR mode to legacy mode on a
* flash that supports it. The soft reset is executed in Octal DTR mode.
*
* Return: 0 for success, -errno for failure.
*/
static int spi_nor_soft_reset(struct spi_nor *nor)
{
struct spi_mem_op op;
int ret;
enum spi_nor_cmd_ext ext;
ext = nor->cmd_ext_type;
nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRSTEN, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DATA);
spi_nor_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
ret = spi_mem_exec_op(nor->spi, &op);
if (ret) {
dev_warn(nor->dev, "Software reset enable failed: %d\n", ret);
goto out;
}
op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRST, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DATA);
spi_nor_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
ret = spi_mem_exec_op(nor->spi, &op);
if (ret) {
dev_warn(nor->dev, "Software reset failed: %d\n", ret);
goto out;
}
/*
* Software Reset is not instant, and the delay varies from flash to
* flash. Looking at a few flashes, most range somewhere below 100
* microseconds. So, wait for 200ms just to be sure.
*/
udelay(SPI_NOR_SRST_SLEEP_LEN);
out:
nor->cmd_ext_type = ext;
return ret;
}
#endif /* CONFIG_SPI_FLASH_SOFT_RESET */
int spi_nor_remove(struct spi_nor *nor)
{
#ifdef CONFIG_SPI_FLASH_SOFT_RESET
if (nor->info->flags & SPI_NOR_OCTAL_DTR_READ &&
nor->flags & SNOR_F_SOFT_RESET)
return spi_nor_soft_reset(nor);
#endif
return 0;
}
void spi_nor_set_fixups(struct spi_nor *nor)
{
#ifdef CONFIG_SPI_FLASH_SPANSION
if (JEDEC_MFR(nor->info) == SNOR_MFR_CYPRESS) {
switch (nor->info->id[1]) {
case 0x2a: /* S25HL (QSPI, 3.3V) */
case 0x2b: /* S25HS (QSPI, 1.8V) */
nor->fixups = &s25hx_t_fixups;
break;
default:
break;
}
}
if (CONFIG_IS_ENABLED(SPI_FLASH_BAR) &&
!strcmp(nor->info->name, "s25fl256l"))
nor->fixups = &s25fl256l_fixups;
#endif
#ifdef CONFIG_SPI_FLASH_S28HS512T
if (!strcmp(nor->info->name, "s28hs512t"))
nor->fixups = &s28hs512t_fixups;
#endif
#ifdef CONFIG_SPI_FLASH_MT35XU
if (!strcmp(nor->info->name, "mt35xu512aba"))
nor->fixups = &mt35xu512aba_fixups;
#endif
}
int spi_nor_scan(struct spi_nor *nor)
{
struct spi_nor_flash_parameter params;
const struct flash_info *info = NULL;
struct mtd_info *mtd = &nor->mtd;
struct spi_slave *spi = nor->spi;
int ret;
int cfi_mtd_nb = 0;
#ifdef CONFIG_FLASH_CFI_MTD
cfi_mtd_nb = CFI_FLASH_BANKS;
#endif
/* Reset SPI protocol for all commands. */
nor->reg_proto = SNOR_PROTO_1_1_1;
nor->read_proto = SNOR_PROTO_1_1_1;
nor->write_proto = SNOR_PROTO_1_1_1;
nor->read = spi_nor_read_data;
nor->write = spi_nor_write_data;
nor->read_reg = spi_nor_read_reg;
nor->write_reg = spi_nor_write_reg;
nor->setup = spi_nor_default_setup;
#ifdef CONFIG_SPI_FLASH_SOFT_RESET_ON_BOOT
/*
* When the flash is handed to us in a stateful mode like 8D-8D-8D, it
* is difficult to detect the mode the flash is in. One option is to
* read SFDP in all modes and see which one gives the correct "SFDP"
* signature, but not all flashes support SFDP in 8D-8D-8D mode.
*
* Further, even if you detect the mode of the flash via SFDP, you
* still have the problem of actually reading the ID. The Read ID
* command is not standardized across flash vendors. Flashes can have
* different dummy cycles needed for reading the ID. Some flashes even
* expect a 4-byte dummy address with the Read ID command. All this
* information cannot be obtained from the SFDP table.
*
* So, perform a Software Reset sequence before reading the ID and
* initializing the flash. A Soft Reset will bring back the flash in
* its default protocol mode assuming no non-volatile configuration was
* set. This will let us detect the flash even if ROM hands it to us in
* Octal DTR mode.
*
* To accommodate cases where there is more than one flash on a board,
* and only one of them needs a soft reset, failure to reset is not
* made fatal, and we still try to read ID if possible.
*/
spi_nor_soft_reset(nor);
#endif /* CONFIG_SPI_FLASH_SOFT_RESET_ON_BOOT */
info = spi_nor_read_id(nor);
if (IS_ERR_OR_NULL(info))
return -ENOENT;
nor->info = info;
spi_nor_set_fixups(nor);
/* Parse the Serial Flash Discoverable Parameters table. */
ret = spi_nor_init_params(nor, info, &params);
if (ret)
return ret;
if (!mtd->name) {
sprintf(nor->mtd_name, "%s%d",
MTD_DEV_TYPE(MTD_DEV_TYPE_NOR),
cfi_mtd_nb + dev_seq(nor->dev));
mtd->name = nor->mtd_name;
}
mtd->dev = nor->dev;
mtd->priv = nor;
mtd->type = MTD_NORFLASH;
mtd->writesize = 1;
mtd->flags = MTD_CAP_NORFLASH;
mtd->size = params.size;
mtd->_erase = spi_nor_erase;
mtd->_read = spi_nor_read;
mtd->_write = spi_nor_write;
#if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
/* NOR protection support for STmicro/Micron chips and similar */
if (JEDEC_MFR(info) == SNOR_MFR_ST ||
JEDEC_MFR(info) == SNOR_MFR_MICRON ||
JEDEC_MFR(info) == SNOR_MFR_SST ||
info->flags & SPI_NOR_HAS_LOCK) {
nor->flash_lock = stm_lock;
nor->flash_unlock = stm_unlock;
nor->flash_is_locked = stm_is_locked;
}
#endif
#ifdef CONFIG_SPI_FLASH_SST
/*
* sst26 series block protection implementation differs from other
* series.
*/
if (info->flags & SPI_NOR_HAS_SST26LOCK) {
nor->flash_lock = sst26_lock;
nor->flash_unlock = sst26_unlock;
nor->flash_is_locked = sst26_is_locked;
}
#endif
if (info->flags & USE_FSR)
nor->flags |= SNOR_F_USE_FSR;
if (info->flags & SPI_NOR_HAS_TB)
nor->flags |= SNOR_F_HAS_SR_TB;
if (info->flags & NO_CHIP_ERASE)
nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
if (info->flags & USE_CLSR)
nor->flags |= SNOR_F_USE_CLSR;
if (info->flags & SPI_NOR_NO_ERASE)
mtd->flags |= MTD_NO_ERASE;
nor->page_size = params.page_size;
mtd->writebufsize = nor->page_size;
/* Some devices cannot do fast-read, no matter what DT tells us */
if ((info->flags & SPI_NOR_NO_FR) || (spi->mode & SPI_RX_SLOW))
params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
/*
* Configure the SPI memory:
* - select op codes for (Fast) Read, Page Program and Sector Erase.
* - set the number of dummy cycles (mode cycles + wait states).
* - set the SPI protocols for register and memory accesses.
* - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
*/
ret = spi_nor_setup(nor, info, &params);
if (ret)
return ret;
if (spi_nor_protocol_is_dtr(nor->read_proto)) {
/* Always use 4-byte addresses in DTR mode. */
nor->addr_width = 4;
} else if (nor->addr_width) {
/* already configured from SFDP */
} else if (info->addr_width) {
nor->addr_width = info->addr_width;
} else {
nor->addr_width = 3;
}
if (nor->addr_width == 3 && mtd->size > SZ_16M) {
#ifndef CONFIG_SPI_FLASH_BAR
/* enable 4-byte addressing if the device exceeds 16MiB */
nor->addr_width = 4;
if (JEDEC_MFR(info) == SNOR_MFR_SPANSION ||
info->flags & SPI_NOR_4B_OPCODES)
spi_nor_set_4byte_opcodes(nor, info);
#else
/* Configure the BAR - discover bank cmds and read current bank */
nor->addr_width = 3;
ret = read_bar(nor, info);
if (ret < 0)
return ret;
#endif
}
if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
dev_dbg(nor->dev, "address width is too large: %u\n",
nor->addr_width);
return -EINVAL;
}
/* Send all the required SPI flash commands to initialize device */
ret = spi_nor_init(nor);
if (ret)
return ret;
nor->rdsr_dummy = params.rdsr_dummy;
nor->rdsr_addr_nbytes = params.rdsr_addr_nbytes;
nor->name = info->name;
nor->size = mtd->size;
nor->erase_size = mtd->erasesize;
nor->sector_size = mtd->erasesize;
#ifndef CONFIG_SPL_BUILD
printf("SF: Detected %s with page size ", nor->name);
print_size(nor->page_size, ", erase size ");
print_size(nor->erase_size, ", total ");
print_size(nor->size, "");
puts("\n");
#endif
return 0;
}
/* U-Boot specific functions, need to extend MTD to support these */
int spi_flash_cmd_get_sw_write_prot(struct spi_nor *nor)
{
int sr = read_sr(nor);
if (sr < 0)
return sr;
return (sr >> 2) & 7;
}