mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-24 19:05:14 +00:00
3ac8c0bf65
ES1.1 silicon is a very minor variant of ES1.0. Add priliminary support for ES1.1 IDCODE change. Signed-off-by: Nishanth Menon <nm@ti.com> Reviewed-by: Tom Rini <trini@ti.com>
1392 lines
38 KiB
C
1392 lines
38 KiB
C
/*
|
|
* EMIF programming
|
|
*
|
|
* (C) Copyright 2010
|
|
* Texas Instruments, <www.ti.com>
|
|
*
|
|
* Aneesh V <aneesh@ti.com>
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/emif.h>
|
|
#include <asm/arch/clock.h>
|
|
#include <asm/arch/sys_proto.h>
|
|
#include <asm/omap_common.h>
|
|
#include <asm/utils.h>
|
|
#include <linux/compiler.h>
|
|
|
|
static int emif1_enabled = -1, emif2_enabled = -1;
|
|
|
|
void set_lpmode_selfrefresh(u32 base)
|
|
{
|
|
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
|
|
u32 reg;
|
|
|
|
reg = readl(&emif->emif_pwr_mgmt_ctrl);
|
|
reg &= ~EMIF_REG_LP_MODE_MASK;
|
|
reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
|
|
reg &= ~EMIF_REG_SR_TIM_MASK;
|
|
writel(reg, &emif->emif_pwr_mgmt_ctrl);
|
|
|
|
/* dummy read for the new SR_TIM to be loaded */
|
|
readl(&emif->emif_pwr_mgmt_ctrl);
|
|
}
|
|
|
|
void force_emif_self_refresh()
|
|
{
|
|
set_lpmode_selfrefresh(EMIF1_BASE);
|
|
set_lpmode_selfrefresh(EMIF2_BASE);
|
|
}
|
|
|
|
inline u32 emif_num(u32 base)
|
|
{
|
|
if (base == EMIF1_BASE)
|
|
return 1;
|
|
else if (base == EMIF2_BASE)
|
|
return 2;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
|
|
{
|
|
u32 mr;
|
|
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
|
|
|
|
mr_addr |= cs << EMIF_REG_CS_SHIFT;
|
|
writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
|
|
if (omap_revision() == OMAP4430_ES2_0)
|
|
mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
|
|
else
|
|
mr = readl(&emif->emif_lpddr2_mode_reg_data);
|
|
debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
|
|
cs, mr_addr, mr);
|
|
if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
|
|
((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
|
|
((mr & 0xff000000) >> 24) == (mr & 0xff))
|
|
return mr & 0xff;
|
|
else
|
|
return mr;
|
|
}
|
|
|
|
static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
|
|
{
|
|
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
|
|
|
|
mr_addr |= cs << EMIF_REG_CS_SHIFT;
|
|
writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
|
|
writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
|
|
}
|
|
|
|
void emif_reset_phy(u32 base)
|
|
{
|
|
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
|
|
u32 iodft;
|
|
|
|
iodft = readl(&emif->emif_iodft_tlgc);
|
|
iodft |= EMIF_REG_RESET_PHY_MASK;
|
|
writel(iodft, &emif->emif_iodft_tlgc);
|
|
}
|
|
|
|
static void do_lpddr2_init(u32 base, u32 cs)
|
|
{
|
|
u32 mr_addr;
|
|
const struct lpddr2_mr_regs *mr_regs;
|
|
|
|
get_lpddr2_mr_regs(&mr_regs);
|
|
/* Wait till device auto initialization is complete */
|
|
while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
|
|
;
|
|
set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
|
|
/*
|
|
* tZQINIT = 1 us
|
|
* Enough loops assuming a maximum of 2GHz
|
|
*/
|
|
|
|
sdelay(2000);
|
|
|
|
set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
|
|
set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
|
|
|
|
/*
|
|
* Enable refresh along with writing MR2
|
|
* Encoding of RL in MR2 is (RL - 2)
|
|
*/
|
|
mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
|
|
set_mr(base, cs, mr_addr, mr_regs->mr2);
|
|
|
|
if (mr_regs->mr3 > 0)
|
|
set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
|
|
}
|
|
|
|
static void lpddr2_init(u32 base, const struct emif_regs *regs)
|
|
{
|
|
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
|
|
|
|
/* Not NVM */
|
|
clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
|
|
|
|
/*
|
|
* Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
|
|
* when EMIF_SDRAM_CONFIG register is written
|
|
*/
|
|
setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
|
|
|
|
/*
|
|
* Set the SDRAM_CONFIG and PHY_CTRL for the
|
|
* un-locked frequency & default RL
|
|
*/
|
|
writel(regs->sdram_config_init, &emif->emif_sdram_config);
|
|
writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
|
|
|
|
do_ext_phy_settings(base, regs);
|
|
|
|
do_lpddr2_init(base, CS0);
|
|
if (regs->sdram_config & EMIF_REG_EBANK_MASK)
|
|
do_lpddr2_init(base, CS1);
|
|
|
|
writel(regs->sdram_config, &emif->emif_sdram_config);
|
|
writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
|
|
|
|
/* Enable refresh now */
|
|
clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
|
|
|
|
}
|
|
|
|
__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
|
|
{
|
|
}
|
|
|
|
void emif_update_timings(u32 base, const struct emif_regs *regs)
|
|
{
|
|
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
|
|
|
|
writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
|
|
writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
|
|
writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
|
|
writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
|
|
if (omap_revision() == OMAP4430_ES1_0) {
|
|
/* ES1 bug EMIF should be in force idle during freq_update */
|
|
writel(0, &emif->emif_pwr_mgmt_ctrl);
|
|
} else {
|
|
writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
|
|
writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
|
|
}
|
|
writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
|
|
writel(regs->zq_config, &emif->emif_zq_config);
|
|
writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
|
|
writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
|
|
|
|
if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
|
|
writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
|
|
&emif->emif_l3_config);
|
|
} else if (omap_revision() >= OMAP4460_ES1_0) {
|
|
writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
|
|
&emif->emif_l3_config);
|
|
} else {
|
|
writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
|
|
&emif->emif_l3_config);
|
|
}
|
|
}
|
|
|
|
static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
|
|
{
|
|
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
|
|
|
|
/* keep sdram in self-refresh */
|
|
writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
|
|
& EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
|
|
__udelay(130);
|
|
|
|
/*
|
|
* Set invert_clkout (if activated)--DDR_PHYCTRL_1
|
|
* Invert clock adds an additional half cycle delay on the
|
|
* command interface. The additional half cycle, is usually
|
|
* meant to enable leveling in the situation that DQS is later
|
|
* than CK on the board.It also helps provide some additional
|
|
* margin for leveling.
|
|
*/
|
|
writel(regs->emif_ddr_phy_ctlr_1,
|
|
&emif->emif_ddr_phy_ctrl_1);
|
|
|
|
writel(regs->emif_ddr_phy_ctlr_1,
|
|
&emif->emif_ddr_phy_ctrl_1_shdw);
|
|
__udelay(130);
|
|
|
|
writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
|
|
& EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
|
|
|
|
/* Launch Full leveling */
|
|
writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
|
|
|
|
/* Wait till full leveling is complete */
|
|
readl(&emif->emif_rd_wr_lvl_ctl);
|
|
__udelay(130);
|
|
|
|
/* Read data eye leveling no of samples */
|
|
config_data_eye_leveling_samples(base);
|
|
|
|
/*
|
|
* Launch 8 incremental WR_LVL- to compensate for
|
|
* PHY limitation.
|
|
*/
|
|
writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
|
|
&emif->emif_rd_wr_lvl_ctl);
|
|
|
|
__udelay(130);
|
|
|
|
/* Launch Incremental leveling */
|
|
writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
|
|
__udelay(130);
|
|
}
|
|
|
|
static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
|
|
{
|
|
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
|
|
|
|
u32 fifo_reg;
|
|
|
|
fifo_reg = readl(&emif->emif_ddr_fifo_misaligned_clear_1);
|
|
writel(fifo_reg | 0x00000100,
|
|
&emif->emif_ddr_fifo_misaligned_clear_1);
|
|
|
|
fifo_reg = readl(&emif->emif_ddr_fifo_misaligned_clear_2);
|
|
writel(fifo_reg | 0x00000100,
|
|
&emif->emif_ddr_fifo_misaligned_clear_2);
|
|
|
|
/* Launch Full leveling */
|
|
writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
|
|
|
|
/* Wait till full leveling is complete */
|
|
readl(&emif->emif_rd_wr_lvl_ctl);
|
|
__udelay(130);
|
|
|
|
/* Read data eye leveling no of samples */
|
|
config_data_eye_leveling_samples(base);
|
|
|
|
/*
|
|
* Disable leveling. This is because if leveling is kept
|
|
* enabled, then PHY triggers a false leveling during
|
|
* EMIF-idle scenario which results in wrong delay
|
|
* values getting updated. After this the EMIF becomes
|
|
* unaccessible. So disable it after the first time
|
|
*/
|
|
writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
|
|
}
|
|
|
|
static void ddr3_leveling(u32 base, const struct emif_regs *regs)
|
|
{
|
|
if (is_omap54xx())
|
|
omap5_ddr3_leveling(base, regs);
|
|
else
|
|
dra7_ddr3_leveling(base, regs);
|
|
}
|
|
|
|
static void ddr3_init(u32 base, const struct emif_regs *regs)
|
|
{
|
|
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
|
|
|
|
/*
|
|
* Set SDRAM_CONFIG and PHY control registers to locked frequency
|
|
* and RL =7. As the default values of the Mode Registers are not
|
|
* defined, contents of mode Registers must be fully initialized.
|
|
* H/W takes care of this initialization
|
|
*/
|
|
writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
|
|
|
|
/* Update timing registers */
|
|
writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
|
|
writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
|
|
writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
|
|
|
|
writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
|
|
writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
|
|
|
|
/*
|
|
* The same sequence should work on OMAP5432 as well. But strange that
|
|
* it is not working
|
|
*/
|
|
if (is_dra7xx()) {
|
|
do_ext_phy_settings(base, regs);
|
|
writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
|
|
writel(regs->sdram_config_init, &emif->emif_sdram_config);
|
|
} else {
|
|
writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
|
|
writel(regs->sdram_config_init, &emif->emif_sdram_config);
|
|
do_ext_phy_settings(base, regs);
|
|
}
|
|
|
|
/* enable leveling */
|
|
writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
|
|
|
|
ddr3_leveling(base, regs);
|
|
}
|
|
|
|
#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
|
|
#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
|
|
|
|
/*
|
|
* Organization and refresh requirements for LPDDR2 devices of different
|
|
* types and densities. Derived from JESD209-2 section 2.4
|
|
*/
|
|
const struct lpddr2_addressing addressing_table[] = {
|
|
/* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
|
|
{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
|
|
{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
|
|
{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
|
|
{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
|
|
{BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
|
|
{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
|
|
{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
|
|
{BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
|
|
{BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
|
|
{BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
|
|
};
|
|
|
|
static const u32 lpddr2_density_2_size_in_mbytes[] = {
|
|
8, /* 64Mb */
|
|
16, /* 128Mb */
|
|
32, /* 256Mb */
|
|
64, /* 512Mb */
|
|
128, /* 1Gb */
|
|
256, /* 2Gb */
|
|
512, /* 4Gb */
|
|
1024, /* 8Gb */
|
|
2048, /* 16Gb */
|
|
4096 /* 32Gb */
|
|
};
|
|
|
|
/*
|
|
* Calculate the period of DDR clock from frequency value and set the
|
|
* denominator and numerator in global variables for easy access later
|
|
*/
|
|
static void set_ddr_clk_period(u32 freq)
|
|
{
|
|
/*
|
|
* period = 1/freq
|
|
* period_in_ns = 10^9/freq
|
|
*/
|
|
*T_num = 1000000000;
|
|
*T_den = freq;
|
|
cancel_out(T_num, T_den, 200);
|
|
|
|
}
|
|
|
|
/*
|
|
* Convert time in nano seconds to number of cycles of DDR clock
|
|
*/
|
|
static inline u32 ns_2_cycles(u32 ns)
|
|
{
|
|
return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
|
|
}
|
|
|
|
/*
|
|
* ns_2_cycles with the difference that the time passed is 2 times the actual
|
|
* value(to avoid fractions). The cycles returned is for the original value of
|
|
* the timing parameter
|
|
*/
|
|
static inline u32 ns_x2_2_cycles(u32 ns)
|
|
{
|
|
return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
|
|
}
|
|
|
|
/*
|
|
* Find addressing table index based on the device's type(S2 or S4) and
|
|
* density
|
|
*/
|
|
s8 addressing_table_index(u8 type, u8 density, u8 width)
|
|
{
|
|
u8 index;
|
|
if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
|
|
return -1;
|
|
|
|
/*
|
|
* Look at the way ADDR_TABLE_INDEX* values have been defined
|
|
* in emif.h compared to LPDDR2_DENSITY_* values
|
|
* The table is layed out in the increasing order of density
|
|
* (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
|
|
* at the end
|
|
*/
|
|
if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
|
|
index = ADDR_TABLE_INDEX1GS2;
|
|
else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
|
|
index = ADDR_TABLE_INDEX2GS2;
|
|
else
|
|
index = density;
|
|
|
|
debug("emif: addressing table index %d\n", index);
|
|
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* Find the the right timing table from the array of timing
|
|
* tables of the device using DDR clock frequency
|
|
*/
|
|
static const struct lpddr2_ac_timings *get_timings_table(const struct
|
|
lpddr2_ac_timings const *const *device_timings,
|
|
u32 freq)
|
|
{
|
|
u32 i, temp, freq_nearest;
|
|
const struct lpddr2_ac_timings *timings = 0;
|
|
|
|
emif_assert(freq <= MAX_LPDDR2_FREQ);
|
|
emif_assert(device_timings);
|
|
|
|
/*
|
|
* Start with the maximum allowed frequency - that is always safe
|
|
*/
|
|
freq_nearest = MAX_LPDDR2_FREQ;
|
|
/*
|
|
* Find the timings table that has the max frequency value:
|
|
* i. Above or equal to the DDR frequency - safe
|
|
* ii. The lowest that satisfies condition (i) - optimal
|
|
*/
|
|
for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
|
|
temp = device_timings[i]->max_freq;
|
|
if ((temp >= freq) && (temp <= freq_nearest)) {
|
|
freq_nearest = temp;
|
|
timings = device_timings[i];
|
|
}
|
|
}
|
|
debug("emif: timings table: %d\n", freq_nearest);
|
|
return timings;
|
|
}
|
|
|
|
/*
|
|
* Finds the value of emif_sdram_config_reg
|
|
* All parameters are programmed based on the device on CS0.
|
|
* If there is a device on CS1, it will be same as that on CS0 or
|
|
* it will be NVM. We don't support NVM yet.
|
|
* If cs1_device pointer is NULL it is assumed that there is no device
|
|
* on CS1
|
|
*/
|
|
static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
|
|
const struct lpddr2_device_details *cs1_device,
|
|
const struct lpddr2_addressing *addressing,
|
|
u8 RL)
|
|
{
|
|
u32 config_reg = 0;
|
|
|
|
config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
|
|
config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
|
|
EMIF_REG_IBANK_POS_SHIFT;
|
|
|
|
config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
|
|
|
|
config_reg |= RL << EMIF_REG_CL_SHIFT;
|
|
|
|
config_reg |= addressing->row_sz[cs0_device->io_width] <<
|
|
EMIF_REG_ROWSIZE_SHIFT;
|
|
|
|
config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
|
|
|
|
config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
|
|
EMIF_REG_EBANK_SHIFT;
|
|
|
|
config_reg |= addressing->col_sz[cs0_device->io_width] <<
|
|
EMIF_REG_PAGESIZE_SHIFT;
|
|
|
|
return config_reg;
|
|
}
|
|
|
|
static u32 get_sdram_ref_ctrl(u32 freq,
|
|
const struct lpddr2_addressing *addressing)
|
|
{
|
|
u32 ref_ctrl = 0, val = 0, freq_khz;
|
|
freq_khz = freq / 1000;
|
|
/*
|
|
* refresh rate to be set is 'tREFI * freq in MHz
|
|
* division by 10000 to account for khz and x10 in t_REFI_us_x10
|
|
*/
|
|
val = addressing->t_REFI_us_x10 * freq_khz / 10000;
|
|
ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
|
|
|
|
return ref_ctrl;
|
|
}
|
|
|
|
static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
|
|
const struct lpddr2_min_tck *min_tck,
|
|
const struct lpddr2_addressing *addressing)
|
|
{
|
|
u32 tim1 = 0, val = 0;
|
|
val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
|
|
tim1 |= val << EMIF_REG_T_WTR_SHIFT;
|
|
|
|
if (addressing->num_banks == BANKS8)
|
|
val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
|
|
(4 * (*T_num)) - 1;
|
|
else
|
|
val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
|
|
|
|
tim1 |= val << EMIF_REG_T_RRD_SHIFT;
|
|
|
|
val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
|
|
tim1 |= val << EMIF_REG_T_RC_SHIFT;
|
|
|
|
val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
|
|
tim1 |= val << EMIF_REG_T_RAS_SHIFT;
|
|
|
|
val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
|
|
tim1 |= val << EMIF_REG_T_WR_SHIFT;
|
|
|
|
val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
|
|
tim1 |= val << EMIF_REG_T_RCD_SHIFT;
|
|
|
|
val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
|
|
tim1 |= val << EMIF_REG_T_RP_SHIFT;
|
|
|
|
return tim1;
|
|
}
|
|
|
|
static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
|
|
const struct lpddr2_min_tck *min_tck)
|
|
{
|
|
u32 tim2 = 0, val = 0;
|
|
val = max(min_tck->tCKE, timings->tCKE) - 1;
|
|
tim2 |= val << EMIF_REG_T_CKE_SHIFT;
|
|
|
|
val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
|
|
tim2 |= val << EMIF_REG_T_RTP_SHIFT;
|
|
|
|
/*
|
|
* tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
|
|
* same value
|
|
*/
|
|
val = ns_2_cycles(timings->tXSR) - 1;
|
|
tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
|
|
tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
|
|
|
|
val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
|
|
tim2 |= val << EMIF_REG_T_XP_SHIFT;
|
|
|
|
return tim2;
|
|
}
|
|
|
|
static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
|
|
const struct lpddr2_min_tck *min_tck,
|
|
const struct lpddr2_addressing *addressing)
|
|
{
|
|
u32 tim3 = 0, val = 0;
|
|
val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
|
|
tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
|
|
|
|
val = ns_2_cycles(timings->tRFCab) - 1;
|
|
tim3 |= val << EMIF_REG_T_RFC_SHIFT;
|
|
|
|
val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
|
|
tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
|
|
|
|
val = ns_2_cycles(timings->tZQCS) - 1;
|
|
tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
|
|
|
|
val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
|
|
tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
|
|
|
|
return tim3;
|
|
}
|
|
|
|
static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
|
|
const struct lpddr2_addressing *addressing,
|
|
u8 volt_ramp)
|
|
{
|
|
u32 zq = 0, val = 0;
|
|
if (volt_ramp)
|
|
val =
|
|
EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
|
|
addressing->t_REFI_us_x10;
|
|
else
|
|
val =
|
|
EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
|
|
addressing->t_REFI_us_x10;
|
|
zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
|
|
|
|
zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
|
|
|
|
zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
|
|
|
|
zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
|
|
|
|
/*
|
|
* Assuming that two chipselects have a single calibration resistor
|
|
* If there are indeed two calibration resistors, then this flag should
|
|
* be enabled to take advantage of dual calibration feature.
|
|
* This data should ideally come from board files. But considering
|
|
* that none of the boards today have calibration resistors per CS,
|
|
* it would be an unnecessary overhead.
|
|
*/
|
|
zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
|
|
|
|
zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
|
|
|
|
zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
|
|
|
|
return zq;
|
|
}
|
|
|
|
static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
|
|
const struct lpddr2_addressing *addressing,
|
|
u8 is_derated)
|
|
{
|
|
u32 alert = 0, interval;
|
|
interval =
|
|
TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
|
|
if (is_derated)
|
|
interval *= 4;
|
|
alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
|
|
|
|
alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
|
|
|
|
alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
|
|
|
|
alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
|
|
|
|
alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
|
|
|
|
alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
|
|
|
|
return alert;
|
|
}
|
|
|
|
static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
|
|
{
|
|
u32 idle = 0, val = 0;
|
|
if (volt_ramp)
|
|
val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
|
|
else
|
|
/*Maximum value in normal conditions - suggested by hw team */
|
|
val = 0x1FF;
|
|
idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
|
|
|
|
idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
|
|
|
|
return idle;
|
|
}
|
|
|
|
static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
|
|
{
|
|
u32 phy = 0, val = 0;
|
|
|
|
phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
|
|
|
|
if (freq <= 100000000)
|
|
val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
|
|
else if (freq <= 200000000)
|
|
val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
|
|
else
|
|
val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
|
|
phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
|
|
|
|
/* Other fields are constant magic values. Hardcode them together */
|
|
phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
|
|
EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
|
|
|
|
return phy;
|
|
}
|
|
|
|
static u32 get_emif_mem_size(u32 base)
|
|
{
|
|
u32 size_mbytes = 0, temp;
|
|
struct emif_device_details dev_details;
|
|
struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
|
|
u32 emif_nr = emif_num(base);
|
|
|
|
emif_reset_phy(base);
|
|
dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
|
|
&cs0_dev_details);
|
|
dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
|
|
&cs1_dev_details);
|
|
emif_reset_phy(base);
|
|
|
|
if (dev_details.cs0_device_details) {
|
|
temp = dev_details.cs0_device_details->density;
|
|
size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
|
|
}
|
|
|
|
if (dev_details.cs1_device_details) {
|
|
temp = dev_details.cs1_device_details->density;
|
|
size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
|
|
}
|
|
/* convert to bytes */
|
|
return size_mbytes << 20;
|
|
}
|
|
|
|
/* Gets the encoding corresponding to a given DMM section size */
|
|
u32 get_dmm_section_size_map(u32 section_size)
|
|
{
|
|
/*
|
|
* Section size mapping:
|
|
* 0x0: 16-MiB section
|
|
* 0x1: 32-MiB section
|
|
* 0x2: 64-MiB section
|
|
* 0x3: 128-MiB section
|
|
* 0x4: 256-MiB section
|
|
* 0x5: 512-MiB section
|
|
* 0x6: 1-GiB section
|
|
* 0x7: 2-GiB section
|
|
*/
|
|
section_size >>= 24; /* divide by 16 MB */
|
|
return log_2_n_round_down(section_size);
|
|
}
|
|
|
|
static void emif_calculate_regs(
|
|
const struct emif_device_details *emif_dev_details,
|
|
u32 freq, struct emif_regs *regs)
|
|
{
|
|
u32 temp, sys_freq;
|
|
const struct lpddr2_addressing *addressing;
|
|
const struct lpddr2_ac_timings *timings;
|
|
const struct lpddr2_min_tck *min_tck;
|
|
const struct lpddr2_device_details *cs0_dev_details =
|
|
emif_dev_details->cs0_device_details;
|
|
const struct lpddr2_device_details *cs1_dev_details =
|
|
emif_dev_details->cs1_device_details;
|
|
const struct lpddr2_device_timings *cs0_dev_timings =
|
|
emif_dev_details->cs0_device_timings;
|
|
|
|
emif_assert(emif_dev_details);
|
|
emif_assert(regs);
|
|
/*
|
|
* You can not have a device on CS1 without one on CS0
|
|
* So configuring EMIF without a device on CS0 doesn't
|
|
* make sense
|
|
*/
|
|
emif_assert(cs0_dev_details);
|
|
emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
|
|
/*
|
|
* If there is a device on CS1 it should be same type as CS0
|
|
* (or NVM. But NVM is not supported in this driver yet)
|
|
*/
|
|
emif_assert((cs1_dev_details == NULL) ||
|
|
(cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
|
|
(cs0_dev_details->type == cs1_dev_details->type));
|
|
emif_assert(freq <= MAX_LPDDR2_FREQ);
|
|
|
|
set_ddr_clk_period(freq);
|
|
|
|
/*
|
|
* The device on CS0 is used for all timing calculations
|
|
* There is only one set of registers for timings per EMIF. So, if the
|
|
* second CS(CS1) has a device, it should have the same timings as the
|
|
* device on CS0
|
|
*/
|
|
timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
|
|
emif_assert(timings);
|
|
min_tck = cs0_dev_timings->min_tck;
|
|
|
|
temp = addressing_table_index(cs0_dev_details->type,
|
|
cs0_dev_details->density,
|
|
cs0_dev_details->io_width);
|
|
|
|
emif_assert((temp >= 0));
|
|
addressing = &(addressing_table[temp]);
|
|
emif_assert(addressing);
|
|
|
|
sys_freq = get_sys_clk_freq();
|
|
|
|
regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
|
|
cs1_dev_details,
|
|
addressing, RL_BOOT);
|
|
|
|
regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
|
|
cs1_dev_details,
|
|
addressing, RL_FINAL);
|
|
|
|
regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
|
|
|
|
regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
|
|
|
|
regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
|
|
|
|
regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
|
|
|
|
regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
|
|
|
|
regs->temp_alert_config =
|
|
get_temp_alert_config(cs1_dev_details, addressing, 0);
|
|
|
|
regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
|
|
LPDDR2_VOLTAGE_STABLE);
|
|
|
|
regs->emif_ddr_phy_ctlr_1_init =
|
|
get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
|
|
|
|
regs->emif_ddr_phy_ctlr_1 =
|
|
get_ddr_phy_ctrl_1(freq, RL_FINAL);
|
|
|
|
regs->freq = freq;
|
|
|
|
print_timing_reg(regs->sdram_config_init);
|
|
print_timing_reg(regs->sdram_config);
|
|
print_timing_reg(regs->ref_ctrl);
|
|
print_timing_reg(regs->sdram_tim1);
|
|
print_timing_reg(regs->sdram_tim2);
|
|
print_timing_reg(regs->sdram_tim3);
|
|
print_timing_reg(regs->read_idle_ctrl);
|
|
print_timing_reg(regs->temp_alert_config);
|
|
print_timing_reg(regs->zq_config);
|
|
print_timing_reg(regs->emif_ddr_phy_ctlr_1);
|
|
print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
|
|
}
|
|
#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
|
|
|
|
#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
|
|
const char *get_lpddr2_type(u8 type_id)
|
|
{
|
|
switch (type_id) {
|
|
case LPDDR2_TYPE_S4:
|
|
return "LPDDR2-S4";
|
|
case LPDDR2_TYPE_S2:
|
|
return "LPDDR2-S2";
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
const char *get_lpddr2_io_width(u8 width_id)
|
|
{
|
|
switch (width_id) {
|
|
case LPDDR2_IO_WIDTH_8:
|
|
return "x8";
|
|
case LPDDR2_IO_WIDTH_16:
|
|
return "x16";
|
|
case LPDDR2_IO_WIDTH_32:
|
|
return "x32";
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
const char *get_lpddr2_manufacturer(u32 manufacturer)
|
|
{
|
|
switch (manufacturer) {
|
|
case LPDDR2_MANUFACTURER_SAMSUNG:
|
|
return "Samsung";
|
|
case LPDDR2_MANUFACTURER_QIMONDA:
|
|
return "Qimonda";
|
|
case LPDDR2_MANUFACTURER_ELPIDA:
|
|
return "Elpida";
|
|
case LPDDR2_MANUFACTURER_ETRON:
|
|
return "Etron";
|
|
case LPDDR2_MANUFACTURER_NANYA:
|
|
return "Nanya";
|
|
case LPDDR2_MANUFACTURER_HYNIX:
|
|
return "Hynix";
|
|
case LPDDR2_MANUFACTURER_MOSEL:
|
|
return "Mosel";
|
|
case LPDDR2_MANUFACTURER_WINBOND:
|
|
return "Winbond";
|
|
case LPDDR2_MANUFACTURER_ESMT:
|
|
return "ESMT";
|
|
case LPDDR2_MANUFACTURER_SPANSION:
|
|
return "Spansion";
|
|
case LPDDR2_MANUFACTURER_SST:
|
|
return "SST";
|
|
case LPDDR2_MANUFACTURER_ZMOS:
|
|
return "ZMOS";
|
|
case LPDDR2_MANUFACTURER_INTEL:
|
|
return "Intel";
|
|
case LPDDR2_MANUFACTURER_NUMONYX:
|
|
return "Numonyx";
|
|
case LPDDR2_MANUFACTURER_MICRON:
|
|
return "Micron";
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static void display_sdram_details(u32 emif_nr, u32 cs,
|
|
struct lpddr2_device_details *device)
|
|
{
|
|
const char *mfg_str;
|
|
const char *type_str;
|
|
char density_str[10];
|
|
u32 density;
|
|
|
|
debug("EMIF%d CS%d\t", emif_nr, cs);
|
|
|
|
if (!device) {
|
|
debug("None\n");
|
|
return;
|
|
}
|
|
|
|
mfg_str = get_lpddr2_manufacturer(device->manufacturer);
|
|
type_str = get_lpddr2_type(device->type);
|
|
|
|
density = lpddr2_density_2_size_in_mbytes[device->density];
|
|
if ((density / 1024 * 1024) == density) {
|
|
density /= 1024;
|
|
sprintf(density_str, "%d GB", density);
|
|
} else
|
|
sprintf(density_str, "%d MB", density);
|
|
if (mfg_str && type_str)
|
|
debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
|
|
}
|
|
|
|
static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
|
|
struct lpddr2_device_details *lpddr2_device)
|
|
{
|
|
u32 mr = 0, temp;
|
|
|
|
mr = get_mr(base, cs, LPDDR2_MR0);
|
|
if (mr > 0xFF) {
|
|
/* Mode register value bigger than 8 bit */
|
|
return 0;
|
|
}
|
|
|
|
temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
|
|
if (temp) {
|
|
/* Not SDRAM */
|
|
return 0;
|
|
}
|
|
temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
|
|
|
|
if (temp) {
|
|
/* DNV supported - But DNV is only supported for NVM */
|
|
return 0;
|
|
}
|
|
|
|
mr = get_mr(base, cs, LPDDR2_MR4);
|
|
if (mr > 0xFF) {
|
|
/* Mode register value bigger than 8 bit */
|
|
return 0;
|
|
}
|
|
|
|
mr = get_mr(base, cs, LPDDR2_MR5);
|
|
if (mr > 0xFF) {
|
|
/* Mode register value bigger than 8 bit */
|
|
return 0;
|
|
}
|
|
|
|
if (!get_lpddr2_manufacturer(mr)) {
|
|
/* Manufacturer not identified */
|
|
return 0;
|
|
}
|
|
lpddr2_device->manufacturer = mr;
|
|
|
|
mr = get_mr(base, cs, LPDDR2_MR6);
|
|
if (mr >= 0xFF) {
|
|
/* Mode register value bigger than 8 bit */
|
|
return 0;
|
|
}
|
|
|
|
mr = get_mr(base, cs, LPDDR2_MR7);
|
|
if (mr >= 0xFF) {
|
|
/* Mode register value bigger than 8 bit */
|
|
return 0;
|
|
}
|
|
|
|
mr = get_mr(base, cs, LPDDR2_MR8);
|
|
if (mr >= 0xFF) {
|
|
/* Mode register value bigger than 8 bit */
|
|
return 0;
|
|
}
|
|
|
|
temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
|
|
if (!get_lpddr2_type(temp)) {
|
|
/* Not SDRAM */
|
|
return 0;
|
|
}
|
|
lpddr2_device->type = temp;
|
|
|
|
temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
|
|
if (temp > LPDDR2_DENSITY_32Gb) {
|
|
/* Density not supported */
|
|
return 0;
|
|
}
|
|
lpddr2_device->density = temp;
|
|
|
|
temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
|
|
if (!get_lpddr2_io_width(temp)) {
|
|
/* IO width unsupported value */
|
|
return 0;
|
|
}
|
|
lpddr2_device->io_width = temp;
|
|
|
|
/*
|
|
* If all the above tests pass we should
|
|
* have a device on this chip-select
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
|
|
struct lpddr2_device_details *lpddr2_dev_details)
|
|
{
|
|
u32 phy;
|
|
u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
|
|
|
|
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
|
|
|
|
if (!lpddr2_dev_details)
|
|
return NULL;
|
|
|
|
/* Do the minimum init for mode register accesses */
|
|
if (!(running_from_sdram() || warm_reset())) {
|
|
phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
|
|
writel(phy, &emif->emif_ddr_phy_ctrl_1);
|
|
}
|
|
|
|
if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
|
|
return NULL;
|
|
|
|
display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
|
|
|
|
return lpddr2_dev_details;
|
|
}
|
|
#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
|
|
|
|
static void do_sdram_init(u32 base)
|
|
{
|
|
const struct emif_regs *regs;
|
|
u32 in_sdram, emif_nr;
|
|
|
|
debug(">>do_sdram_init() %x\n", base);
|
|
|
|
in_sdram = running_from_sdram();
|
|
emif_nr = (base == EMIF1_BASE) ? 1 : 2;
|
|
|
|
#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
|
|
emif_get_reg_dump(emif_nr, ®s);
|
|
if (!regs) {
|
|
debug("EMIF: reg dump not provided\n");
|
|
return;
|
|
}
|
|
#else
|
|
/*
|
|
* The user has not provided the register values. We need to
|
|
* calculate it based on the timings and the DDR frequency
|
|
*/
|
|
struct emif_device_details dev_details;
|
|
struct emif_regs calculated_regs;
|
|
|
|
/*
|
|
* Get device details:
|
|
* - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
|
|
* - Obtained from user otherwise
|
|
*/
|
|
struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
|
|
emif_reset_phy(base);
|
|
dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
|
|
&cs0_dev_details);
|
|
dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
|
|
&cs1_dev_details);
|
|
emif_reset_phy(base);
|
|
|
|
/* Return if no devices on this EMIF */
|
|
if (!dev_details.cs0_device_details &&
|
|
!dev_details.cs1_device_details) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Get device timings:
|
|
* - Default timings specified by JESD209-2 if
|
|
* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
|
|
* - Obtained from user otherwise
|
|
*/
|
|
emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
|
|
&dev_details.cs1_device_timings);
|
|
|
|
/* Calculate the register values */
|
|
emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
|
|
regs = &calculated_regs;
|
|
#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
|
|
|
|
/*
|
|
* Initializing the LPDDR2 device can not happen from SDRAM.
|
|
* Changing the timing registers in EMIF can happen(going from one
|
|
* OPP to another)
|
|
*/
|
|
if (!(in_sdram || warm_reset())) {
|
|
if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2)
|
|
lpddr2_init(base, regs);
|
|
else
|
|
ddr3_init(base, regs);
|
|
}
|
|
if (warm_reset() && (emif_sdram_type() == EMIF_SDRAM_TYPE_DDR3)) {
|
|
set_lpmode_selfrefresh(base);
|
|
emif_reset_phy(base);
|
|
ddr3_leveling(base, regs);
|
|
}
|
|
|
|
/* Write to the shadow registers */
|
|
emif_update_timings(base, regs);
|
|
|
|
debug("<<do_sdram_init() %x\n", base);
|
|
}
|
|
|
|
void emif_post_init_config(u32 base)
|
|
{
|
|
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
|
|
u32 omap_rev = omap_revision();
|
|
|
|
/* reset phy on ES2.0 */
|
|
if (omap_rev == OMAP4430_ES2_0)
|
|
emif_reset_phy(base);
|
|
|
|
/* Put EMIF back in smart idle on ES1.0 */
|
|
if (omap_rev == OMAP4430_ES1_0)
|
|
writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
|
|
}
|
|
|
|
void dmm_init(u32 base)
|
|
{
|
|
const struct dmm_lisa_map_regs *lisa_map_regs;
|
|
u32 i, section, valid;
|
|
|
|
#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
|
|
emif_get_dmm_regs(&lisa_map_regs);
|
|
#else
|
|
u32 emif1_size, emif2_size, mapped_size, section_map = 0;
|
|
u32 section_cnt, sys_addr;
|
|
struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
|
|
|
|
mapped_size = 0;
|
|
section_cnt = 3;
|
|
sys_addr = CONFIG_SYS_SDRAM_BASE;
|
|
emif1_size = get_emif_mem_size(EMIF1_BASE);
|
|
emif2_size = get_emif_mem_size(EMIF2_BASE);
|
|
debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
|
|
|
|
if (!emif1_size && !emif2_size)
|
|
return;
|
|
|
|
/* symmetric interleaved section */
|
|
if (emif1_size && emif2_size) {
|
|
mapped_size = min(emif1_size, emif2_size);
|
|
section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
|
|
section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
|
|
/* only MSB */
|
|
section_map |= (sys_addr >> 24) <<
|
|
EMIF_SYS_ADDR_SHIFT;
|
|
section_map |= get_dmm_section_size_map(mapped_size * 2)
|
|
<< EMIF_SYS_SIZE_SHIFT;
|
|
lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
|
|
emif1_size -= mapped_size;
|
|
emif2_size -= mapped_size;
|
|
sys_addr += (mapped_size * 2);
|
|
section_cnt--;
|
|
}
|
|
|
|
/*
|
|
* Single EMIF section(we can have a maximum of 1 single EMIF
|
|
* section- either EMIF1 or EMIF2 or none, but not both)
|
|
*/
|
|
if (emif1_size) {
|
|
section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
|
|
section_map |= get_dmm_section_size_map(emif1_size)
|
|
<< EMIF_SYS_SIZE_SHIFT;
|
|
/* only MSB */
|
|
section_map |= (mapped_size >> 24) <<
|
|
EMIF_SDRC_ADDR_SHIFT;
|
|
/* only MSB */
|
|
section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
|
|
section_cnt--;
|
|
}
|
|
if (emif2_size) {
|
|
section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
|
|
section_map |= get_dmm_section_size_map(emif2_size) <<
|
|
EMIF_SYS_SIZE_SHIFT;
|
|
/* only MSB */
|
|
section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
|
|
/* only MSB */
|
|
section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
|
|
section_cnt--;
|
|
}
|
|
|
|
if (section_cnt == 2) {
|
|
/* Only 1 section - either symmetric or single EMIF */
|
|
lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
|
|
lis_map_regs_calculated.dmm_lisa_map_2 = 0;
|
|
lis_map_regs_calculated.dmm_lisa_map_1 = 0;
|
|
} else {
|
|
/* 2 sections - 1 symmetric, 1 single EMIF */
|
|
lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
|
|
lis_map_regs_calculated.dmm_lisa_map_1 = 0;
|
|
}
|
|
|
|
/* TRAP for invalid TILER mappings in section 0 */
|
|
lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
|
|
|
|
if (omap_revision() >= OMAP4460_ES1_0)
|
|
lis_map_regs_calculated.is_ma_present = 1;
|
|
|
|
lisa_map_regs = &lis_map_regs_calculated;
|
|
#endif
|
|
struct dmm_lisa_map_regs *hw_lisa_map_regs =
|
|
(struct dmm_lisa_map_regs *)base;
|
|
|
|
writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
|
|
writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
|
|
writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
|
|
writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
|
|
|
|
writel(lisa_map_regs->dmm_lisa_map_3,
|
|
&hw_lisa_map_regs->dmm_lisa_map_3);
|
|
writel(lisa_map_regs->dmm_lisa_map_2,
|
|
&hw_lisa_map_regs->dmm_lisa_map_2);
|
|
writel(lisa_map_regs->dmm_lisa_map_1,
|
|
&hw_lisa_map_regs->dmm_lisa_map_1);
|
|
writel(lisa_map_regs->dmm_lisa_map_0,
|
|
&hw_lisa_map_regs->dmm_lisa_map_0);
|
|
|
|
if (lisa_map_regs->is_ma_present) {
|
|
hw_lisa_map_regs =
|
|
(struct dmm_lisa_map_regs *)MA_BASE;
|
|
|
|
writel(lisa_map_regs->dmm_lisa_map_3,
|
|
&hw_lisa_map_regs->dmm_lisa_map_3);
|
|
writel(lisa_map_regs->dmm_lisa_map_2,
|
|
&hw_lisa_map_regs->dmm_lisa_map_2);
|
|
writel(lisa_map_regs->dmm_lisa_map_1,
|
|
&hw_lisa_map_regs->dmm_lisa_map_1);
|
|
writel(lisa_map_regs->dmm_lisa_map_0,
|
|
&hw_lisa_map_regs->dmm_lisa_map_0);
|
|
}
|
|
|
|
/*
|
|
* EMIF should be configured only when
|
|
* memory is mapped on it. Using emif1_enabled
|
|
* and emif2_enabled variables for this.
|
|
*/
|
|
emif1_enabled = 0;
|
|
emif2_enabled = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
section = __raw_readl(DMM_BASE + i*4);
|
|
valid = (section & EMIF_SDRC_MAP_MASK) >>
|
|
(EMIF_SDRC_MAP_SHIFT);
|
|
if (valid == 3) {
|
|
emif1_enabled = 1;
|
|
emif2_enabled = 1;
|
|
break;
|
|
} else if (valid == 1) {
|
|
emif1_enabled = 1;
|
|
} else if (valid == 2) {
|
|
emif2_enabled = 1;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static void do_bug0039_workaround(u32 base)
|
|
{
|
|
u32 val, i, clkctrl;
|
|
struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
|
|
const struct read_write_regs *bug_00339_regs;
|
|
u32 iterations;
|
|
u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
|
|
u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
|
|
|
|
if (is_dra7xx())
|
|
phy_status_base++;
|
|
|
|
bug_00339_regs = get_bug_regs(&iterations);
|
|
|
|
/* Put EMIF in to idle */
|
|
clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
|
|
__raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
|
|
|
|
/* Copy the phy status registers in to phy ctrl shadow registers */
|
|
for (i = 0; i < iterations; i++) {
|
|
val = __raw_readl(phy_status_base +
|
|
bug_00339_regs[i].read_reg - 1);
|
|
|
|
__raw_writel(val, phy_ctrl_base +
|
|
((bug_00339_regs[i].write_reg - 1) << 1));
|
|
|
|
__raw_writel(val, phy_ctrl_base +
|
|
(bug_00339_regs[i].write_reg << 1) - 1);
|
|
}
|
|
|
|
/* Disable leveling */
|
|
writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
|
|
|
|
__raw_writel(clkctrl, (*prcm)->cm_memif_clkstctrl);
|
|
}
|
|
|
|
/*
|
|
* SDRAM initialization:
|
|
* SDRAM initialization has two parts:
|
|
* 1. Configuring the SDRAM device
|
|
* 2. Update the AC timings related parameters in the EMIF module
|
|
* (1) should be done only once and should not be done while we are
|
|
* running from SDRAM.
|
|
* (2) can and should be done more than once if OPP changes.
|
|
* Particularly, this may be needed when we boot without SPL and
|
|
* and using Configuration Header(CH). ROM code supports only at 50% OPP
|
|
* at boot (low power boot). So u-boot has to switch to OPP100 and update
|
|
* the frequency. So,
|
|
* Doing (1) and (2) makes sense - first time initialization
|
|
* Doing (2) and not (1) makes sense - OPP change (when using CH)
|
|
* Doing (1) and not (2) doen't make sense
|
|
* See do_sdram_init() for the details
|
|
*/
|
|
void sdram_init(void)
|
|
{
|
|
u32 in_sdram, size_prog, size_detect;
|
|
u32 sdram_type = emif_sdram_type();
|
|
|
|
debug(">>sdram_init()\n");
|
|
|
|
if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
|
|
return;
|
|
|
|
in_sdram = running_from_sdram();
|
|
debug("in_sdram = %d\n", in_sdram);
|
|
|
|
if (!in_sdram) {
|
|
if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
|
|
bypass_dpll((*prcm)->cm_clkmode_dpll_core);
|
|
else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
|
|
writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
|
|
}
|
|
|
|
if (!in_sdram)
|
|
dmm_init(DMM_BASE);
|
|
|
|
if (emif1_enabled)
|
|
do_sdram_init(EMIF1_BASE);
|
|
|
|
if (emif2_enabled)
|
|
do_sdram_init(EMIF2_BASE);
|
|
|
|
if (!(in_sdram || warm_reset())) {
|
|
if (emif1_enabled)
|
|
emif_post_init_config(EMIF1_BASE);
|
|
if (emif2_enabled)
|
|
emif_post_init_config(EMIF2_BASE);
|
|
}
|
|
|
|
/* for the shadow registers to take effect */
|
|
if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
|
|
freq_update_core();
|
|
|
|
/* Do some testing after the init */
|
|
if (!in_sdram) {
|
|
size_prog = omap_sdram_size();
|
|
size_prog = log_2_n_round_down(size_prog);
|
|
size_prog = (1 << size_prog);
|
|
|
|
size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
|
|
size_prog);
|
|
/* Compare with the size programmed */
|
|
if (size_detect != size_prog) {
|
|
printf("SDRAM: identified size not same as expected"
|
|
" size identified: %x expected: %x\n",
|
|
size_detect,
|
|
size_prog);
|
|
} else
|
|
debug("get_ram_size() successful");
|
|
}
|
|
|
|
if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
|
|
(!in_sdram && !warm_reset())) {
|
|
do_bug0039_workaround(EMIF1_BASE);
|
|
do_bug0039_workaround(EMIF2_BASE);
|
|
}
|
|
|
|
debug("<<sdram_init()\n");
|
|
}
|