u-boot/lib/efi_loader/efi_device_path_to_text.c
Rob Clark adae4313cd efi_loader: flesh out device-path to text
It needs to handle more device-path node types, and also multiple levels
of path hierarchy.  To simplify this, initially construct utf8 string to
a temporary buffer, and then allocate the real utf16 buffer that is
returned.  This should be mostly for debugging or at least not critical-
path so an extra copy won't hurt, and is saner than the alternative.

Signed-off-by: Rob Clark <robdclark@gmail.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2017-09-20 10:32:54 +02:00

248 lines
5.8 KiB
C

/*
* EFI device path interface
*
* Copyright (c) 2017 Heinrich Schuchardt
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <efi_loader.h>
#define MAC_OUTPUT_LEN 22
#define UNKNOWN_OUTPUT_LEN 23
const efi_guid_t efi_guid_device_path_to_text_protocol =
EFI_DEVICE_PATH_TO_TEXT_PROTOCOL_GUID;
static char *dp_unknown(char *s, struct efi_device_path *dp)
{
s += sprintf(s, "/UNKNOWN(%04x,%04x)", dp->type, dp->sub_type);
return s;
}
static char *dp_hardware(char *s, struct efi_device_path *dp)
{
switch (dp->sub_type) {
case DEVICE_PATH_SUB_TYPE_VENDOR: {
struct efi_device_path_vendor *vdp =
(struct efi_device_path_vendor *)dp;
s += sprintf(s, "/VenHw(%pUl)", &vdp->guid);
break;
}
default:
s = dp_unknown(s, dp);
break;
}
return s;
}
static char *dp_acpi(char *s, struct efi_device_path *dp)
{
switch (dp->sub_type) {
case DEVICE_PATH_SUB_TYPE_ACPI_DEVICE: {
struct efi_device_path_acpi_path *adp =
(struct efi_device_path_acpi_path *)dp;
s += sprintf(s, "/Acpi(PNP%04x", EISA_PNP_NUM(adp->hid));
if (adp->uid)
s += sprintf(s, ",%d", adp->uid);
s += sprintf(s, ")");
break;
}
default:
s = dp_unknown(s, dp);
break;
}
return s;
}
static char *dp_msging(char *s, struct efi_device_path *dp)
{
switch (dp->sub_type) {
case DEVICE_PATH_SUB_TYPE_MSG_USB: {
struct efi_device_path_usb *udp =
(struct efi_device_path_usb *)dp;
s += sprintf(s, "/Usb(0x%x,0x%x)", udp->parent_port_number,
udp->usb_interface);
break;
}
case DEVICE_PATH_SUB_TYPE_MSG_MAC_ADDR: {
struct efi_device_path_mac_addr *mdp =
(struct efi_device_path_mac_addr *)dp;
if (mdp->if_type != 0 && mdp->if_type != 1)
break;
s += sprintf(s, "/MAC(%02x%02x%02x%02x%02x%02x,0x%1x)",
mdp->mac.addr[0], mdp->mac.addr[1],
mdp->mac.addr[2], mdp->mac.addr[3],
mdp->mac.addr[4], mdp->mac.addr[5],
mdp->if_type);
break;
}
case DEVICE_PATH_SUB_TYPE_MSG_USB_CLASS: {
struct efi_device_path_usb_class *ucdp =
(struct efi_device_path_usb_class *)dp;
s += sprintf(s, "/USBClass(%x,%x,%x,%x,%x)",
ucdp->vendor_id, ucdp->product_id,
ucdp->device_class, ucdp->device_subclass,
ucdp->device_protocol);
break;
}
case DEVICE_PATH_SUB_TYPE_MSG_SD:
case DEVICE_PATH_SUB_TYPE_MSG_MMC: {
const char *typename =
(dp->sub_type == DEVICE_PATH_SUB_TYPE_MSG_SD) ?
"SDCard" : "MMC";
struct efi_device_path_sd_mmc_path *sddp =
(struct efi_device_path_sd_mmc_path *)dp;
s += sprintf(s, "/%s(Slot%u)", typename, sddp->slot_number);
break;
}
default:
s = dp_unknown(s, dp);
break;
}
return s;
}
static char *dp_media(char *s, struct efi_device_path *dp)
{
switch (dp->sub_type) {
case DEVICE_PATH_SUB_TYPE_HARD_DRIVE_PATH: {
struct efi_device_path_hard_drive_path *hddp =
(struct efi_device_path_hard_drive_path *)dp;
void *sig = hddp->partition_signature;
switch (hddp->signature_type) {
case SIG_TYPE_MBR:
s += sprintf(s, "/HD(Part%d,Sig%08x)",
hddp->partition_number,
*(uint32_t *)sig);
break;
case SIG_TYPE_GUID:
s += sprintf(s, "/HD(Part%d,Sig%pUl)",
hddp->partition_number, sig);
default:
s += sprintf(s, "/HD(Part%d,MBRType=%02x,SigType=%02x)",
hddp->partition_number, hddp->partmap_type,
hddp->signature_type);
}
break;
}
case DEVICE_PATH_SUB_TYPE_CDROM_PATH: {
struct efi_device_path_cdrom_path *cddp =
(struct efi_device_path_cdrom_path *)dp;
s += sprintf(s, "/CDROM(0x%x)", cddp->boot_entry);
break;
}
case DEVICE_PATH_SUB_TYPE_FILE_PATH: {
struct efi_device_path_file_path *fp =
(struct efi_device_path_file_path *)dp;
int slen = (dp->length - sizeof(*dp)) / 2;
s += sprintf(s, "/%-*ls", slen, fp->str);
break;
}
default:
s = dp_unknown(s, dp);
break;
}
return s;
}
static uint16_t *efi_convert_device_node_to_text(
struct efi_device_path *dp,
bool display_only,
bool allow_shortcuts)
{
unsigned long len;
efi_status_t r;
char buf[512]; /* this ought be be big enough for worst case */
char *str = buf;
uint16_t *out;
while (dp) {
switch (dp->type) {
case DEVICE_PATH_TYPE_HARDWARE_DEVICE:
str = dp_hardware(str, dp);
break;
case DEVICE_PATH_TYPE_ACPI_DEVICE:
str = dp_acpi(str, dp);
break;
case DEVICE_PATH_TYPE_MESSAGING_DEVICE:
str = dp_msging(str, dp);
break;
case DEVICE_PATH_TYPE_MEDIA_DEVICE:
str = dp_media(str, dp);
break;
default:
str = dp_unknown(str, dp);
}
dp = efi_dp_next(dp);
}
*str++ = '\0';
len = str - buf;
r = efi_allocate_pool(EFI_ALLOCATE_ANY_PAGES, 2 * len, (void **)&out);
if (r != EFI_SUCCESS)
return NULL;
ascii2unicode(out, buf);
out[len - 1] = 0;
return out;
}
/* helper for debug prints.. efi_free_pool() the result. */
uint16_t *efi_dp_str(struct efi_device_path *dp)
{
return efi_convert_device_node_to_text(dp, true, true);
}
static uint16_t EFIAPI *efi_convert_device_node_to_text_ext(
struct efi_device_path *device_node,
bool display_only,
bool allow_shortcuts)
{
uint16_t *buffer;
EFI_ENTRY("%p, %d, %d", device_node, display_only, allow_shortcuts);
buffer = efi_convert_device_node_to_text(device_node, display_only,
allow_shortcuts);
EFI_EXIT(EFI_SUCCESS);
return buffer;
}
static uint16_t EFIAPI *efi_convert_device_path_to_text(
struct efi_device_path *device_path,
bool display_only,
bool allow_shortcuts)
{
uint16_t *buffer;
EFI_ENTRY("%p, %d, %d", device_path, display_only, allow_shortcuts);
/*
* Our device paths are all of depth one. So its is sufficient to
* to convert the first node.
*/
buffer = efi_convert_device_node_to_text(device_path, display_only,
allow_shortcuts);
EFI_EXIT(EFI_SUCCESS);
return buffer;
}
const struct efi_device_path_to_text_protocol efi_device_path_to_text = {
.convert_device_node_to_text = efi_convert_device_node_to_text_ext,
.convert_device_path_to_text = efi_convert_device_path_to_text,
};