u-boot/tools/kwboot.c
Pali Rohár 62a98f496a tools: kwboot: Do not send magic seq when changing baudrate back to 115200
After successful transfer of whole image only two things can happen:
- BootROM starts execution of data block, which changes UART baudrate
  back to 115200 Bd,
- board crashes and causes CPU reset

In both cases UART baudrate is reset to the default speed. So there is
no need to send special magic sequence to inform kwboot that baudrate is
going to be reset and kwboot does not need to wait for this event and
can do it immediately after BootROM acknowledges end of xmodem transfer.

Move ARM code for sending magic sequence from main baudrate change
section to binhdr_pre section which is executed only before changing
baudrate from the default value of 115200 Bd to some new value. Remove
kwboot code waiting for magic sequence after successful xmodem transfer.

Rationale: sometimes when using very high UART speeds, magic sequence is
damaged and kwboot fails at this last stage. Removal of this magic
sequence makes booting more stable.

Data transfer protocol (xmodem) is using checksums and retransmit, so it
already deals with possible errors on transfer line.

Signed-off-by: Pali Rohár <pali@kernel.org>
Signed-off-by: Marek Behún <marek.behun@nic.cz>
Reviewed-by: Stefan Roese <sr@denx.de>
2021-11-03 06:45:34 +01:00

1818 lines
40 KiB
C

/*
* Boot a Marvell SoC, with Xmodem over UART0.
* supports Kirkwood, Dove, Armada 370, Armada XP, Armada 375, Armada 38x and
* Armada 39x
*
* (c) 2012 Daniel Stodden <daniel.stodden@gmail.com>
* (c) 2021 Pali Rohár <pali@kernel.org>
* (c) 2021 Marek Behún <marek.behun@nic.cz>
*
* References: marvell.com, "88F6180, 88F6190, 88F6192, and 88F6281
* Integrated Controller: Functional Specifications" December 2,
* 2008. Chapter 24.2 "BootROM Firmware".
*/
#include "kwbimage.h"
#include "mkimage.h"
#include "version.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <image.h>
#include <libgen.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <stdint.h>
#include <time.h>
#include <sys/stat.h>
#ifdef __linux__
#include "termios_linux.h"
#else
#include <termios.h>
#endif
/*
* Marvell BootROM UART Sensing
*/
static unsigned char kwboot_msg_boot[] = {
0xBB, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
};
static unsigned char kwboot_msg_debug[] = {
0xDD, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
};
/* Defines known to work on Kirkwood */
#define KWBOOT_MSG_REQ_DELAY 10 /* ms */
#define KWBOOT_MSG_RSP_TIMEO 50 /* ms */
/* Defines known to work on Armada XP */
#define KWBOOT_MSG_REQ_DELAY_AXP 1000 /* ms */
#define KWBOOT_MSG_RSP_TIMEO_AXP 1000 /* ms */
/*
* Xmodem Transfers
*/
#define SOH 1 /* sender start of block header */
#define EOT 4 /* sender end of block transfer */
#define ACK 6 /* target block ack */
#define NAK 21 /* target block negative ack */
#define CAN 24 /* target/sender transfer cancellation */
#define KWBOOT_XM_BLKSZ 128 /* xmodem block size */
struct kwboot_block {
uint8_t soh;
uint8_t pnum;
uint8_t _pnum;
uint8_t data[KWBOOT_XM_BLKSZ];
uint8_t csum;
} __packed;
#define KWBOOT_BLK_RSP_TIMEO 1000 /* ms */
#define KWBOOT_HDR_RSP_TIMEO 10000 /* ms */
/* ARM code to change baudrate */
static unsigned char kwboot_baud_code[] = {
/* ; #define UART_BASE 0xd0012000 */
/* ; #define DLL 0x00 */
/* ; #define DLH 0x04 */
/* ; #define LCR 0x0c */
/* ; #define DLAB 0x80 */
/* ; #define LSR 0x14 */
/* ; #define TEMT 0x40 */
/* ; #define DIV_ROUND(a, b) ((a + b/2) / b) */
/* ; */
/* ; u32 set_baudrate(u32 old_b, u32 new_b) { */
/* ; while */
/* ; (!(readl(UART_BASE + LSR) & TEMT)); */
/* ; u32 lcr = readl(UART_BASE + LCR); */
/* ; writel(UART_BASE + LCR, lcr | DLAB); */
/* ; u8 old_dll = readl(UART_BASE + DLL); */
/* ; u8 old_dlh = readl(UART_BASE + DLH); */
/* ; u16 old_dl = old_dll | (old_dlh << 8); */
/* ; u32 clk = old_b * old_dl; */
/* ; u16 new_dl = DIV_ROUND(clk, new_b); */
/* ; u8 new_dll = new_dl & 0xff; */
/* ; u8 new_dlh = (new_dl >> 8) & 0xff; */
/* ; writel(UART_BASE + DLL, new_dll); */
/* ; writel(UART_BASE + DLH, new_dlh); */
/* ; writel(UART_BASE + LCR, lcr & ~DLAB); */
/* ; msleep(5); */
/* ; return 0; */
/* ; } */
/* ; r0 = UART_BASE */
0x0d, 0x02, 0xa0, 0xe3, /* mov r0, #0xd0000000 */
0x12, 0x0a, 0x80, 0xe3, /* orr r0, r0, #0x12000 */
/* ; Wait until Transmitter FIFO is Empty */
/* .Lloop_txempty: */
/* ; r1 = UART_BASE[LSR] & TEMT */
0x14, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x14] */
0x40, 0x00, 0x11, 0xe3, /* tst r1, #0x40 */
0xfc, 0xff, 0xff, 0x0a, /* beq .Lloop_txempty */
/* ; Set Divisor Latch Access Bit */
/* ; UART_BASE[LCR] |= DLAB */
0x0c, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x0c] */
0x80, 0x10, 0x81, 0xe3, /* orr r1, r1, #0x80 */
0x0c, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0c] */
/* ; Read current Divisor Latch */
/* ; r1 = UART_BASE[DLH]<<8 | UART_BASE[DLL] */
0x00, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x00] */
0xff, 0x10, 0x01, 0xe2, /* and r1, r1, #0xff */
0x01, 0x20, 0xa0, 0xe1, /* mov r2, r1 */
0x04, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x04] */
0xff, 0x10, 0x01, 0xe2, /* and r1, r1, #0xff */
0x41, 0x14, 0xa0, 0xe1, /* asr r1, r1, #8 */
0x02, 0x10, 0x81, 0xe1, /* orr r1, r1, r2 */
/* ; Read old baudrate value */
/* ; r2 = old_baudrate */
0x74, 0x20, 0x9f, 0xe5, /* ldr r2, old_baudrate */
/* ; Calculate base clock */
/* ; r1 = r2 * r1 */
0x92, 0x01, 0x01, 0xe0, /* mul r1, r2, r1 */
/* ; Read new baudrate value */
/* ; r2 = new_baudrate */
0x70, 0x20, 0x9f, 0xe5, /* ldr r2, new_baudrate */
/* ; Calculate new Divisor Latch */
/* ; r1 = DIV_ROUND(r1, r2) = */
/* ; = (r1 + r2/2) / r2 */
0xa2, 0x10, 0x81, 0xe0, /* add r1, r1, r2, lsr #1 */
0x02, 0x40, 0xa0, 0xe1, /* mov r4, r2 */
0xa1, 0x00, 0x54, 0xe1, /* cmp r4, r1, lsr #1 */
/* .Lloop_div1: */
0x84, 0x40, 0xa0, 0x91, /* movls r4, r4, lsl #1 */
0xa1, 0x00, 0x54, 0xe1, /* cmp r4, r1, lsr #1 */
0xfc, 0xff, 0xff, 0x9a, /* bls .Lloop_div1 */
0x00, 0x30, 0xa0, 0xe3, /* mov r3, #0 */
/* .Lloop_div2: */
0x04, 0x00, 0x51, 0xe1, /* cmp r1, r4 */
0x04, 0x10, 0x41, 0x20, /* subhs r1, r1, r4 */
0x03, 0x30, 0xa3, 0xe0, /* adc r3, r3, r3 */
0xa4, 0x40, 0xa0, 0xe1, /* mov r4, r4, lsr #1 */
0x02, 0x00, 0x54, 0xe1, /* cmp r4, r2 */
0xf9, 0xff, 0xff, 0x2a, /* bhs .Lloop_div2 */
0x03, 0x10, 0xa0, 0xe1, /* mov r1, r3 */
/* ; Set new Divisor Latch Low */
/* ; UART_BASE[DLL] = r1 & 0xff */
0x01, 0x20, 0xa0, 0xe1, /* mov r2, r1 */
0xff, 0x20, 0x02, 0xe2, /* and r2, r2, #0xff */
0x00, 0x20, 0x80, 0xe5, /* str r2, [r0, #0x00] */
/* ; Set new Divisor Latch High */
/* ; UART_BASE[DLH] = r1>>8 & 0xff */
0x41, 0x24, 0xa0, 0xe1, /* asr r2, r1, #8 */
0xff, 0x20, 0x02, 0xe2, /* and r2, r2, #0xff */
0x04, 0x20, 0x80, 0xe5, /* str r2, [r0, #0x04] */
/* ; Clear Divisor Latch Access Bit */
/* ; UART_BASE[LCR] &= ~DLAB */
0x0c, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x0c] */
0x80, 0x10, 0xc1, 0xe3, /* bic r1, r1, #0x80 */
0x0c, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0c] */
/* ; Loop 0x2dc000 (2998272) cycles */
/* ; which is about 5ms on 1200 MHz CPU */
/* ; r1 = 0x2dc000 */
0xb7, 0x19, 0xa0, 0xe3, /* mov r1, #0x2dc000 */
/* .Lloop_sleep: */
0x01, 0x10, 0x41, 0xe2, /* sub r1, r1, #1 */
0x00, 0x00, 0x51, 0xe3, /* cmp r1, #0 */
0xfc, 0xff, 0xff, 0x1a, /* bne .Lloop_sleep */
/* ; Jump to the end of execution */
0x01, 0x00, 0x00, 0xea, /* b end */
/* ; Placeholder for old baudrate value */
/* old_baudrate: */
0x00, 0x00, 0x00, 0x00, /* .word 0 */
/* ; Placeholder for new baudrate value */
/* new_baudrate: */
0x00, 0x00, 0x00, 0x00, /* .word 0 */
/* end: */
};
/* ARM code from binary header executed by BootROM before changing baudrate */
static unsigned char kwboot_baud_code_binhdr_pre[] = {
/* ; #define UART_BASE 0xd0012000 */
/* ; #define THR 0x00 */
/* ; #define LSR 0x14 */
/* ; #define THRE 0x20 */
/* ; */
/* ; void send_preamble(void) { */
/* ; const u8 *str = "$baudratechange"; */
/* ; u8 c; */
/* ; do { */
/* ; while */
/* ; ((readl(UART_BASE + LSR) & THRE)); */
/* ; c = *str++; */
/* ; writel(UART_BASE + THR, c); */
/* ; } while (c); */
/* ; } */
/* ; Preserve registers for BootROM */
0xfe, 0x5f, 0x2d, 0xe9, /* push { r1 - r12, lr } */
/* ; r0 = UART_BASE */
0x0d, 0x02, 0xa0, 0xe3, /* mov r0, #0xd0000000 */
0x12, 0x0a, 0x80, 0xe3, /* orr r0, r0, #0x12000 */
/* ; r2 = address of preamble string */
0x00, 0x20, 0x8f, 0xe2, /* adr r2, .Lstr_preamble */
/* ; Skip preamble data section */
0x03, 0x00, 0x00, 0xea, /* b .Lloop_preamble */
/* ; Preamble string */
/* .Lstr_preamble: */
0x24, 0x62, 0x61, 0x75, /* .asciz "$baudratechange" */
0x64, 0x72, 0x61, 0x74,
0x65, 0x63, 0x68, 0x61,
0x6e, 0x67, 0x65, 0x00,
/* ; Send preamble string over UART */
/* .Lloop_preamble: */
/* */
/* ; Wait until Transmitter Holding is Empty */
/* .Lloop_thre: */
/* ; r1 = UART_BASE[LSR] & THRE */
0x14, 0x10, 0x90, 0xe5, /* ldr r1, [r0, #0x14] */
0x20, 0x00, 0x11, 0xe3, /* tst r1, #0x20 */
0xfc, 0xff, 0xff, 0x0a, /* beq .Lloop_thre */
/* ; Put character into Transmitter FIFO */
/* ; r1 = *r2++ */
0x01, 0x10, 0xd2, 0xe4, /* ldrb r1, [r2], #1 */
/* ; UART_BASE[THR] = r1 */
0x00, 0x10, 0x80, 0xe5, /* str r1, [r0, #0x0] */
/* ; Loop until end of preamble string */
0x00, 0x00, 0x51, 0xe3, /* cmp r1, #0 */
0xf8, 0xff, 0xff, 0x1a, /* bne .Lloop_preamble */
};
/* ARM code for returning from binary header back to BootROM */
static unsigned char kwboot_baud_code_binhdr_post[] = {
/* ; Return 0 - no error */
0x00, 0x00, 0xa0, 0xe3, /* mov r0, #0 */
0xfe, 0x9f, 0xbd, 0xe8, /* pop { r1 - r12, pc } */
};
/* ARM code for jumping to the original image exec_addr */
static unsigned char kwboot_baud_code_data_jump[] = {
0x04, 0xf0, 0x1f, 0xe5, /* ldr pc, exec_addr */
/* ; Placeholder for exec_addr */
/* exec_addr: */
0x00, 0x00, 0x00, 0x00, /* .word 0 */
};
static const char kwb_baud_magic[16] = "$baudratechange";
static int kwboot_verbose;
static int msg_req_delay = KWBOOT_MSG_REQ_DELAY;
static int msg_rsp_timeo = KWBOOT_MSG_RSP_TIMEO;
static int blk_rsp_timeo = KWBOOT_BLK_RSP_TIMEO;
static ssize_t
kwboot_write(int fd, const char *buf, size_t len)
{
size_t tot = 0;
while (tot < len) {
ssize_t wr = write(fd, buf + tot, len - tot);
if (wr < 0)
return -1;
tot += wr;
}
return tot;
}
static void
kwboot_printv(const char *fmt, ...)
{
va_list ap;
if (kwboot_verbose) {
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
fflush(stdout);
}
}
static void
__spinner(void)
{
const char seq[] = { '-', '\\', '|', '/' };
const int div = 8;
static int state, bs;
if (state % div == 0) {
fputc(bs, stdout);
fputc(seq[state / div % sizeof(seq)], stdout);
fflush(stdout);
}
bs = '\b';
state++;
}
static void
kwboot_spinner(void)
{
if (kwboot_verbose)
__spinner();
}
static void
__progress(int pct, char c)
{
const int width = 70;
static const char *nl = "";
static int pos;
if (pos % width == 0)
printf("%s%3d %% [", nl, pct);
fputc(c, stdout);
nl = "]\n";
pos = (pos + 1) % width;
if (pct == 100) {
while (pos && pos++ < width)
fputc(' ', stdout);
fputs(nl, stdout);
nl = "";
pos = 0;
}
fflush(stdout);
}
static void
kwboot_progress(int _pct, char c)
{
static int pct;
if (_pct != -1)
pct = _pct;
if (kwboot_verbose)
__progress(pct, c);
if (pct == 100)
pct = 0;
}
static int
kwboot_tty_recv(int fd, void *buf, size_t len, int timeo)
{
int rc, nfds;
fd_set rfds;
struct timeval tv;
ssize_t n;
rc = -1;
FD_ZERO(&rfds);
FD_SET(fd, &rfds);
tv.tv_sec = 0;
tv.tv_usec = timeo * 1000;
if (tv.tv_usec > 1000000) {
tv.tv_sec += tv.tv_usec / 1000000;
tv.tv_usec %= 1000000;
}
do {
nfds = select(fd + 1, &rfds, NULL, NULL, &tv);
if (nfds < 0)
goto out;
if (!nfds) {
errno = ETIMEDOUT;
goto out;
}
n = read(fd, buf, len);
if (n <= 0)
goto out;
buf = (char *)buf + n;
len -= n;
} while (len > 0);
rc = 0;
out:
return rc;
}
static int
kwboot_tty_send(int fd, const void *buf, size_t len, int nodrain)
{
if (!buf)
return 0;
if (kwboot_write(fd, buf, len) < 0)
return -1;
if (nodrain)
return 0;
return tcdrain(fd);
}
static int
kwboot_tty_send_char(int fd, unsigned char c)
{
return kwboot_tty_send(fd, &c, 1, 0);
}
static speed_t
kwboot_tty_baudrate_to_speed(int baudrate)
{
switch (baudrate) {
#ifdef B4000000
case 4000000:
return B4000000;
#endif
#ifdef B3500000
case 3500000:
return B3500000;
#endif
#ifdef B3000000
case 3000000:
return B3000000;
#endif
#ifdef B2500000
case 2500000:
return B2500000;
#endif
#ifdef B2000000
case 2000000:
return B2000000;
#endif
#ifdef B1500000
case 1500000:
return B1500000;
#endif
#ifdef B1152000
case 1152000:
return B1152000;
#endif
#ifdef B1000000
case 1000000:
return B1000000;
#endif
#ifdef B921600
case 921600:
return B921600;
#endif
#ifdef B614400
case 614400:
return B614400;
#endif
#ifdef B576000
case 576000:
return B576000;
#endif
#ifdef B500000
case 500000:
return B500000;
#endif
#ifdef B460800
case 460800:
return B460800;
#endif
#ifdef B307200
case 307200:
return B307200;
#endif
#ifdef B230400
case 230400:
return B230400;
#endif
#ifdef B153600
case 153600:
return B153600;
#endif
#ifdef B115200
case 115200:
return B115200;
#endif
#ifdef B76800
case 76800:
return B76800;
#endif
#ifdef B57600
case 57600:
return B57600;
#endif
#ifdef B38400
case 38400:
return B38400;
#endif
#ifdef B19200
case 19200:
return B19200;
#endif
#ifdef B9600
case 9600:
return B9600;
#endif
#ifdef B4800
case 4800:
return B4800;
#endif
#ifdef B2400
case 2400:
return B2400;
#endif
#ifdef B1800
case 1800:
return B1800;
#endif
#ifdef B1200
case 1200:
return B1200;
#endif
#ifdef B600
case 600:
return B600;
#endif
#ifdef B300
case 300:
return B300;
#endif
#ifdef B200
case 200:
return B200;
#endif
#ifdef B150
case 150:
return B150;
#endif
#ifdef B134
case 134:
return B134;
#endif
#ifdef B110
case 110:
return B110;
#endif
#ifdef B75
case 75:
return B75;
#endif
#ifdef B50
case 50:
return B50;
#endif
default:
#ifdef BOTHER
return BOTHER;
#else
return B0;
#endif
}
}
static int
_is_within_tolerance(int value, int reference, int tolerance)
{
return 100 * value >= reference * (100 - tolerance) &&
100 * value <= reference * (100 + tolerance);
}
static int
kwboot_tty_change_baudrate(int fd, int baudrate)
{
struct termios tio;
speed_t speed;
int rc;
rc = tcgetattr(fd, &tio);
if (rc)
return rc;
speed = kwboot_tty_baudrate_to_speed(baudrate);
if (speed == B0) {
errno = EINVAL;
return -1;
}
#ifdef BOTHER
if (speed == BOTHER)
tio.c_ospeed = tio.c_ispeed = baudrate;
#endif
rc = cfsetospeed(&tio, speed);
if (rc)
return rc;
rc = cfsetispeed(&tio, speed);
if (rc)
return rc;
rc = tcsetattr(fd, TCSANOW, &tio);
if (rc)
return rc;
rc = tcgetattr(fd, &tio);
if (rc)
return rc;
if (cfgetospeed(&tio) != speed || cfgetispeed(&tio) != speed)
goto baud_fail;
#ifdef BOTHER
/*
* Check whether set baudrate is within 3% tolerance.
* If BOTHER is defined, Linux always fills out c_ospeed / c_ispeed
* with real values.
*/
if (!_is_within_tolerance(tio.c_ospeed, baudrate, 3))
goto baud_fail;
if (!_is_within_tolerance(tio.c_ispeed, baudrate, 3))
goto baud_fail;
#endif
return 0;
baud_fail:
fprintf(stderr, "Could not set baudrate to requested value\n");
errno = EINVAL;
return -1;
}
static int
kwboot_open_tty(const char *path, int baudrate)
{
int rc, fd, flags;
struct termios tio;
rc = -1;
fd = open(path, O_RDWR | O_NOCTTY | O_NDELAY);
if (fd < 0)
goto out;
rc = tcgetattr(fd, &tio);
if (rc)
goto out;
cfmakeraw(&tio);
tio.c_cflag |= CREAD | CLOCAL;
tio.c_cflag &= ~(CSTOPB | HUPCL | CRTSCTS);
tio.c_cc[VMIN] = 1;
tio.c_cc[VTIME] = 0;
rc = tcsetattr(fd, TCSANOW, &tio);
if (rc)
goto out;
flags = fcntl(fd, F_GETFL);
if (flags < 0)
goto out;
rc = fcntl(fd, F_SETFL, flags & ~O_NDELAY);
if (rc)
goto out;
rc = kwboot_tty_change_baudrate(fd, baudrate);
if (rc)
goto out;
rc = fd;
out:
if (rc < 0) {
if (fd >= 0)
close(fd);
}
return rc;
}
static int
kwboot_bootmsg(int tty, void *msg)
{
int rc;
char c;
int count;
if (msg == NULL)
kwboot_printv("Please reboot the target into UART boot mode...");
else
kwboot_printv("Sending boot message. Please reboot the target...");
do {
rc = tcflush(tty, TCIOFLUSH);
if (rc)
break;
for (count = 0; count < 128; count++) {
rc = kwboot_tty_send(tty, msg, 8, 0);
if (rc) {
usleep(msg_req_delay * 1000);
continue;
}
}
rc = kwboot_tty_recv(tty, &c, 1, msg_rsp_timeo);
kwboot_spinner();
} while (rc || c != NAK);
kwboot_printv("\n");
return rc;
}
static int
kwboot_debugmsg(int tty, void *msg)
{
int rc;
kwboot_printv("Sending debug message. Please reboot the target...");
do {
char buf[16];
rc = tcflush(tty, TCIOFLUSH);
if (rc)
break;
rc = kwboot_tty_send(tty, msg, 8, 0);
if (rc) {
usleep(msg_req_delay * 1000);
continue;
}
rc = kwboot_tty_recv(tty, buf, 16, msg_rsp_timeo);
kwboot_spinner();
} while (rc);
kwboot_printv("\n");
return rc;
}
static size_t
kwboot_xm_makeblock(struct kwboot_block *block, const void *data,
size_t size, int pnum)
{
size_t i, n;
block->soh = SOH;
block->pnum = pnum;
block->_pnum = ~block->pnum;
n = size < KWBOOT_XM_BLKSZ ? size : KWBOOT_XM_BLKSZ;
memcpy(&block->data[0], data, n);
memset(&block->data[n], 0, KWBOOT_XM_BLKSZ - n);
block->csum = 0;
for (i = 0; i < n; i++)
block->csum += block->data[i];
return n;
}
static uint64_t
_now(void)
{
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts)) {
static int err_print;
if (!err_print) {
perror("clock_gettime() does not work");
err_print = 1;
}
/* this will just make the timeout not work */
return -1ULL;
}
return ts.tv_sec * 1000ULL + (ts.tv_nsec + 500000) / 1000000;
}
static int
_is_xm_reply(char c)
{
return c == ACK || c == NAK || c == CAN;
}
static int
_xm_reply_to_error(int c)
{
int rc = -1;
switch (c) {
case ACK:
rc = 0;
break;
case NAK:
errno = EBADMSG;
break;
case CAN:
errno = ECANCELED;
break;
default:
errno = EPROTO;
break;
}
return rc;
}
static int
kwboot_baud_magic_handle(int fd, char c, int baudrate)
{
static size_t rcv_len;
if (rcv_len < sizeof(kwb_baud_magic)) {
/* try to recognize whole magic word */
if (c == kwb_baud_magic[rcv_len]) {
rcv_len++;
} else {
printf("%.*s%c", (int)rcv_len, kwb_baud_magic, c);
fflush(stdout);
rcv_len = 0;
}
}
if (rcv_len == sizeof(kwb_baud_magic)) {
/* magic word received */
kwboot_printv("\nChanging baudrate to %d Bd\n", baudrate);
return kwboot_tty_change_baudrate(fd, baudrate) ? : 1;
} else {
return 0;
}
}
static int
kwboot_xm_recv_reply(int fd, char *c, int nak_on_non_xm,
int allow_non_xm, int *non_xm_print,
int baudrate, int *baud_changed)
{
int timeout = allow_non_xm ? KWBOOT_HDR_RSP_TIMEO : blk_rsp_timeo;
uint64_t recv_until = _now() + timeout;
int rc;
while (1) {
rc = kwboot_tty_recv(fd, c, 1, timeout);
if (rc) {
if (errno != ETIMEDOUT)
return rc;
else if (allow_non_xm && *non_xm_print)
return -1;
else
*c = NAK;
}
/* If received xmodem reply, end. */
if (_is_xm_reply(*c))
break;
/*
* If receiving/printing non-xmodem text output is allowed and
* such a byte was received, we want to increase receiving time
* and either:
* - print the byte, if it is not part of baudrate change magic
* sequence while baudrate change was requested (-B option)
* - change baudrate
* Otherwise decrease timeout by time elapsed.
*/
if (allow_non_xm) {
recv_until = _now() + timeout;
if (baudrate && !*baud_changed) {
rc = kwboot_baud_magic_handle(fd, *c, baudrate);
if (rc == 1)
*baud_changed = 1;
else if (!rc)
*non_xm_print = 1;
else
return rc;
} else if (!baudrate || !*baud_changed) {
putchar(*c);
fflush(stdout);
*non_xm_print = 1;
}
} else {
if (nak_on_non_xm) {
*c = NAK;
break;
}
timeout = recv_until - _now();
if (timeout < 0) {
errno = ETIMEDOUT;
return -1;
}
}
}
return 0;
}
static int
kwboot_xm_sendblock(int fd, struct kwboot_block *block, int allow_non_xm,
int *done_print, int baudrate)
{
int non_xm_print, baud_changed;
int rc, err, retries;
char c;
*done_print = 0;
non_xm_print = 0;
baud_changed = 0;
retries = 0;
do {
rc = kwboot_tty_send(fd, block, sizeof(*block), 1);
if (rc)
return rc;
if (allow_non_xm && !*done_print) {
kwboot_progress(100, '.');
kwboot_printv("Done\n");
*done_print = 1;
}
rc = kwboot_xm_recv_reply(fd, &c, retries < 3,
allow_non_xm, &non_xm_print,
baudrate, &baud_changed);
if (rc)
goto can;
if (!allow_non_xm && c != ACK)
kwboot_progress(-1, '+');
} while (c == NAK && retries++ < 16);
if (non_xm_print)
kwboot_printv("\n");
if (allow_non_xm && baudrate && !baud_changed) {
fprintf(stderr, "Baudrate was not changed\n");
rc = -1;
errno = EPROTO;
goto can;
}
return _xm_reply_to_error(c);
can:
err = errno;
kwboot_tty_send_char(fd, CAN);
kwboot_printv("\n");
errno = err;
return rc;
}
static int
kwboot_xm_finish(int fd)
{
int rc, retries;
char c;
kwboot_printv("Finishing transfer\n");
retries = 0;
do {
rc = kwboot_tty_send_char(fd, EOT);
if (rc)
return rc;
rc = kwboot_xm_recv_reply(fd, &c, retries < 3,
0, NULL, 0, NULL);
if (rc)
return rc;
} while (c == NAK && retries++ < 16);
return _xm_reply_to_error(c);
}
static int
kwboot_xmodem_one(int tty, int *pnum, int header, const uint8_t *data,
size_t size, int baudrate)
{
int done_print = 0;
size_t sent, left;
int rc;
kwboot_printv("Sending boot image %s (%zu bytes)...\n",
header ? "header" : "data", size);
left = size;
sent = 0;
while (sent < size) {
struct kwboot_block block;
int last_block;
size_t blksz;
blksz = kwboot_xm_makeblock(&block, data, left, (*pnum)++);
data += blksz;
last_block = (left <= blksz);
rc = kwboot_xm_sendblock(tty, &block, header && last_block,
&done_print, baudrate);
if (rc)
goto out;
sent += blksz;
left -= blksz;
if (!done_print)
kwboot_progress(sent * 100 / size, '.');
}
if (!done_print)
kwboot_printv("Done\n");
return 0;
out:
kwboot_printv("\n");
return rc;
}
static int
kwboot_xmodem(int tty, const void *_img, size_t size, int baudrate)
{
const uint8_t *img = _img;
int rc, pnum;
size_t hdrsz;
hdrsz = kwbheader_size(img);
kwboot_printv("Waiting 2s and flushing tty\n");
sleep(2); /* flush isn't effective without it */
tcflush(tty, TCIOFLUSH);
pnum = 1;
rc = kwboot_xmodem_one(tty, &pnum, 1, img, hdrsz, baudrate);
if (rc)
return rc;
img += hdrsz;
size -= hdrsz;
rc = kwboot_xmodem_one(tty, &pnum, 0, img, size, 0);
if (rc)
return rc;
rc = kwboot_xm_finish(tty);
if (rc)
return rc;
if (baudrate) {
kwboot_printv("\nChanging baudrate back to 115200 Bd\n\n");
rc = kwboot_tty_change_baudrate(tty, 115200);
if (rc)
return rc;
}
return 0;
}
static int
kwboot_term_pipe(int in, int out, const char *quit, int *s)
{
ssize_t nin;
char _buf[128], *buf = _buf;
nin = read(in, buf, sizeof(_buf));
if (nin <= 0)
return -1;
if (quit) {
int i;
for (i = 0; i < nin; i++) {
if (*buf == quit[*s]) {
(*s)++;
if (!quit[*s])
return 0;
buf++;
nin--;
} else {
if (kwboot_write(out, quit, *s) < 0)
return -1;
*s = 0;
}
}
}
if (kwboot_write(out, buf, nin) < 0)
return -1;
return 0;
}
static int
kwboot_terminal(int tty)
{
int rc, in, s;
const char *quit = "\34c";
struct termios otio, tio;
rc = -1;
in = STDIN_FILENO;
if (isatty(in)) {
rc = tcgetattr(in, &otio);
if (!rc) {
tio = otio;
cfmakeraw(&tio);
rc = tcsetattr(in, TCSANOW, &tio);
}
if (rc) {
perror("tcsetattr");
goto out;
}
kwboot_printv("[Type Ctrl-%c + %c to quit]\r\n",
quit[0] | 0100, quit[1]);
} else
in = -1;
rc = 0;
s = 0;
do {
fd_set rfds;
int nfds = 0;
FD_ZERO(&rfds);
FD_SET(tty, &rfds);
nfds = nfds < tty ? tty : nfds;
if (in >= 0) {
FD_SET(in, &rfds);
nfds = nfds < in ? in : nfds;
}
nfds = select(nfds + 1, &rfds, NULL, NULL, NULL);
if (nfds < 0)
break;
if (FD_ISSET(tty, &rfds)) {
rc = kwboot_term_pipe(tty, STDOUT_FILENO, NULL, NULL);
if (rc)
break;
}
if (in >= 0 && FD_ISSET(in, &rfds)) {
rc = kwboot_term_pipe(in, tty, quit, &s);
if (rc)
break;
}
} while (quit[s] != 0);
if (in >= 0)
tcsetattr(in, TCSANOW, &otio);
printf("\n");
out:
return rc;
}
static void *
kwboot_read_image(const char *path, size_t *size, size_t reserve)
{
int rc, fd;
struct stat st;
void *img;
off_t tot;
rc = -1;
img = NULL;
fd = open(path, O_RDONLY);
if (fd < 0)
goto out;
rc = fstat(fd, &st);
if (rc)
goto out;
img = malloc(st.st_size + reserve);
if (!img)
goto out;
tot = 0;
while (tot < st.st_size) {
ssize_t rd = read(fd, img + tot, st.st_size - tot);
if (rd < 0)
goto out;
tot += rd;
if (!rd && tot < st.st_size) {
errno = EIO;
goto out;
}
}
rc = 0;
*size = st.st_size;
out:
if (rc && img) {
free(img);
img = NULL;
}
if (fd >= 0)
close(fd);
return img;
}
static uint8_t
kwboot_hdr_csum8(const void *hdr)
{
const uint8_t *data = hdr;
uint8_t csum;
size_t size;
size = kwbheader_size_for_csum(hdr);
for (csum = 0; size-- > 0; data++)
csum += *data;
return csum;
}
static uint32_t *
kwboot_img_csum32_ptr(void *img)
{
struct main_hdr_v1 *hdr = img;
uint32_t datasz;
datasz = le32_to_cpu(hdr->blocksize) - sizeof(uint32_t);
return img + le32_to_cpu(hdr->srcaddr) + datasz;
}
static uint32_t
kwboot_img_csum32(const void *img)
{
const struct main_hdr_v1 *hdr = img;
uint32_t datasz, csum = 0;
const uint32_t *data;
datasz = le32_to_cpu(hdr->blocksize) - sizeof(csum);
if (datasz % sizeof(uint32_t))
return 0;
data = img + le32_to_cpu(hdr->srcaddr);
while (datasz > 0) {
csum += le32_to_cpu(*data++);
datasz -= 4;
}
return cpu_to_le32(csum);
}
static int
kwboot_img_is_secure(void *img)
{
struct opt_hdr_v1 *ohdr;
for_each_opt_hdr_v1 (ohdr, img)
if (ohdr->headertype == OPT_HDR_V1_SECURE_TYPE)
return 1;
return 0;
}
static void *
kwboot_img_grow_data_right(void *img, size_t *size, size_t grow)
{
struct main_hdr_v1 *hdr = img;
void *result;
/*
* 32-bit checksum comes after end of image code, so we will be putting
* new code there. So we get this pointer and then increase data size
* (since increasing data size changes kwboot_img_csum32_ptr() return
* value).
*/
result = kwboot_img_csum32_ptr(img);
hdr->blocksize = cpu_to_le32(le32_to_cpu(hdr->blocksize) + grow);
*size += grow;
return result;
}
static void
kwboot_img_grow_hdr(void *img, size_t *size, size_t grow)
{
uint32_t hdrsz, datasz, srcaddr;
struct main_hdr_v1 *hdr = img;
struct opt_hdr_v1 *ohdr;
uint8_t *data;
srcaddr = le32_to_cpu(hdr->srcaddr);
/* calculate real used space in kwbimage header */
if (kwbimage_version(img) == 0) {
hdrsz = kwbheader_size(img);
} else {
hdrsz = sizeof(*hdr);
for_each_opt_hdr_v1 (ohdr, hdr)
hdrsz += opt_hdr_v1_size(ohdr);
}
data = (uint8_t *)img + srcaddr;
datasz = *size - srcaddr;
/* only move data if there is not enough space */
if (hdrsz + grow > srcaddr) {
size_t need = hdrsz + grow - srcaddr;
/* move data by enough bytes */
memmove(data + need, data, datasz);
hdr->srcaddr = cpu_to_le32(srcaddr + need);
*size += need;
}
if (kwbimage_version(img) == 1) {
hdrsz += grow;
if (hdrsz > kwbheader_size(img)) {
hdr->headersz_msb = hdrsz >> 16;
hdr->headersz_lsb = cpu_to_le16(hdrsz & 0xffff);
}
}
}
static void *
kwboot_add_bin_ohdr_v1(void *img, size_t *size, uint32_t binsz)
{
struct main_hdr_v1 *hdr = img;
struct opt_hdr_v1 *ohdr;
uint32_t num_args;
uint32_t offset;
uint32_t ohdrsz;
uint8_t *prev_ext;
if (hdr->ext & 0x1) {
for_each_opt_hdr_v1 (ohdr, img)
if (opt_hdr_v1_next(ohdr) == NULL)
break;
prev_ext = opt_hdr_v1_ext(ohdr);
ohdr = _opt_hdr_v1_next(ohdr);
} else {
ohdr = (void *)(hdr + 1);
prev_ext = &hdr->ext;
}
/*
* ARM executable code inside the BIN header on some mvebu platforms
* (e.g. A370, AXP) must always be aligned with the 128-bit boundary.
* This requirement can be met by inserting dummy arguments into
* BIN header, if needed.
*/
offset = &ohdr->data[4] - (char *)img;
num_args = ((16 - offset % 16) % 16) / sizeof(uint32_t);
ohdrsz = sizeof(*ohdr) + 4 + 4 * num_args + binsz + 4;
kwboot_img_grow_hdr(hdr, size, ohdrsz);
*prev_ext |= 1;
ohdr->headertype = OPT_HDR_V1_BINARY_TYPE;
ohdr->headersz_msb = ohdrsz >> 16;
ohdr->headersz_lsb = cpu_to_le16(ohdrsz & 0xffff);
memset(&ohdr->data[0], 0, ohdrsz - sizeof(*ohdr));
*(uint32_t *)&ohdr->data[0] = cpu_to_le32(num_args);
return &ohdr->data[4 + 4 * num_args];
}
static void
_inject_baudrate_change_code(void *img, size_t *size, int for_data,
int old_baud, int new_baud)
{
struct main_hdr_v1 *hdr = img;
uint32_t orig_datasz;
uint32_t codesz;
uint8_t *code;
if (for_data) {
orig_datasz = le32_to_cpu(hdr->blocksize) - sizeof(uint32_t);
codesz = sizeof(kwboot_baud_code) +
sizeof(kwboot_baud_code_data_jump);
code = kwboot_img_grow_data_right(img, size, codesz);
} else {
codesz = sizeof(kwboot_baud_code_binhdr_pre) +
sizeof(kwboot_baud_code) +
sizeof(kwboot_baud_code_binhdr_post);
code = kwboot_add_bin_ohdr_v1(img, size, codesz);
codesz = sizeof(kwboot_baud_code_binhdr_pre);
memcpy(code, kwboot_baud_code_binhdr_pre, codesz);
code += codesz;
}
codesz = sizeof(kwboot_baud_code) - 2 * sizeof(uint32_t);
memcpy(code, kwboot_baud_code, codesz);
code += codesz;
*(uint32_t *)code = cpu_to_le32(old_baud);
code += sizeof(uint32_t);
*(uint32_t *)code = cpu_to_le32(new_baud);
code += sizeof(uint32_t);
if (for_data) {
codesz = sizeof(kwboot_baud_code_data_jump) - sizeof(uint32_t);
memcpy(code, kwboot_baud_code_data_jump, codesz);
code += codesz;
*(uint32_t *)code = hdr->execaddr;
code += sizeof(uint32_t);
hdr->execaddr = cpu_to_le32(le32_to_cpu(hdr->destaddr) + orig_datasz);
} else {
codesz = sizeof(kwboot_baud_code_binhdr_post);
memcpy(code, kwboot_baud_code_binhdr_post, codesz);
code += codesz;
}
}
static int
kwboot_img_patch(void *img, size_t *size, int baudrate)
{
struct main_hdr_v1 *hdr;
uint32_t srcaddr;
uint8_t csum;
size_t hdrsz;
int image_ver;
int is_secure;
hdr = img;
if (*size < sizeof(struct main_hdr_v1))
goto err;
image_ver = kwbimage_version(img);
if (image_ver != 0 && image_ver != 1) {
fprintf(stderr, "Invalid image header version\n");
goto err;
}
hdrsz = kwbheader_size(hdr);
if (*size < hdrsz)
goto err;
csum = kwboot_hdr_csum8(hdr) - hdr->checksum;
if (csum != hdr->checksum)
goto err;
srcaddr = le32_to_cpu(hdr->srcaddr);
switch (hdr->blockid) {
case IBR_HDR_SATA_ID:
if (srcaddr < 1)
goto err;
hdr->srcaddr = cpu_to_le32((srcaddr - 1) * 512);
break;
case IBR_HDR_SDIO_ID:
hdr->srcaddr = cpu_to_le32(srcaddr * 512);
break;
case IBR_HDR_PEX_ID:
if (srcaddr == 0xFFFFFFFF)
hdr->srcaddr = cpu_to_le32(hdrsz);
break;
case IBR_HDR_SPI_ID:
if (hdr->destaddr == cpu_to_le32(0xFFFFFFFF)) {
kwboot_printv("Patching destination and execution addresses from SPI/NOR XIP area to DDR area 0x00800000\n");
hdr->destaddr = cpu_to_le32(0x00800000);
hdr->execaddr = cpu_to_le32(0x00800000);
}
break;
}
if (hdrsz > le32_to_cpu(hdr->srcaddr) ||
*size < le32_to_cpu(hdr->srcaddr) + le32_to_cpu(hdr->blocksize))
goto err;
if (kwboot_img_csum32(img) != *kwboot_img_csum32_ptr(img))
goto err;
is_secure = kwboot_img_is_secure(img);
if (hdr->blockid != IBR_HDR_UART_ID) {
if (is_secure) {
fprintf(stderr,
"Image has secure header with signature for non-UART booting\n");
goto err;
}
kwboot_printv("Patching image boot signature to UART\n");
hdr->blockid = IBR_HDR_UART_ID;
}
if (!is_secure) {
if (image_ver == 1) {
/*
* Tell BootROM to send BootROM messages to UART port
* number 0 (used also for UART booting) with default
* baudrate (which should be 115200) and do not touch
* UART MPP configuration.
*/
hdr->options &= ~0x1F;
hdr->options |= MAIN_HDR_V1_OPT_BAUD_DEFAULT;
hdr->options |= 0 << 3;
}
if (image_ver == 0)
((struct main_hdr_v0 *)img)->nandeccmode = IBR_HDR_ECC_DISABLED;
hdr->nandpagesize = 0;
}
if (baudrate) {
if (image_ver == 0) {
fprintf(stderr,
"Cannot inject code for changing baudrate into v0 image header\n");
goto err;
}
if (is_secure) {
fprintf(stderr,
"Cannot inject code for changing baudrate into image with secure header\n");
goto err;
}
/*
* First inject code that changes the baudrate from the default
* value of 115200 Bd to requested value. This code is inserted
* as a new opt hdr, so it is executed by BootROM after the
* header part is received.
*/
kwboot_printv("Injecting binary header code for changing baudrate to %d Bd\n",
baudrate);
_inject_baudrate_change_code(img, size, 0, 115200, baudrate);
/*
* Now inject code that changes the baudrate back to 115200 Bd.
* This code is appended after the data part of the image, and
* execaddr is changed so that it is executed before U-Boot
* proper.
*/
kwboot_printv("Injecting code for changing baudrate back\n");
_inject_baudrate_change_code(img, size, 1, baudrate, 115200);
/* Update the 32-bit data checksum */
*kwboot_img_csum32_ptr(img) = kwboot_img_csum32(img);
/* recompute header size */
hdrsz = kwbheader_size(hdr);
}
if (hdrsz % KWBOOT_XM_BLKSZ) {
size_t grow = KWBOOT_XM_BLKSZ - hdrsz % KWBOOT_XM_BLKSZ;
if (is_secure) {
fprintf(stderr, "Cannot align image with secure header\n");
goto err;
}
kwboot_printv("Aligning image header to Xmodem block size\n");
kwboot_img_grow_hdr(img, size, grow);
}
hdr->checksum = kwboot_hdr_csum8(hdr) - csum;
*size = le32_to_cpu(hdr->srcaddr) + le32_to_cpu(hdr->blocksize);
return 0;
err:
errno = EINVAL;
return -1;
}
static void
kwboot_usage(FILE *stream, char *progname)
{
fprintf(stream, "kwboot version %s\n", PLAIN_VERSION);
fprintf(stream,
"Usage: %s [OPTIONS] [-b <image> | -D <image> ] [-B <baud> ] <TTY>\n",
progname);
fprintf(stream, "\n");
fprintf(stream,
" -b <image>: boot <image> with preamble (Kirkwood, Armada 370/XP)\n");
fprintf(stream,
" -D <image>: boot <image> without preamble (Dove)\n");
fprintf(stream, " -d: enter debug mode\n");
fprintf(stream, " -a: use timings for Armada XP\n");
fprintf(stream, " -q <req-delay>: use specific request-delay\n");
fprintf(stream, " -s <resp-timeo>: use specific response-timeout\n");
fprintf(stream,
" -o <block-timeo>: use specific xmodem block timeout\n");
fprintf(stream, "\n");
fprintf(stream, " -t: mini terminal\n");
fprintf(stream, "\n");
fprintf(stream, " -B <baud>: set baud rate\n");
fprintf(stream, "\n");
}
int
main(int argc, char **argv)
{
const char *ttypath, *imgpath;
int rv, rc, tty, term;
void *bootmsg;
void *debugmsg;
void *img;
size_t size;
size_t after_img_rsv;
int baudrate;
rv = 1;
tty = -1;
bootmsg = NULL;
debugmsg = NULL;
imgpath = NULL;
img = NULL;
term = 0;
size = 0;
after_img_rsv = KWBOOT_XM_BLKSZ;
baudrate = 115200;
kwboot_verbose = isatty(STDOUT_FILENO);
do {
int c = getopt(argc, argv, "hb:ptaB:dD:q:s:o:");
if (c < 0)
break;
switch (c) {
case 'b':
bootmsg = kwboot_msg_boot;
imgpath = optarg;
break;
case 'D':
bootmsg = NULL;
imgpath = optarg;
break;
case 'd':
debugmsg = kwboot_msg_debug;
break;
case 'p':
/* nop, for backward compatibility */
break;
case 't':
term = 1;
break;
case 'a':
msg_req_delay = KWBOOT_MSG_REQ_DELAY_AXP;
msg_rsp_timeo = KWBOOT_MSG_RSP_TIMEO_AXP;
break;
case 'q':
msg_req_delay = atoi(optarg);
break;
case 's':
msg_rsp_timeo = atoi(optarg);
break;
case 'o':
blk_rsp_timeo = atoi(optarg);
break;
case 'B':
baudrate = atoi(optarg);
break;
case 'h':
rv = 0;
default:
goto usage;
}
} while (1);
if (!bootmsg && !term && !debugmsg)
goto usage;
if (argc - optind < 1)
goto usage;
ttypath = argv[optind++];
tty = kwboot_open_tty(ttypath, imgpath ? 115200 : baudrate);
if (tty < 0) {
perror(ttypath);
goto out;
}
if (baudrate == 115200)
/* do not change baudrate during Xmodem to the same value */
baudrate = 0;
else
/* ensure we have enough space for baudrate change code */
after_img_rsv += sizeof(struct opt_hdr_v1) + 8 + 16 +
sizeof(kwboot_baud_code_binhdr_pre) +
sizeof(kwboot_baud_code) +
sizeof(kwboot_baud_code_binhdr_post) +
KWBOOT_XM_BLKSZ +
sizeof(kwboot_baud_code) +
sizeof(kwboot_baud_code_data_jump) +
KWBOOT_XM_BLKSZ;
if (imgpath) {
img = kwboot_read_image(imgpath, &size, after_img_rsv);
if (!img) {
perror(imgpath);
goto out;
}
rc = kwboot_img_patch(img, &size, baudrate);
if (rc) {
fprintf(stderr, "%s: Invalid image.\n", imgpath);
goto out;
}
}
if (debugmsg) {
rc = kwboot_debugmsg(tty, debugmsg);
if (rc) {
perror("debugmsg");
goto out;
}
} else if (bootmsg) {
rc = kwboot_bootmsg(tty, bootmsg);
if (rc) {
perror("bootmsg");
goto out;
}
}
if (img) {
rc = kwboot_xmodem(tty, img, size, baudrate);
if (rc) {
perror("xmodem");
goto out;
}
}
if (term) {
rc = kwboot_terminal(tty);
if (rc && !(errno == EINTR)) {
perror("terminal");
goto out;
}
}
rv = 0;
out:
if (tty >= 0)
close(tty);
if (img)
free(img);
return rv;
usage:
kwboot_usage(rv ? stderr : stdout, basename(argv[0]));
goto out;
}