mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-17 00:33:06 +00:00
83d290c56f
When U-Boot started using SPDX tags we were among the early adopters and there weren't a lot of other examples to borrow from. So we picked the area of the file that usually had a full license text and replaced it with an appropriate SPDX-License-Identifier: entry. Since then, the Linux Kernel has adopted SPDX tags and they place it as the very first line in a file (except where shebangs are used, then it's second line) and with slightly different comment styles than us. In part due to community overlap, in part due to better tag visibility and in part for other minor reasons, switch over to that style. This commit changes all instances where we have a single declared license in the tag as both the before and after are identical in tag contents. There's also a few places where I found we did not have a tag and have introduced one. Signed-off-by: Tom Rini <trini@konsulko.com>
395 lines
11 KiB
C
395 lines
11 KiB
C
// SPDX-License-Identifier: Intel
|
|
/*
|
|
* Copyright (C) 2013, Intel Corporation
|
|
* Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com>
|
|
*
|
|
* Ported from Intel released Quark UEFI BIOS
|
|
* QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/arch/mrc.h>
|
|
#include <asm/arch/msg_port.h>
|
|
#include "mrc_util.h"
|
|
#include "hte.h"
|
|
|
|
/**
|
|
* Enable HTE to detect all possible errors for the given training parameters
|
|
* (per-bit or full byte lane).
|
|
*/
|
|
static void hte_enable_all_errors(void)
|
|
{
|
|
msg_port_write(HTE, 0x000200a2, 0xffffffff);
|
|
msg_port_write(HTE, 0x000200a3, 0x000000ff);
|
|
msg_port_write(HTE, 0x000200a4, 0x00000000);
|
|
}
|
|
|
|
/**
|
|
* Go and read the HTE register in order to find any error
|
|
*
|
|
* @return: The errors detected in the HTE status register
|
|
*/
|
|
static u32 hte_check_errors(void)
|
|
{
|
|
return msg_port_read(HTE, 0x000200a7);
|
|
}
|
|
|
|
/**
|
|
* Wait until HTE finishes
|
|
*/
|
|
static void hte_wait_for_complete(void)
|
|
{
|
|
u32 tmp;
|
|
|
|
ENTERFN();
|
|
|
|
do {} while ((msg_port_read(HTE, 0x00020012) & (1 << 30)) != 0);
|
|
|
|
tmp = msg_port_read(HTE, 0x00020011);
|
|
tmp |= (1 << 9);
|
|
tmp &= ~((1 << 12) | (1 << 13));
|
|
msg_port_write(HTE, 0x00020011, tmp);
|
|
|
|
LEAVEFN();
|
|
}
|
|
|
|
/**
|
|
* Clear registers related with errors in the HTE
|
|
*/
|
|
static void hte_clear_error_regs(void)
|
|
{
|
|
u32 tmp;
|
|
|
|
/*
|
|
* Clear all HTE errors and enable error checking
|
|
* for burst and chunk.
|
|
*/
|
|
tmp = msg_port_read(HTE, 0x000200a1);
|
|
tmp |= (1 << 8);
|
|
msg_port_write(HTE, 0x000200a1, tmp);
|
|
}
|
|
|
|
/**
|
|
* Execute a basic single-cache-line memory write/read/verify test using simple
|
|
* constant pattern, different for READ_TRAIN and WRITE_TRAIN modes.
|
|
*
|
|
* See hte_basic_write_read() which is the external visible wrapper.
|
|
*
|
|
* @mrc_params: host structure for all MRC global data
|
|
* @addr: memory adress being tested (must hit specific channel/rank)
|
|
* @first_run: if set then the HTE registers are configured, otherwise it is
|
|
* assumed configuration is done and we just re-run the test
|
|
* @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern)
|
|
*
|
|
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
|
|
*/
|
|
static u16 hte_basic_data_cmp(struct mrc_params *mrc_params, u32 addr,
|
|
u8 first_run, u8 mode)
|
|
{
|
|
u32 pattern;
|
|
u32 offset;
|
|
|
|
if (first_run) {
|
|
msg_port_write(HTE, 0x00020020, 0x01b10021);
|
|
msg_port_write(HTE, 0x00020021, 0x06000000);
|
|
msg_port_write(HTE, 0x00020022, addr >> 6);
|
|
msg_port_write(HTE, 0x00020062, 0x00800015);
|
|
msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
|
|
msg_port_write(HTE, 0x00020064, 0xcccccccc);
|
|
msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
|
|
msg_port_write(HTE, 0x00020061, 0x00030008);
|
|
|
|
if (mode == WRITE_TRAIN)
|
|
pattern = 0xc33c0000;
|
|
else /* READ_TRAIN */
|
|
pattern = 0xaa5555aa;
|
|
|
|
for (offset = 0x80; offset <= 0x8f; offset++)
|
|
msg_port_write(HTE, offset, pattern);
|
|
}
|
|
|
|
msg_port_write(HTE, 0x000200a1, 0xffff1000);
|
|
msg_port_write(HTE, 0x00020011, 0x00011000);
|
|
msg_port_write(HTE, 0x00020011, 0x00011100);
|
|
|
|
hte_wait_for_complete();
|
|
|
|
/*
|
|
* Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for
|
|
* any bytelane errors.
|
|
*/
|
|
return (hte_check_errors() >> 8) & 0xff;
|
|
}
|
|
|
|
/**
|
|
* Examine a single-cache-line memory with write/read/verify test using multiple
|
|
* data patterns (victim-aggressor algorithm).
|
|
*
|
|
* See hte_write_stress_bit_lanes() which is the external visible wrapper.
|
|
*
|
|
* @mrc_params: host structure for all MRC global data
|
|
* @addr: memory adress being tested (must hit specific channel/rank)
|
|
* @loop_cnt: number of test iterations
|
|
* @seed_victim: victim data pattern seed
|
|
* @seed_aggressor: aggressor data pattern seed
|
|
* @victim_bit: should be 0 as auto-rotate feature is in use
|
|
* @first_run: if set then the HTE registers are configured, otherwise it is
|
|
* assumed configuration is done and we just re-run the test
|
|
*
|
|
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
|
|
*/
|
|
static u16 hte_rw_data_cmp(struct mrc_params *mrc_params, u32 addr,
|
|
u8 loop_cnt, u32 seed_victim, u32 seed_aggressor,
|
|
u8 victim_bit, u8 first_run)
|
|
{
|
|
u32 offset;
|
|
u32 tmp;
|
|
|
|
if (first_run) {
|
|
msg_port_write(HTE, 0x00020020, 0x00910024);
|
|
msg_port_write(HTE, 0x00020023, 0x00810024);
|
|
msg_port_write(HTE, 0x00020021, 0x06070000);
|
|
msg_port_write(HTE, 0x00020024, 0x06070000);
|
|
msg_port_write(HTE, 0x00020022, addr >> 6);
|
|
msg_port_write(HTE, 0x00020025, addr >> 6);
|
|
msg_port_write(HTE, 0x00020062, 0x0000002a);
|
|
msg_port_write(HTE, 0x00020063, seed_victim);
|
|
msg_port_write(HTE, 0x00020064, seed_aggressor);
|
|
msg_port_write(HTE, 0x00020065, seed_victim);
|
|
|
|
/*
|
|
* Write the pattern buffers to select the victim bit
|
|
*
|
|
* Start with bit0
|
|
*/
|
|
for (offset = 0x80; offset <= 0x8f; offset++) {
|
|
if ((offset % 8) == victim_bit)
|
|
msg_port_write(HTE, offset, 0x55555555);
|
|
else
|
|
msg_port_write(HTE, offset, 0xcccccccc);
|
|
}
|
|
|
|
msg_port_write(HTE, 0x00020061, 0x00000000);
|
|
msg_port_write(HTE, 0x00020066, 0x03440000);
|
|
msg_port_write(HTE, 0x000200a1, 0xffff1000);
|
|
}
|
|
|
|
tmp = 0x10001000 | (loop_cnt << 16);
|
|
msg_port_write(HTE, 0x00020011, tmp);
|
|
msg_port_write(HTE, 0x00020011, tmp | (1 << 8));
|
|
|
|
hte_wait_for_complete();
|
|
|
|
/*
|
|
* Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for
|
|
* any bytelane errors.
|
|
*/
|
|
return (hte_check_errors() >> 8) & 0xff;
|
|
}
|
|
|
|
/**
|
|
* Use HW HTE engine to initialize or test all memory attached to a given DUNIT.
|
|
* If flag is MRC_MEM_INIT, this routine writes 0s to all memory locations to
|
|
* initialize ECC. If flag is MRC_MEM_TEST, this routine will send an 5AA55AA5
|
|
* pattern to all memory locations on the RankMask and then read it back.
|
|
* Then it sends an A55AA55A pattern to all memory locations on the RankMask
|
|
* and reads it back.
|
|
*
|
|
* @mrc_params: host structure for all MRC global data
|
|
* @flag: MRC_MEM_INIT or MRC_MEM_TEST
|
|
*
|
|
* @return: errors register showing HTE failures. Also prints out which rank
|
|
* failed the HTE test if failure occurs. For rank detection to work,
|
|
* the address map must be left in its default state. If MRC changes
|
|
* the address map, this function must be modified to change it back
|
|
* to default at the beginning, then restore it at the end.
|
|
*/
|
|
u32 hte_mem_init(struct mrc_params *mrc_params, u8 flag)
|
|
{
|
|
u32 offset;
|
|
int test_num;
|
|
int i;
|
|
|
|
/*
|
|
* Clear out the error registers at the start of each memory
|
|
* init or memory test run.
|
|
*/
|
|
hte_clear_error_regs();
|
|
|
|
msg_port_write(HTE, 0x00020062, 0x00000015);
|
|
|
|
for (offset = 0x80; offset <= 0x8f; offset++)
|
|
msg_port_write(HTE, offset, ((offset & 1) ? 0xa55a : 0x5aa5));
|
|
|
|
msg_port_write(HTE, 0x00020021, 0x00000000);
|
|
msg_port_write(HTE, 0x00020022, (mrc_params->mem_size >> 6) - 1);
|
|
msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
|
|
msg_port_write(HTE, 0x00020064, 0xcccccccc);
|
|
msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
|
|
msg_port_write(HTE, 0x00020066, 0x03000000);
|
|
|
|
switch (flag) {
|
|
case MRC_MEM_INIT:
|
|
/*
|
|
* Only 1 write pass through memory is needed
|
|
* to initialize ECC
|
|
*/
|
|
test_num = 1;
|
|
break;
|
|
case MRC_MEM_TEST:
|
|
/* Write/read then write/read with inverted pattern */
|
|
test_num = 4;
|
|
break;
|
|
default:
|
|
DPF(D_INFO, "Unknown parameter for flag: %d\n", flag);
|
|
return 0xffffffff;
|
|
}
|
|
|
|
DPF(D_INFO, "hte_mem_init");
|
|
|
|
for (i = 0; i < test_num; i++) {
|
|
DPF(D_INFO, ".");
|
|
|
|
if (i == 0) {
|
|
msg_port_write(HTE, 0x00020061, 0x00000000);
|
|
msg_port_write(HTE, 0x00020020, 0x00110010);
|
|
} else if (i == 1) {
|
|
msg_port_write(HTE, 0x00020061, 0x00000000);
|
|
msg_port_write(HTE, 0x00020020, 0x00010010);
|
|
} else if (i == 2) {
|
|
msg_port_write(HTE, 0x00020061, 0x00010100);
|
|
msg_port_write(HTE, 0x00020020, 0x00110010);
|
|
} else {
|
|
msg_port_write(HTE, 0x00020061, 0x00010100);
|
|
msg_port_write(HTE, 0x00020020, 0x00010010);
|
|
}
|
|
|
|
msg_port_write(HTE, 0x00020011, 0x00111000);
|
|
msg_port_write(HTE, 0x00020011, 0x00111100);
|
|
|
|
hte_wait_for_complete();
|
|
|
|
/* If this is a READ pass, check for errors at the end */
|
|
if ((i % 2) == 1) {
|
|
/* Return immediately if error */
|
|
if (hte_check_errors())
|
|
break;
|
|
}
|
|
}
|
|
|
|
DPF(D_INFO, "done\n");
|
|
|
|
return hte_check_errors();
|
|
}
|
|
|
|
/**
|
|
* Execute a basic single-cache-line memory write/read/verify test using simple
|
|
* constant pattern, different for READ_TRAIN and WRITE_TRAIN modes.
|
|
*
|
|
* @mrc_params: host structure for all MRC global data
|
|
* @addr: memory adress being tested (must hit specific channel/rank)
|
|
* @first_run: if set then the HTE registers are configured, otherwise it is
|
|
* assumed configuration is done and we just re-run the test
|
|
* @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern)
|
|
*
|
|
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
|
|
*/
|
|
u16 hte_basic_write_read(struct mrc_params *mrc_params, u32 addr,
|
|
u8 first_run, u8 mode)
|
|
{
|
|
u16 errors;
|
|
|
|
ENTERFN();
|
|
|
|
/* Enable all error reporting in preparation for HTE test */
|
|
hte_enable_all_errors();
|
|
hte_clear_error_regs();
|
|
|
|
errors = hte_basic_data_cmp(mrc_params, addr, first_run, mode);
|
|
|
|
LEAVEFN();
|
|
|
|
return errors;
|
|
}
|
|
|
|
/**
|
|
* Examine a single-cache-line memory with write/read/verify test using multiple
|
|
* data patterns (victim-aggressor algorithm).
|
|
*
|
|
* @mrc_params: host structure for all MRC global data
|
|
* @addr: memory adress being tested (must hit specific channel/rank)
|
|
* @first_run: if set then the HTE registers are configured, otherwise it is
|
|
* assumed configuration is done and we just re-run the test
|
|
*
|
|
* @return: byte lane failure on each bit (for Quark only bit0 and bit1)
|
|
*/
|
|
u16 hte_write_stress_bit_lanes(struct mrc_params *mrc_params,
|
|
u32 addr, u8 first_run)
|
|
{
|
|
u16 errors;
|
|
u8 victim_bit = 0;
|
|
|
|
ENTERFN();
|
|
|
|
/* Enable all error reporting in preparation for HTE test */
|
|
hte_enable_all_errors();
|
|
hte_clear_error_regs();
|
|
|
|
/*
|
|
* Loop through each bit in the bytelane.
|
|
*
|
|
* Each pass creates a victim bit while keeping all other bits the same
|
|
* as aggressors. AVN HTE adds an auto-rotate feature which allows us
|
|
* to program the entire victim/aggressor sequence in 1 step.
|
|
*
|
|
* The victim bit rotates on each pass so no need to have software
|
|
* implement a victim bit loop like on VLV.
|
|
*/
|
|
errors = hte_rw_data_cmp(mrc_params, addr, HTE_LOOP_CNT,
|
|
HTE_LFSR_VICTIM_SEED, HTE_LFSR_AGRESSOR_SEED,
|
|
victim_bit, first_run);
|
|
|
|
LEAVEFN();
|
|
|
|
return errors;
|
|
}
|
|
|
|
/**
|
|
* Execute a basic single-cache-line memory write or read.
|
|
* This is just for receive enable / fine write-levelling purpose.
|
|
*
|
|
* @addr: memory adress being tested (must hit specific channel/rank)
|
|
* @first_run: if set then the HTE registers are configured, otherwise it is
|
|
* assumed configuration is done and we just re-run the test
|
|
* @is_write: when non-zero memory write operation executed, otherwise read
|
|
*/
|
|
void hte_mem_op(u32 addr, u8 first_run, u8 is_write)
|
|
{
|
|
u32 offset;
|
|
u32 tmp;
|
|
|
|
hte_enable_all_errors();
|
|
hte_clear_error_regs();
|
|
|
|
if (first_run) {
|
|
tmp = is_write ? 0x01110021 : 0x01010021;
|
|
msg_port_write(HTE, 0x00020020, tmp);
|
|
|
|
msg_port_write(HTE, 0x00020021, 0x06000000);
|
|
msg_port_write(HTE, 0x00020022, addr >> 6);
|
|
msg_port_write(HTE, 0x00020062, 0x00800015);
|
|
msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
|
|
msg_port_write(HTE, 0x00020064, 0xcccccccc);
|
|
msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
|
|
msg_port_write(HTE, 0x00020061, 0x00030008);
|
|
|
|
for (offset = 0x80; offset <= 0x8f; offset++)
|
|
msg_port_write(HTE, offset, 0xc33c0000);
|
|
}
|
|
|
|
msg_port_write(HTE, 0x000200a1, 0xffff1000);
|
|
msg_port_write(HTE, 0x00020011, 0x00011000);
|
|
msg_port_write(HTE, 0x00020011, 0x00011100);
|
|
|
|
hte_wait_for_complete();
|
|
}
|