mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-31 23:38:55 +00:00
0d8c3a2096
e500v2 and newer cores support 1G page sizes. Signed-off-by: Ed Swarthout <Ed.Swarthout@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
1123 lines
28 KiB
C
1123 lines
28 KiB
C
/*
|
|
* Copyright 2004 Freescale Semiconductor.
|
|
* (C) Copyright 2003 Motorola Inc.
|
|
* Xianghua Xiao (X.Xiao@motorola.com)
|
|
*
|
|
* See file CREDITS for list of people who contributed to this
|
|
* project.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
* MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/processor.h>
|
|
#include <i2c.h>
|
|
#include <spd.h>
|
|
#include <asm/mmu.h>
|
|
|
|
|
|
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
|
|
extern void dma_init(void);
|
|
extern uint dma_check(void);
|
|
extern int dma_xfer(void *dest, uint count, void *src);
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPD_EEPROM
|
|
|
|
#ifndef CFG_READ_SPD
|
|
#define CFG_READ_SPD i2c_read
|
|
#endif
|
|
|
|
static unsigned int setup_laws_and_tlbs(unsigned int memsize);
|
|
|
|
|
|
/*
|
|
* Convert picoseconds into clock cycles (rounding up if needed).
|
|
*/
|
|
|
|
int
|
|
picos_to_clk(int picos)
|
|
{
|
|
int clks;
|
|
|
|
clks = picos / (2000000000 / (get_bus_freq(0) / 1000));
|
|
if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) {
|
|
clks++;
|
|
}
|
|
|
|
return clks;
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate the Density of each Physical Rank.
|
|
* Returned size is in bytes.
|
|
*
|
|
* Study these table from Byte 31 of JEDEC SPD Spec.
|
|
*
|
|
* DDR I DDR II
|
|
* Bit Size Size
|
|
* --- ----- ------
|
|
* 7 high 512MB 512MB
|
|
* 6 256MB 256MB
|
|
* 5 128MB 128MB
|
|
* 4 64MB 16GB
|
|
* 3 32MB 8GB
|
|
* 2 16MB 4GB
|
|
* 1 2GB 2GB
|
|
* 0 low 1GB 1GB
|
|
*
|
|
* Reorder Table to be linear by stripping the bottom
|
|
* 2 or 5 bits off and shifting them up to the top.
|
|
*/
|
|
|
|
unsigned int
|
|
compute_banksize(unsigned int mem_type, unsigned char row_dens)
|
|
{
|
|
unsigned int bsize;
|
|
|
|
if (mem_type == SPD_MEMTYPE_DDR) {
|
|
/* Bottom 2 bits up to the top. */
|
|
bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
|
|
debug("DDR: DDR I rank density = 0x%08x\n", bsize);
|
|
} else {
|
|
/* Bottom 5 bits up to the top. */
|
|
bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27;
|
|
debug("DDR: DDR II rank density = 0x%08x\n", bsize);
|
|
}
|
|
return bsize;
|
|
}
|
|
|
|
|
|
/*
|
|
* Convert a two-nibble BCD value into a cycle time.
|
|
* While the spec calls for nano-seconds, picos are returned.
|
|
*
|
|
* This implements the tables for bytes 9, 23 and 25 for both
|
|
* DDR I and II. No allowance for distinguishing the invalid
|
|
* fields absent for DDR I yet present in DDR II is made.
|
|
* (That is, cycle times of .25, .33, .66 and .75 ns are
|
|
* allowed for both DDR II and I.)
|
|
*/
|
|
|
|
unsigned int
|
|
convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
|
|
{
|
|
/*
|
|
* Table look up the lower nibble, allow DDR I & II.
|
|
*/
|
|
unsigned int tenths_ps[16] = {
|
|
0,
|
|
100,
|
|
200,
|
|
300,
|
|
400,
|
|
500,
|
|
600,
|
|
700,
|
|
800,
|
|
900,
|
|
250,
|
|
330,
|
|
660,
|
|
750,
|
|
0, /* undefined */
|
|
0 /* undefined */
|
|
};
|
|
|
|
unsigned int whole_ns = (spd_val & 0xF0) >> 4;
|
|
unsigned int tenth_ns = spd_val & 0x0F;
|
|
unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
|
|
|
|
return ps;
|
|
}
|
|
|
|
|
|
/*
|
|
* Determine Refresh Rate. Ignore self refresh bit on DDR I.
|
|
* Table from SPD Spec, Byte 12, converted to picoseconds and
|
|
* filled in with "default" normal values.
|
|
*/
|
|
unsigned int determine_refresh_rate(unsigned int spd_refresh)
|
|
{
|
|
unsigned int refresh_time_ns[8] = {
|
|
15625000, /* 0 Normal 1.00x */
|
|
3900000, /* 1 Reduced .25x */
|
|
7800000, /* 2 Extended .50x */
|
|
31300000, /* 3 Extended 2.00x */
|
|
62500000, /* 4 Extended 4.00x */
|
|
125000000, /* 5 Extended 8.00x */
|
|
15625000, /* 6 Normal 1.00x filler */
|
|
15625000, /* 7 Normal 1.00x filler */
|
|
};
|
|
|
|
return picos_to_clk(refresh_time_ns[spd_refresh & 0x7]);
|
|
}
|
|
|
|
|
|
long int
|
|
spd_sdram(void)
|
|
{
|
|
volatile immap_t *immap = (immap_t *)CFG_IMMR;
|
|
volatile ccsr_ddr_t *ddr = &immap->im_ddr;
|
|
volatile ccsr_gur_t *gur = &immap->im_gur;
|
|
spd_eeprom_t spd;
|
|
unsigned int n_ranks;
|
|
unsigned int rank_density;
|
|
unsigned int odt_rd_cfg, odt_wr_cfg;
|
|
unsigned int odt_cfg, mode_odt_enable;
|
|
unsigned int refresh_clk;
|
|
#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
|
|
unsigned char clk_adjust;
|
|
#endif
|
|
unsigned int dqs_cfg;
|
|
unsigned char twr_clk, twtr_clk, twr_auto_clk;
|
|
unsigned int tCKmin_ps, tCKmax_ps;
|
|
unsigned int max_data_rate, effective_data_rate;
|
|
unsigned int busfreq;
|
|
unsigned sdram_cfg;
|
|
unsigned int memsize;
|
|
unsigned char caslat, caslat_ctrl;
|
|
unsigned int trfc, trfc_clk, trfc_low, trfc_high;
|
|
unsigned int trcd_clk;
|
|
unsigned int trtp_clk;
|
|
unsigned char cke_min_clk;
|
|
unsigned char add_lat;
|
|
unsigned char wr_lat;
|
|
unsigned char wr_data_delay;
|
|
unsigned char four_act;
|
|
unsigned char cpo;
|
|
unsigned char burst_len;
|
|
unsigned int mode_caslat;
|
|
unsigned char sdram_type;
|
|
unsigned char d_init;
|
|
|
|
/*
|
|
* Read SPD information.
|
|
*/
|
|
CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) &spd, sizeof(spd));
|
|
|
|
/*
|
|
* Check for supported memory module types.
|
|
*/
|
|
if (spd.mem_type != SPD_MEMTYPE_DDR &&
|
|
spd.mem_type != SPD_MEMTYPE_DDR2) {
|
|
printf("Unable to locate DDR I or DDR II module.\n"
|
|
" Fundamental memory type is 0x%0x\n",
|
|
spd.mem_type);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* These test gloss over DDR I and II differences in interpretation
|
|
* of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks
|
|
* are not supported on DDR I; and not encoded on DDR II.
|
|
*
|
|
* Also note that the 8548 controller can support:
|
|
* 12 <= nrow <= 16
|
|
* and
|
|
* 8 <= ncol <= 11 (still, for DDR)
|
|
* 6 <= ncol <= 9 (for FCRAM)
|
|
*/
|
|
if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
|
|
printf("DDR: Unsupported number of Row Addr lines: %d.\n",
|
|
spd.nrow_addr);
|
|
return 0;
|
|
}
|
|
if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
|
|
printf("DDR: Unsupported number of Column Addr lines: %d.\n",
|
|
spd.ncol_addr);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Determine the number of physical banks controlled by
|
|
* different Chip Select signals. This is not quite the
|
|
* same as the number of DIMM modules on the board. Feh.
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
n_ranks = spd.nrows;
|
|
} else {
|
|
n_ranks = (spd.nrows & 0x7) + 1;
|
|
}
|
|
|
|
debug("DDR: number of ranks = %d\n", n_ranks);
|
|
|
|
if (n_ranks > 2) {
|
|
printf("DDR: Only 2 chip selects are supported: %d\n",
|
|
n_ranks);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Adjust DDR II IO voltage biasing.
|
|
* Only 8548 rev 1 needs the fix
|
|
*/
|
|
if ((SVR_VER(get_svr()) == SVR_8548_E) &&
|
|
(SVR_MJREV(get_svr()) == 1) &&
|
|
(spd.mem_type == SPD_MEMTYPE_DDR2)) {
|
|
gur->ddrioovcr = (0x80000000 /* Enable */
|
|
| 0x10000000);/* VSEL to 1.8V */
|
|
}
|
|
|
|
/*
|
|
* Determine the size of each Rank in bytes.
|
|
*/
|
|
rank_density = compute_banksize(spd.mem_type, spd.row_dens);
|
|
|
|
|
|
/*
|
|
* Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
|
|
*/
|
|
ddr->cs0_bnds = (rank_density >> 24) - 1;
|
|
|
|
/*
|
|
* ODT configuration recommendation from DDR Controller Chapter.
|
|
*/
|
|
odt_rd_cfg = 0; /* Never assert ODT */
|
|
odt_wr_cfg = 0; /* Never assert ODT */
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
|
|
odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */
|
|
#if 0
|
|
/* FIXME: How to determine the number of dimm modules? */
|
|
if (n_dimm_modules == 2) {
|
|
odt_rd_cfg = 1; /* Assert ODT on reads to CS0 */
|
|
}
|
|
#endif
|
|
}
|
|
|
|
ddr->cs0_config = ( 1 << 31
|
|
| (odt_rd_cfg << 20)
|
|
| (odt_wr_cfg << 16)
|
|
| (spd.nrow_addr - 12) << 8
|
|
| (spd.ncol_addr - 8) );
|
|
debug("\n");
|
|
debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds);
|
|
debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
|
|
|
|
if (n_ranks == 2) {
|
|
/*
|
|
* Eg: Bounds: 0x0f00_0000 to 0x1e0000_0000, second 256 Meg
|
|
*/
|
|
ddr->cs1_bnds = ( (rank_density >> 8)
|
|
| ((rank_density >> (24 - 1)) - 1) );
|
|
ddr->cs1_config = ( 1<<31
|
|
| (odt_rd_cfg << 20)
|
|
| (odt_wr_cfg << 16)
|
|
| (spd.nrow_addr - 12) << 8
|
|
| (spd.ncol_addr - 8) );
|
|
debug("DDR: cs1_bnds = 0x%08x\n", ddr->cs1_bnds);
|
|
debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config);
|
|
}
|
|
|
|
|
|
/*
|
|
* Find the largest CAS by locating the highest 1 bit
|
|
* in the spd.cas_lat field. Translate it to a DDR
|
|
* controller field value:
|
|
*
|
|
* CAS Lat DDR I DDR II Ctrl
|
|
* Clocks SPD Bit SPD Bit Value
|
|
* ------- ------- ------- -----
|
|
* 1.0 0 0001
|
|
* 1.5 1 0010
|
|
* 2.0 2 2 0011
|
|
* 2.5 3 0100
|
|
* 3.0 4 3 0101
|
|
* 3.5 5 0110
|
|
* 4.0 4 0111
|
|
* 4.5 1000
|
|
* 5.0 5 1001
|
|
*/
|
|
caslat = __ilog2(spd.cas_lat);
|
|
if ((spd.mem_type == SPD_MEMTYPE_DDR)
|
|
&& (caslat > 5)) {
|
|
printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
|
|
return 0;
|
|
|
|
} else if (spd.mem_type == SPD_MEMTYPE_DDR2
|
|
&& (caslat < 2 || caslat > 5)) {
|
|
printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
|
|
spd.cas_lat);
|
|
return 0;
|
|
}
|
|
debug("DDR: caslat SPD bit is %d\n", caslat);
|
|
|
|
/*
|
|
* Calculate the Maximum Data Rate based on the Minimum Cycle time.
|
|
* The SPD clk_cycle field (tCKmin) is measured in tenths of
|
|
* nanoseconds and represented as BCD.
|
|
*/
|
|
tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle);
|
|
debug("DDR: tCKmin = %d ps\n", tCKmin_ps);
|
|
|
|
/*
|
|
* Double-data rate, scaled 1000 to picoseconds, and back down to MHz.
|
|
*/
|
|
max_data_rate = 2 * 1000 * 1000 / tCKmin_ps;
|
|
debug("DDR: Module max data rate = %d Mhz\n", max_data_rate);
|
|
|
|
|
|
/*
|
|
* Adjust the CAS Latency to allow for bus speeds that
|
|
* are slower than the DDR module.
|
|
*/
|
|
busfreq = get_bus_freq(0) / 1000000; /* MHz */
|
|
|
|
effective_data_rate = max_data_rate;
|
|
if (busfreq < 90) {
|
|
/* DDR rate out-of-range */
|
|
puts("DDR: platform frequency is not fit for DDR rate\n");
|
|
return 0;
|
|
|
|
} else if (90 <= busfreq && busfreq < 230 && max_data_rate >= 230) {
|
|
/*
|
|
* busfreq 90~230 range, treated as DDR 200.
|
|
*/
|
|
effective_data_rate = 200;
|
|
if (spd.clk_cycle3 == 0xa0) /* 10 ns */
|
|
caslat -= 2;
|
|
else if (spd.clk_cycle2 == 0xa0)
|
|
caslat--;
|
|
|
|
} else if (230 <= busfreq && busfreq < 280 && max_data_rate >= 280) {
|
|
/*
|
|
* busfreq 230~280 range, treated as DDR 266.
|
|
*/
|
|
effective_data_rate = 266;
|
|
if (spd.clk_cycle3 == 0x75) /* 7.5 ns */
|
|
caslat -= 2;
|
|
else if (spd.clk_cycle2 == 0x75)
|
|
caslat--;
|
|
|
|
} else if (280 <= busfreq && busfreq < 350 && max_data_rate >= 350) {
|
|
/*
|
|
* busfreq 280~350 range, treated as DDR 333.
|
|
*/
|
|
effective_data_rate = 333;
|
|
if (spd.clk_cycle3 == 0x60) /* 6.0 ns */
|
|
caslat -= 2;
|
|
else if (spd.clk_cycle2 == 0x60)
|
|
caslat--;
|
|
|
|
} else if (350 <= busfreq && busfreq < 460 && max_data_rate >= 460) {
|
|
/*
|
|
* busfreq 350~460 range, treated as DDR 400.
|
|
*/
|
|
effective_data_rate = 400;
|
|
if (spd.clk_cycle3 == 0x50) /* 5.0 ns */
|
|
caslat -= 2;
|
|
else if (spd.clk_cycle2 == 0x50)
|
|
caslat--;
|
|
|
|
} else if (460 <= busfreq && busfreq < 560 && max_data_rate >= 560) {
|
|
/*
|
|
* busfreq 460~560 range, treated as DDR 533.
|
|
*/
|
|
effective_data_rate = 533;
|
|
if (spd.clk_cycle3 == 0x3D) /* 3.75 ns */
|
|
caslat -= 2;
|
|
else if (spd.clk_cycle2 == 0x3D)
|
|
caslat--;
|
|
|
|
} else if (560 <= busfreq && busfreq < 700 && max_data_rate >= 700) {
|
|
/*
|
|
* busfreq 560~700 range, treated as DDR 667.
|
|
*/
|
|
effective_data_rate = 667;
|
|
if (spd.clk_cycle3 == 0x30) /* 3.0 ns */
|
|
caslat -= 2;
|
|
else if (spd.clk_cycle2 == 0x30)
|
|
caslat--;
|
|
|
|
} else if (700 <= busfreq) {
|
|
/*
|
|
* DDR rate out-of-range
|
|
*/
|
|
printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n",
|
|
busfreq, max_data_rate);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Convert caslat clocks to DDR controller value.
|
|
* Force caslat_ctrl to be DDR Controller field-sized.
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
caslat_ctrl = (caslat + 1) & 0x07;
|
|
} else {
|
|
caslat_ctrl = (2 * caslat - 1) & 0x0f;
|
|
}
|
|
|
|
debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
|
|
debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
|
|
caslat, caslat_ctrl);
|
|
|
|
/*
|
|
* Timing Config 0.
|
|
* Avoid writing for DDR I. The new PQ38 DDR controller
|
|
* dreams up non-zero default values to be backwards compatible.
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
|
|
unsigned char taxpd_clk = 8; /* By the book. */
|
|
unsigned char tmrd_clk = 2; /* By the book. */
|
|
unsigned char act_pd_exit = 2; /* Empirical? */
|
|
unsigned char pre_pd_exit = 6; /* Empirical? */
|
|
|
|
ddr->timing_cfg_0 = (0
|
|
| ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
|
|
| ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
|
|
| ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
|
|
| ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
|
|
);
|
|
#if 0
|
|
ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */
|
|
#endif
|
|
debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
|
|
|
|
} else {
|
|
#if 0
|
|
/*
|
|
* Force extra cycles with 0xaa bits.
|
|
* Incidentally supply the dreamt-up backwards compat value!
|
|
*/
|
|
ddr->timing_cfg_0 = 0x00110105; /* backwards compat value */
|
|
ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */
|
|
debug("DDR: HACK timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* Some Timing Config 1 values now.
|
|
* Sneak Extended Refresh Recovery in here too.
|
|
*/
|
|
|
|
/*
|
|
* For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
|
|
* use conservative value.
|
|
* For DDR II, they are bytes 36 and 37, in quarter nanos.
|
|
*/
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
twr_clk = 3; /* Clocks */
|
|
twtr_clk = 1; /* Clocks */
|
|
} else {
|
|
twr_clk = picos_to_clk(spd.twr * 250);
|
|
twtr_clk = picos_to_clk(spd.twtr * 250);
|
|
}
|
|
|
|
/*
|
|
* Calculate Trfc, in picos.
|
|
* DDR I: Byte 42 straight up in ns.
|
|
* DDR II: Byte 40 and 42 swizzled some, in ns.
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
trfc = spd.trfc * 1000; /* up to ps */
|
|
} else {
|
|
unsigned int byte40_table_ps[8] = {
|
|
0,
|
|
250,
|
|
330,
|
|
500,
|
|
660,
|
|
750,
|
|
0,
|
|
0
|
|
};
|
|
|
|
trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
|
|
+ byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
|
|
}
|
|
trfc_clk = picos_to_clk(trfc);
|
|
|
|
/*
|
|
* Trcd, Byte 29, from quarter nanos to ps and clocks.
|
|
*/
|
|
trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
|
|
|
|
/*
|
|
* Convert trfc_clk to DDR controller fields. DDR I should
|
|
* fit in the REFREC field (16-19) of TIMING_CFG_1, but the
|
|
* 8548 controller has an extended REFREC field of three bits.
|
|
* The controller automatically adds 8 clocks to this value,
|
|
* so preadjust it down 8 first before splitting it up.
|
|
*/
|
|
trfc_low = (trfc_clk - 8) & 0xf;
|
|
trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
|
|
|
|
/*
|
|
* Sneak in some Extended Refresh Recovery.
|
|
*/
|
|
ddr->ext_refrec = (trfc_high << 16);
|
|
debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec);
|
|
|
|
ddr->timing_cfg_1 =
|
|
(0
|
|
| ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */
|
|
| ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */
|
|
| (trcd_clk << 20) /* ACTTORW */
|
|
| (caslat_ctrl << 16) /* CASLAT */
|
|
| (trfc_low << 12) /* REFEC */
|
|
| ((twr_clk & 0x07) << 8) /* WRRREC */
|
|
| ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */
|
|
| ((twtr_clk & 0x07) << 0) /* WRTORD */
|
|
);
|
|
|
|
debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
|
|
|
|
|
|
/*
|
|
* Timing_Config_2
|
|
* Was: 0x00000800;
|
|
*/
|
|
|
|
/*
|
|
* Additive Latency
|
|
* For DDR I, 0.
|
|
* For DDR II, with ODT enabled, use "a value" less than ACTTORW,
|
|
* which comes from Trcd, and also note that:
|
|
* add_lat + caslat must be >= 4
|
|
*/
|
|
add_lat = 0;
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2
|
|
&& (odt_wr_cfg || odt_rd_cfg)
|
|
&& (caslat < 4)) {
|
|
add_lat = 4 - caslat;
|
|
if (add_lat > trcd_clk) {
|
|
add_lat = trcd_clk - 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write Data Delay
|
|
* Historically 0x2 == 4/8 clock delay.
|
|
* Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
|
|
*/
|
|
wr_data_delay = 3;
|
|
|
|
/*
|
|
* Write Latency
|
|
* Read to Precharge
|
|
* Minimum CKE Pulse Width.
|
|
* Four Activate Window
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
/*
|
|
* This is a lie. It should really be 1, but if it is
|
|
* set to 1, bits overlap into the old controller's
|
|
* otherwise unused ACSM field. If we leave it 0, then
|
|
* the HW will magically treat it as 1 for DDR 1. Oh Yea.
|
|
*/
|
|
wr_lat = 0;
|
|
|
|
trtp_clk = 2; /* By the book. */
|
|
cke_min_clk = 1; /* By the book. */
|
|
four_act = 1; /* By the book. */
|
|
|
|
} else {
|
|
wr_lat = caslat - 1;
|
|
|
|
/* Convert SPD value from quarter nanos to picos. */
|
|
trtp_clk = picos_to_clk(spd.trtp * 250);
|
|
|
|
cke_min_clk = 3; /* By the book. */
|
|
four_act = picos_to_clk(37500); /* By the book. 1k pages? */
|
|
}
|
|
|
|
/*
|
|
* Empirically set ~MCAS-to-preamble override for DDR 2.
|
|
* Your milage will vary.
|
|
*/
|
|
cpo = 0;
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR2) {
|
|
if (effective_data_rate == 266 || effective_data_rate == 333) {
|
|
cpo = 0x7; /* READ_LAT + 5/4 */
|
|
} else if (effective_data_rate == 400) {
|
|
cpo = 0x9; /* READ_LAT + 7/4 */
|
|
} else {
|
|
/* Pure speculation */
|
|
cpo = 0xb;
|
|
}
|
|
}
|
|
|
|
ddr->timing_cfg_2 = (0
|
|
| ((add_lat & 0x7) << 28) /* ADD_LAT */
|
|
| ((cpo & 0x1f) << 23) /* CPO */
|
|
| ((wr_lat & 0x7) << 19) /* WR_LAT */
|
|
| ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */
|
|
| ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */
|
|
| ((cke_min_clk & 0x7) << 6) /* CKE_PLS */
|
|
| ((four_act & 0x1f) << 0) /* FOUR_ACT */
|
|
);
|
|
|
|
debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
|
|
|
|
|
|
/*
|
|
* Determine the Mode Register Set.
|
|
*
|
|
* This is nominally part specific, but it appears to be
|
|
* consistent for all DDR I devices, and for all DDR II devices.
|
|
*
|
|
* caslat must be programmed
|
|
* burst length is always 4
|
|
* burst type is sequential
|
|
*
|
|
* For DDR I:
|
|
* operating mode is "normal"
|
|
*
|
|
* For DDR II:
|
|
* other stuff
|
|
*/
|
|
|
|
mode_caslat = 0;
|
|
|
|
/*
|
|
* Table lookup from DDR I or II Device Operation Specs.
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
if (1 <= caslat && caslat <= 4) {
|
|
unsigned char mode_caslat_table[4] = {
|
|
0x5, /* 1.5 clocks */
|
|
0x2, /* 2.0 clocks */
|
|
0x6, /* 2.5 clocks */
|
|
0x3 /* 3.0 clocks */
|
|
};
|
|
mode_caslat = mode_caslat_table[caslat - 1];
|
|
} else {
|
|
puts("DDR I: Only CAS Latencies of 1.5, 2.0, "
|
|
"2.5 and 3.0 clocks are supported.\n");
|
|
return 0;
|
|
}
|
|
|
|
} else {
|
|
if (2 <= caslat && caslat <= 5) {
|
|
mode_caslat = caslat;
|
|
} else {
|
|
puts("DDR II: Only CAS Latencies of 2.0, 3.0, "
|
|
"4.0 and 5.0 clocks are supported.\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Encoded Burst Lenght of 4.
|
|
*/
|
|
burst_len = 2; /* Fiat. */
|
|
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
twr_auto_clk = 0; /* Historical */
|
|
} else {
|
|
/*
|
|
* Determine tCK max in picos. Grab tWR and convert to picos.
|
|
* Auto-precharge write recovery is:
|
|
* WR = roundup(tWR_ns/tCKmax_ns).
|
|
*
|
|
* Ponder: Is twr_auto_clk different than twr_clk?
|
|
*/
|
|
tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax);
|
|
twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps;
|
|
}
|
|
|
|
|
|
/*
|
|
* Mode Reg in bits 16 ~ 31,
|
|
* Extended Mode Reg 1 in bits 0 ~ 15.
|
|
*/
|
|
mode_odt_enable = 0x0; /* Default disabled */
|
|
if (odt_wr_cfg || odt_rd_cfg) {
|
|
/*
|
|
* Bits 6 and 2 in Extended MRS(1)
|
|
* Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
|
|
* Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
|
|
*/
|
|
mode_odt_enable = 0x40; /* 150 Ohm */
|
|
}
|
|
|
|
ddr->sdram_mode =
|
|
(0
|
|
| (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
|
|
| (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
|
|
| (twr_auto_clk << 9) /* Write Recovery Autopre */
|
|
| (mode_caslat << 4) /* caslat */
|
|
| (burst_len << 0) /* Burst length */
|
|
);
|
|
|
|
debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode);
|
|
|
|
|
|
/*
|
|
* Clear EMRS2 and EMRS3.
|
|
*/
|
|
ddr->sdram_mode_2 = 0;
|
|
debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2);
|
|
|
|
/*
|
|
* Determine Refresh Rate.
|
|
*/
|
|
refresh_clk = determine_refresh_rate(spd.refresh & 0x7);
|
|
|
|
/*
|
|
* Set BSTOPRE to 0x100 for page mode
|
|
* If auto-charge is used, set BSTOPRE = 0
|
|
*/
|
|
ddr->sdram_interval =
|
|
(0
|
|
| (refresh_clk & 0x3fff) << 16
|
|
| 0x100
|
|
);
|
|
debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval);
|
|
|
|
/*
|
|
* Is this an ECC DDR chip?
|
|
* But don't mess with it if the DDR controller will init mem.
|
|
*/
|
|
#ifdef CONFIG_DDR_ECC
|
|
if (spd.config == 0x02) {
|
|
#ifndef CONFIG_ECC_INIT_VIA_DDRCONTROLLER
|
|
ddr->err_disable = 0x0000000d;
|
|
#endif
|
|
ddr->err_sbe = 0x00ff0000;
|
|
}
|
|
|
|
debug("DDR: err_disable = 0x%08x\n", ddr->err_disable);
|
|
debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);
|
|
#endif /* CONFIG_DDR_ECC */
|
|
|
|
asm("sync;isync;msync");
|
|
udelay(500);
|
|
|
|
/*
|
|
* SDRAM Cfg 2
|
|
*/
|
|
|
|
/*
|
|
* When ODT is enabled, Chap 9 suggests asserting ODT to
|
|
* internal IOs only during reads.
|
|
*/
|
|
odt_cfg = 0;
|
|
if (odt_rd_cfg | odt_wr_cfg) {
|
|
odt_cfg = 0x2; /* ODT to IOs during reads */
|
|
}
|
|
|
|
/*
|
|
* Try to use differential DQS with DDR II.
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR) {
|
|
dqs_cfg = 0; /* No Differential DQS for DDR I */
|
|
} else {
|
|
dqs_cfg = 0x1; /* Differential DQS for DDR II */
|
|
}
|
|
|
|
#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
|
|
/*
|
|
* Use the DDR controller to auto initialize memory.
|
|
*/
|
|
d_init = 1;
|
|
ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE;
|
|
debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);
|
|
#else
|
|
/*
|
|
* Memory will be initialized via DMA, or not at all.
|
|
*/
|
|
d_init = 0;
|
|
#endif
|
|
|
|
ddr->sdram_cfg_2 = (0
|
|
| (dqs_cfg << 26) /* Differential DQS */
|
|
| (odt_cfg << 21) /* ODT */
|
|
| (d_init << 4) /* D_INIT auto init DDR */
|
|
);
|
|
|
|
debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2);
|
|
|
|
|
|
#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
|
|
/*
|
|
* Setup the clock control.
|
|
* SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
|
|
* SDRAM_CLK_CNTL[5-7] = Clock Adjust
|
|
* 0110 3/4 cycle late
|
|
* 0111 7/8 cycle late
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR)
|
|
clk_adjust = 0x6;
|
|
else
|
|
clk_adjust = 0x7;
|
|
|
|
ddr->sdram_clk_cntl = (0
|
|
| 0x80000000
|
|
| (clk_adjust << 23)
|
|
);
|
|
debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);
|
|
#endif
|
|
|
|
/*
|
|
* Figure out the settings for the sdram_cfg register.
|
|
* Build up the entire register in 'sdram_cfg' before writing
|
|
* since the write into the register will actually enable the
|
|
* memory controller; all settings must be done before enabling.
|
|
*
|
|
* sdram_cfg[0] = 1 (ddr sdram logic enable)
|
|
* sdram_cfg[1] = 1 (self-refresh-enable)
|
|
* sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
|
|
* 010 DDR 1 SDRAM
|
|
* 011 DDR 2 SDRAM
|
|
*/
|
|
sdram_type = (spd.mem_type == SPD_MEMTYPE_DDR) ? 2 : 3;
|
|
sdram_cfg = (0
|
|
| (1 << 31) /* Enable */
|
|
| (1 << 30) /* Self refresh */
|
|
| (sdram_type << 24) /* SDRAM type */
|
|
);
|
|
|
|
/*
|
|
* sdram_cfg[3] = RD_EN - registered DIMM enable
|
|
* A value of 0x26 indicates micron registered DIMMS (micron.com)
|
|
*/
|
|
if (spd.mem_type == SPD_MEMTYPE_DDR && spd.mod_attr == 0x26) {
|
|
sdram_cfg |= 0x10000000; /* RD_EN */
|
|
}
|
|
|
|
#if defined(CONFIG_DDR_ECC)
|
|
/*
|
|
* If the user wanted ECC (enabled via sdram_cfg[2])
|
|
*/
|
|
if (spd.config == 0x02) {
|
|
sdram_cfg |= 0x20000000; /* ECC_EN */
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* REV1 uses 1T timing.
|
|
* REV2 may use 1T or 2T as configured by the user.
|
|
*/
|
|
{
|
|
uint pvr = get_pvr();
|
|
|
|
if (pvr != PVR_85xx_REV1) {
|
|
#if defined(CONFIG_DDR_2T_TIMING)
|
|
/*
|
|
* Enable 2T timing by setting sdram_cfg[16].
|
|
*/
|
|
sdram_cfg |= 0x8000; /* 2T_EN */
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 200 painful micro-seconds must elapse between
|
|
* the DDR clock setup and the DDR config enable.
|
|
*/
|
|
udelay(200);
|
|
|
|
/*
|
|
* Go!
|
|
*/
|
|
ddr->sdram_cfg = sdram_cfg;
|
|
|
|
asm("sync;isync;msync");
|
|
udelay(500);
|
|
|
|
debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg);
|
|
|
|
|
|
#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
|
|
/*
|
|
* Poll until memory is initialized.
|
|
* 512 Meg at 400 might hit this 200 times or so.
|
|
*/
|
|
while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) {
|
|
udelay(1000);
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Figure out memory size in Megabytes.
|
|
*/
|
|
memsize = n_ranks * rank_density / 0x100000;
|
|
|
|
/*
|
|
* Establish Local Access Window and TLB mappings for DDR memory.
|
|
*/
|
|
memsize = setup_laws_and_tlbs(memsize);
|
|
if (memsize == 0) {
|
|
return 0;
|
|
}
|
|
|
|
return memsize * 1024 * 1024;
|
|
}
|
|
|
|
|
|
/*
|
|
* Setup Local Access Window and TLB1 mappings for the requested
|
|
* amount of memory. Returns the amount of memory actually mapped
|
|
* (usually the original request size), or 0 on error.
|
|
*/
|
|
|
|
static unsigned int
|
|
setup_laws_and_tlbs(unsigned int memsize)
|
|
{
|
|
volatile immap_t *immap = (immap_t *)CFG_IMMR;
|
|
volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm;
|
|
unsigned int tlb_size;
|
|
unsigned int law_size;
|
|
unsigned int ram_tlb_index;
|
|
unsigned int ram_tlb_address;
|
|
|
|
/*
|
|
* Determine size of each TLB1 entry.
|
|
*/
|
|
switch (memsize) {
|
|
case 16:
|
|
case 32:
|
|
tlb_size = BOOKE_PAGESZ_16M;
|
|
break;
|
|
case 64:
|
|
case 128:
|
|
tlb_size = BOOKE_PAGESZ_64M;
|
|
break;
|
|
case 256:
|
|
case 512:
|
|
tlb_size = BOOKE_PAGESZ_256M;
|
|
break;
|
|
case 1024:
|
|
case 2048:
|
|
if (PVR_VER(get_pvr()) > PVR_VER(PVR_85xx))
|
|
tlb_size = BOOKE_PAGESZ_1G;
|
|
else
|
|
tlb_size = BOOKE_PAGESZ_256M;
|
|
break;
|
|
default:
|
|
puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G are supported.\n");
|
|
|
|
/*
|
|
* The memory was not able to be mapped.
|
|
* Default to a small size.
|
|
*/
|
|
tlb_size = BOOKE_PAGESZ_64M;
|
|
memsize=64;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Configure DDR TLB1 entries.
|
|
* Starting at TLB1 8, use no more than 8 TLB1 entries.
|
|
*/
|
|
ram_tlb_index = 8;
|
|
ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE;
|
|
while (ram_tlb_address < (memsize * 1024 * 1024)
|
|
&& ram_tlb_index < 16) {
|
|
mtspr(MAS0, TLB1_MAS0(1, ram_tlb_index, 0));
|
|
mtspr(MAS1, TLB1_MAS1(1, 1, 0, 0, tlb_size));
|
|
mtspr(MAS2, TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
|
|
0, 0, 0, 0, 0, 0, 0, 0));
|
|
mtspr(MAS3, TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
|
|
0, 0, 0, 0, 0, 1, 0, 1, 0, 1));
|
|
asm volatile("isync;msync;tlbwe;isync");
|
|
|
|
debug("DDR: MAS0=0x%08x\n", TLB1_MAS0(1, ram_tlb_index, 0));
|
|
debug("DDR: MAS1=0x%08x\n", TLB1_MAS1(1, 1, 0, 0, tlb_size));
|
|
debug("DDR: MAS2=0x%08x\n",
|
|
TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
|
|
0, 0, 0, 0, 0, 0, 0, 0));
|
|
debug("DDR: MAS3=0x%08x\n",
|
|
TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
|
|
0, 0, 0, 0, 0, 1, 0, 1, 0, 1));
|
|
|
|
ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2));
|
|
ram_tlb_index++;
|
|
}
|
|
|
|
|
|
/*
|
|
* First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord.
|
|
*/
|
|
law_size = 19 + __ilog2(memsize);
|
|
|
|
/*
|
|
* Set up LAWBAR for all of DDR.
|
|
*/
|
|
ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);
|
|
ecm->lawar1 = (LAWAR_EN
|
|
| LAWAR_TRGT_IF_DDR
|
|
| (LAWAR_SIZE & law_size));
|
|
debug("DDR: LAWBAR1=0x%08x\n", ecm->lawbar1);
|
|
debug("DDR: LARAR1=0x%08x\n", ecm->lawar1);
|
|
|
|
/*
|
|
* Confirm that the requested amount of memory was mapped.
|
|
*/
|
|
return memsize;
|
|
}
|
|
|
|
#endif /* CONFIG_SPD_EEPROM */
|
|
|
|
|
|
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
|
|
|
|
/*
|
|
* Initialize all of memory for ECC, then enable errors.
|
|
*/
|
|
|
|
void
|
|
ddr_enable_ecc(unsigned int dram_size)
|
|
{
|
|
uint *p = 0;
|
|
uint i = 0;
|
|
volatile immap_t *immap = (immap_t *)CFG_IMMR;
|
|
volatile ccsr_ddr_t *ddr= &immap->im_ddr;
|
|
|
|
dma_init();
|
|
|
|
for (*p = 0; p < (uint *)(8 * 1024); p++) {
|
|
if (((unsigned int)p & 0x1f) == 0) {
|
|
ppcDcbz((unsigned long) p);
|
|
}
|
|
*p = (unsigned int)CONFIG_MEM_INIT_VALUE;
|
|
if (((unsigned int)p & 0x1c) == 0x1c) {
|
|
ppcDcbf((unsigned long) p);
|
|
}
|
|
}
|
|
|
|
dma_xfer((uint *)0x002000, 0x002000, (uint *)0); /* 8K */
|
|
dma_xfer((uint *)0x004000, 0x004000, (uint *)0); /* 16K */
|
|
dma_xfer((uint *)0x008000, 0x008000, (uint *)0); /* 32K */
|
|
dma_xfer((uint *)0x010000, 0x010000, (uint *)0); /* 64K */
|
|
dma_xfer((uint *)0x020000, 0x020000, (uint *)0); /* 128k */
|
|
dma_xfer((uint *)0x040000, 0x040000, (uint *)0); /* 256k */
|
|
dma_xfer((uint *)0x080000, 0x080000, (uint *)0); /* 512k */
|
|
dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
|
|
dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
|
|
dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */
|
|
|
|
for (i = 1; i < dram_size / 0x800000; i++) {
|
|
dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
|
|
}
|
|
|
|
/*
|
|
* Enable errors for ECC.
|
|
*/
|
|
debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
|
|
ddr->err_disable = 0x00000000;
|
|
asm("sync;isync;msync");
|
|
debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
|
|
}
|
|
|
|
#endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */
|