u-boot/drivers/ddr/marvell/a38x/mv_ddr4_training_calibration.c
Tony Dinh 54a08c4139 ddr: marvell: a38x: Add support for DDR4 from Marvell mv-ddr-marvell repository
This syncs drivers/ddr/marvell/a38x/ with the master branch of repository
https://github.com/MarvellEmbeddedProcessors/mv-ddr-marvell.git

up to the commit "mv_ddr: a3700: Use the right size for memset to not overflow"
d5acc10c287e40cc2feeb28710b92e45c93c702c

This patch was created by following steps:

	1. Replace all a38x files in U-Boot tree by files from upstream github
	Marvell mv-ddr-marvell repository.

	2. Run following command to omit portions not relevant for a38x, ddr3, and ddr4:

	files=drivers/ddr/marvell/a38x/*
	unifdef -m -UMV_DDR -UMV_DDR_ATF -UCONFIG_APN806 \
		-UCONFIG_MC_STATIC -UCONFIG_MC_STATIC_PRINT -UCONFIG_PHY_STATIC \
		-UCONFIG_PHY_STATIC_PRINT -UCONFIG_CUSTOMER_BOARD_SUPPORT \
		-UCONFIG_A3700 -UA3900 -UA80X0 -UA70X0 -DCONFIG_ARMADA_38X -UCONFIG_ARMADA_39X \
		-UCONFIG_64BIT $files

	3. Manually change license to SPDX-License-Identifier
	(upstream license in  upstream github repository contains long license
	texts and U-Boot is using just SPDX-License-Identifier.

After applying this patch, a38x, ddr3, and ddr4 code in upstream Marvell github
repository and in U-Boot would be fully identical. So in future applying
above steps could be used to sync code again.

The only change in this patch are:
	1. Some fixes with include files.
	2. Some function return and basic type defines changes in
	mv_ddr_plat.c (to correct Marvell bug).
	3. Remove of dead code in newly copied files (as a result of the
	filter script stripping out everything other than a38x, dd3, and ddr4).

Reference:
    "ddr: marvell: a38x: Sync code with Marvell mv-ddr-marvell repository"
    107c3391b9

Signed-off-by: Tony Dinh <mibodhi@gmail.com>
Reviewed-by: Pali Rohár <pali@kernel.org>
Reviewed-by: Stefan Roese <sr@denx.de>
2023-01-26 07:30:20 +01:00

2336 lines
88 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Marvell International Ltd. and its affiliates
*/
#if defined(CONFIG_DDR4)
/* DESCRIPTION: DDR4 Receiver and DQVref Calibration */
#include "ddr3_init.h"
#include "mv_ddr4_training_calibration.h"
#include "mv_ddr4_training.h"
#include "mv_ddr4_mpr_pda_if.h"
#include "mv_ddr_training_db.h"
#include "mv_ddr_regs.h"
#define RX_DIR 0
#define TX_DIR 1
#define MAX_DIR_TYPES 2
#define RECEIVER_DC_STEP_SIZE 3
#define RECEIVER_DC_MIN_RANGE 0
#define RECEIVER_DC_MAX_RANGE 63
#define RECEIVER_DC_MAX_COUNT (((RECEIVER_DC_MAX_RANGE - RECEIVER_DC_MIN_RANGE) / RECEIVER_DC_STEP_SIZE) + 1)
#define PBS_VAL_FACTOR 1000
#define MV_DDR_VW_TX_NOISE_FILTER 8 /* adlls */
u8 dq_vref_vec[MAX_BUS_NUM]; /* stability support */
u8 rx_eye_hi_lvl[MAX_BUS_NUM]; /* rx adjust support */
u8 rx_eye_lo_lvl[MAX_BUS_NUM]; /* rx adjust support */
static u8 pbs_max = 31;
static u8 vdq_tv; /* vref value for dq vref calibration */
static u8 duty_cycle; /* duty cycle value for receiver calibration */
static u8 rx_vw_pos[MAX_INTERFACE_NUM][MAX_BUS_NUM];
static u8 patterns_byte_status[MAX_INTERFACE_NUM][MAX_BUS_NUM];
static const char *str_dir[MAX_DIR_TYPES] = {"read", "write"};
static u8 center_low_element_get(u8 dir, u8 pbs_element, u16 lambda, u8 pbs_max_val)
{
u8 result;
if (dir == RX_DIR)
result = pbs_element * lambda / PBS_VAL_FACTOR;
else
result = (pbs_max_val - pbs_element) * lambda / PBS_VAL_FACTOR;
return result;
}
static u8 center_high_element_get(u8 dir, u8 pbs_element, u16 lambda, u8 pbs_max_val)
{
u8 result;
if (dir == RX_DIR)
result = (pbs_max_val - pbs_element) * lambda / PBS_VAL_FACTOR;
else
result = pbs_element * lambda / PBS_VAL_FACTOR;
return result;
}
static int mv_ddr4_centralization(u8 dev_num, u16 (*lambda)[MAX_BUS_NUM][BUS_WIDTH_IN_BITS], u8 (*copt)[MAX_BUS_NUM],
u8 (*pbs_result)[MAX_BUS_NUM][BUS_WIDTH_IN_BITS], u8 (*vw_size)[MAX_BUS_NUM],
u8 mode, u16 param0, u8 param1);
static int mv_ddr4_dqs_reposition(u8 dir, u16 *lambda, u8 *pbs_result, char delta, u8 *copt, u8 *dqs_pbs);
static int mv_ddr4_copt_get(u8 dir, u16 *lambda, u8 *vw_l, u8 *vw_h, u8 *pbs_result, u8 *copt);
static int mv_ddr4_center_of_mass_calc(u8 dev_num, u8 if_id, u8 subphy_num, u8 mode, u8 *vw_l, u8 *vw_h, u8 *vw_v,
u8 vw_num, u8 *v_opt, u8 *t_opt);
static int mv_ddr4_tap_tuning(u8 dev_num, u16 (*pbs_tap_factor)[MAX_BUS_NUM][BUS_WIDTH_IN_BITS], u8 mode);
/* dq vref calibration flow */
int mv_ddr4_dq_vref_calibration(u8 dev_num, u16 (*pbs_tap_factor)[MAX_BUS_NUM][BUS_WIDTH_IN_BITS])
{
u32 if_id, subphy_num;
u32 vref_idx, dq_idx, pad_num = 0;
u8 dq_vref_start_win[MAX_INTERFACE_NUM][MAX_BUS_NUM][MV_DDR4_VREF_MAX_COUNT];
u8 dq_vref_end_win[MAX_INTERFACE_NUM][MAX_BUS_NUM][MV_DDR4_VREF_MAX_COUNT];
u8 valid_win_size[MAX_INTERFACE_NUM][MAX_BUS_NUM];
u8 c_opt_per_bus[MAX_INTERFACE_NUM][MAX_BUS_NUM];
u8 valid_vref_cnt[MAX_INTERFACE_NUM][MAX_BUS_NUM];
u8 valid_vref_ptr[MAX_INTERFACE_NUM][MAX_BUS_NUM][MV_DDR4_VREF_MAX_COUNT];
u8 center_adll[MAX_INTERFACE_NUM][MAX_BUS_NUM];
u8 center_vref[MAX_INTERFACE_NUM][MAX_BUS_NUM];
u8 pbs_res_per_bus[MAX_INTERFACE_NUM][MAX_BUS_NUM][BUS_WIDTH_IN_BITS];
u16 vref_avg, vref_subphy_num;
int vref_tap_idx;
int vref_range_min;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
enum mv_ddr4_vref_subphy_cal_state all_subphys_state = MV_DDR4_VREF_SUBPHY_CAL_ABOVE;
int tap_tune_passed = 0;
enum mv_ddr4_vref_tap_state vref_tap_set_state = MV_DDR4_VREF_TAP_START;
enum hws_result *flow_result = ddr3_tip_get_result_ptr(training_stage);
u8 subphy_max = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
enum mv_ddr4_vref_subphy_cal_state vref_state_per_subphy[MAX_INTERFACE_NUM][MAX_BUS_NUM];
int status;
static u8 vref_byte_status[MAX_INTERFACE_NUM][MAX_BUS_NUM][MV_DDR4_VREF_MAX_RANGE];
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO, ("Starting ddr4 dq vref calibration training stage\n"));
vdq_tv = 0;
duty_cycle = 0;
/* reset valid vref counter per if and subphy */
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
for (subphy_num = 0; subphy_num < MAX_BUS_NUM; subphy_num++) {
valid_vref_cnt[if_id][subphy_num] = 0;
vref_state_per_subphy[if_id][subphy_num] = MV_DDR4_VREF_SUBPHY_CAL_ABOVE;
}
}
if (mv_ddr4_tap_tuning(dev_num, pbs_tap_factor, TX_DIR) == MV_OK)
tap_tune_passed = 1;
/* place dram to vref training mode */
mv_ddr4_vref_training_mode_ctrl(dev_num, 0, ACCESS_TYPE_MULTICAST, 1);
/* main loop for 2d scan (low_to_high voltage scan) */
vref_tap_idx = MV_DDR4_VREF_MAX_RANGE;
vref_range_min = MV_DDR4_VREF_MIN_RANGE;
if (vref_range_min < MV_DDR4_VREF_STEP_SIZE)
vref_range_min = MV_DDR4_VREF_STEP_SIZE;
/* clean vref status array */
memset(vref_byte_status, BYTE_NOT_DEFINED, sizeof(vref_byte_status));
for (vref_tap_idx = MV_DDR4_VREF_MAX_RANGE; (vref_tap_idx >= vref_range_min) &&
(all_subphys_state != MV_DDR4_VREF_SUBPHY_CAL_UNDER);
vref_tap_idx -= MV_DDR4_VREF_STEP_SIZE) {
/* set new vref training value in dram */
mv_ddr4_vref_tap_set(dev_num, 0, ACCESS_TYPE_MULTICAST, vref_tap_idx, vref_tap_set_state);
if (tap_tune_passed == 0) {
if (mv_ddr4_tap_tuning(dev_num, pbs_tap_factor, TX_DIR) == MV_OK)
tap_tune_passed = 1;
else
continue;
}
if (mv_ddr4_centralization(dev_num, pbs_tap_factor, c_opt_per_bus, pbs_res_per_bus,
valid_win_size, TX_DIR, vref_tap_idx, 0) != MV_OK) {
DEBUG_CALIBRATION(DEBUG_LEVEL_ERROR,
("error: %s: ddr4 centralization failed (dq vref tap index %d)!!!\n",
__func__, vref_tap_idx));
continue;
}
/* go over all results and find out the vref start and end window */
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
if (valid_win_size[if_id][subphy_num] > MV_DDR_VW_TX_NOISE_FILTER) {
if (vref_state_per_subphy[if_id][subphy_num] == MV_DDR4_VREF_SUBPHY_CAL_UNDER)
DEBUG_CALIBRATION(DEBUG_LEVEL_ERROR,
("warning: %s: subphy %d vref tap %d voltage noise\n",
__func__, subphy_num, vref_tap_idx));
/* window is valid; keep current vref_tap_idx value and increment counter */
vref_idx = valid_vref_cnt[if_id][subphy_num];
valid_vref_ptr[if_id][subphy_num][vref_idx] = vref_tap_idx;
valid_vref_cnt[if_id][subphy_num]++;
/* set 0 for possible negative values */
vref_byte_status[if_id][subphy_num][vref_idx] |=
patterns_byte_status[if_id][subphy_num];
dq_vref_start_win[if_id][subphy_num][vref_idx] =
c_opt_per_bus[if_id][subphy_num] + 1 -
valid_win_size[if_id][subphy_num] / 2;
dq_vref_start_win[if_id][subphy_num][vref_idx] =
(valid_win_size[if_id][subphy_num] % 2 == 0) ?
dq_vref_start_win[if_id][subphy_num][vref_idx] :
dq_vref_start_win[if_id][subphy_num][vref_idx] - 1;
dq_vref_end_win[if_id][subphy_num][vref_idx] =
c_opt_per_bus[if_id][subphy_num] +
valid_win_size[if_id][subphy_num] / 2;
vref_state_per_subphy[if_id][subphy_num] = MV_DDR4_VREF_SUBPHY_CAL_INSIDE;
} else if (vref_state_per_subphy[if_id][subphy_num] == MV_DDR4_VREF_SUBPHY_CAL_INSIDE) {
vref_state_per_subphy[if_id][subphy_num] = MV_DDR4_VREF_SUBPHY_CAL_UNDER;
}
} /* subphy */
} /* if */
/* check all subphys are in under state */
all_subphys_state = MV_DDR4_VREF_SUBPHY_CAL_UNDER;
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
if (vref_state_per_subphy[if_id][subphy_num] != MV_DDR4_VREF_SUBPHY_CAL_UNDER)
all_subphys_state = MV_DDR4_VREF_SUBPHY_CAL_INSIDE;
}
}
}
if (tap_tune_passed == 0) {
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO,
("%s: tap tune not passed on any dq_vref value\n", __func__));
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
/* report fail for all active interfaces; multi-interface support - tbd */
flow_result[if_id] = TEST_FAILED;
}
return MV_FAIL;
}
/* close vref range */
mv_ddr4_vref_tap_set(dev_num, 0, ACCESS_TYPE_MULTICAST, vref_tap_idx, MV_DDR4_VREF_TAP_END);
/*
* find out the results with the mixed and low states and move the low state 64 adlls in case
* the center of the ui is smaller than 31
*/
for (vref_idx = 0; vref_idx < MV_DDR4_VREF_MAX_RANGE; vref_idx++) {
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
if (((vref_byte_status[if_id][subphy_num][vref_idx]) &
(BYTE_HOMOGENEOUS_LOW | BYTE_SPLIT_OUT_MIX)) ==
(BYTE_HOMOGENEOUS_LOW | BYTE_SPLIT_OUT_MIX)) {
if ((dq_vref_start_win[if_id][subphy_num][vref_idx] +
dq_vref_end_win[if_id][subphy_num][vref_idx]) / 2 <= 31) {
dq_vref_start_win[if_id][subphy_num][vref_idx] += 64;
dq_vref_end_win[if_id][subphy_num][vref_idx] += 64;
DEBUG_CALIBRATION
(DEBUG_LEVEL_TRACE,
("%s vref_idx %d if %d subphy %d added 64 adlls to window\n",
__func__, valid_vref_ptr[if_id][subphy_num][vref_idx],
if_id, subphy_num));
}
}
}
}
}
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO,
("calculating center of mass for subphy %d, valid window size %d\n",
subphy_num, valid_win_size[if_id][subphy_num]));
if (valid_vref_cnt[if_id][subphy_num] > 0) {
/* calculate center of mass sampling point (t, v) for each subphy */
status = mv_ddr4_center_of_mass_calc(dev_num, if_id, subphy_num, TX_DIR,
dq_vref_start_win[if_id][subphy_num],
dq_vref_end_win[if_id][subphy_num],
valid_vref_ptr[if_id][subphy_num],
valid_vref_cnt[if_id][subphy_num],
&center_vref[if_id][subphy_num],
&center_adll[if_id][subphy_num]);
if (status != MV_OK)
return status;
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO,
("center of mass results: vref %d, adll %d\n",
center_vref[if_id][subphy_num], center_adll[if_id][subphy_num]));
} else {
DEBUG_CALIBRATION(DEBUG_LEVEL_ERROR,
("%s subphy %d no vref results to calculate the center of mass\n",
__func__, subphy_num));
status = MV_ERROR;
return status;
}
}
}
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
vref_avg = 0;
vref_subphy_num = 0;
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
vref_avg += center_vref[if_id][subphy_num];
dq_vref_vec[subphy_num] = center_vref[if_id][subphy_num];
vref_subphy_num++;
}
mv_ddr4_vref_tap_set(dev_num, if_id, ACCESS_TYPE_UNICAST,
vref_avg / vref_subphy_num, MV_DDR4_VREF_TAP_START);
mv_ddr4_vref_tap_set(dev_num, if_id, ACCESS_TYPE_UNICAST,
vref_avg / vref_subphy_num, MV_DDR4_VREF_TAP_END);
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO, ("final vref average %d\n", vref_avg / vref_subphy_num));
/* run centralization again with optimal vref to update global structures */
mv_ddr4_centralization(dev_num, pbs_tap_factor, c_opt_per_bus, pbs_res_per_bus, valid_win_size,
TX_DIR, vref_avg / vref_subphy_num, duty_cycle);
}
/* return dram from vref DRAM from vref training mode */
mv_ddr4_vref_training_mode_ctrl(dev_num, 0, ACCESS_TYPE_MULTICAST, 0);
/* dqs tx reposition calculation */
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
for (dq_idx = 0; dq_idx < 8; dq_idx++) {
pad_num = dq_map_table[dq_idx +
subphy_num * BUS_WIDTH_IN_BITS +
if_id * BUS_WIDTH_IN_BITS * subphy_max];
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id, ACCESS_TYPE_UNICAST,
subphy_num, DDR_PHY_DATA,
0x10 + pad_num + effective_cs * 0x10,
pbs_res_per_bus[if_id][subphy_num][dq_idx]);
if (status != MV_OK)
return status;
}
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id, ACCESS_TYPE_UNICAST,
subphy_num, DDR_PHY_DATA,
CTX_PHY_REG(effective_cs),
center_adll[if_id][subphy_num] % 64);
if (status != MV_OK)
return status;
}
}
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
/* report pass for all active interfaces; multi-interface support - tbd */
flow_result[if_id] = TEST_SUCCESS;
}
return MV_OK;
}
/* centralization flow */
static int mv_ddr4_centralization(u8 dev_num, u16 (*lambda)[MAX_BUS_NUM][BUS_WIDTH_IN_BITS], u8 (*copt)[MAX_BUS_NUM],
u8 (*pbs_result)[MAX_BUS_NUM][BUS_WIDTH_IN_BITS], u8 (*vw_size)[MAX_BUS_NUM],
u8 mode, u16 param0, u8 param1)
{
/* FIXME: remove the dependency in 64bit */
#define MV_DDR_NUM_OF_CENTRAL_PATTERNS (PATTERN_KILLER_DQ7 - PATTERN_KILLER_DQ0 + 1)
static u8 subphy_end_win[MAX_DIR_TYPES][MAX_INTERFACE_NUM][MAX_BUS_NUM];
static u8 subphy_start_win[MAX_DIR_TYPES][MAX_INTERFACE_NUM][MAX_BUS_NUM];
static u8 final_start_win[MAX_INTERFACE_NUM][MAX_BUS_NUM][BUS_WIDTH_IN_BITS];
static u8 final_end_win[MAX_INTERFACE_NUM][MAX_BUS_NUM][BUS_WIDTH_IN_BITS];
enum hws_training_ip_stat training_result[MAX_INTERFACE_NUM];
u32 if_id, subphy_num, pattern_id, pattern_loop_idx, bit_num;
u8 curr_start_win[BUS_WIDTH_IN_BITS];
u8 curr_end_win[BUS_WIDTH_IN_BITS];
static u8 start_win_db[MV_DDR_NUM_OF_CENTRAL_PATTERNS][MAX_INTERFACE_NUM][MAX_BUS_NUM][BUS_WIDTH_IN_BITS];
static u8 end_win_db[MV_DDR_NUM_OF_CENTRAL_PATTERNS][MAX_INTERFACE_NUM][MAX_BUS_NUM][BUS_WIDTH_IN_BITS];
u8 curr_win[BUS_WIDTH_IN_BITS];
u8 opt_win, waste_win, start_win_skew, end_win_skew;
u8 final_subphy_win[MAX_INTERFACE_NUM][BUS_WIDTH_IN_BITS];
enum hws_training_result result_type = RESULT_PER_BIT;
enum hws_dir direction;
enum hws_search_dir search_dir;
u32 *result[HWS_SEARCH_DIR_LIMIT];
u32 max_win_size;
u8 curr_end_win_min, curr_start_win_max;
u32 cs_ena_reg_val[MAX_INTERFACE_NUM];
u8 current_byte_status;
int status;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
u8 subphy_max = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
/* save current cs enable reg val */
status = ddr3_tip_if_read(dev_num, ACCESS_TYPE_UNICAST, if_id, DUAL_DUNIT_CFG_REG,
cs_ena_reg_val, MASK_ALL_BITS);
if (status != MV_OK)
return status;
/* enable single cs */
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, if_id, DUAL_DUNIT_CFG_REG,
(0x1 << 3), (0x1 << 3));
if (status != MV_OK)
return status;
}
if (mode == TX_DIR) {
max_win_size = MAX_WINDOW_SIZE_TX;
direction = OPER_WRITE;
} else {
max_win_size = MAX_WINDOW_SIZE_RX;
direction = OPER_READ;
}
/* database initialization */
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
patterns_byte_status[if_id][subphy_num] = BYTE_NOT_DEFINED;
subphy_end_win[mode][if_id][subphy_num] = (max_win_size - 1);
subphy_start_win[mode][if_id][subphy_num] = 0;
vw_size[if_id][subphy_num] = (max_win_size - 1);
for (bit_num = 0; bit_num < BUS_WIDTH_IN_BITS; bit_num++) {
final_start_win[if_id][subphy_num][bit_num] = 0;
final_end_win[if_id][subphy_num][bit_num] = (max_win_size - 1);
if (mode == TX_DIR)
final_end_win[if_id][subphy_num][bit_num] = (2 * max_win_size - 1);
}
if (mode == TX_DIR) {
subphy_end_win[mode][if_id][subphy_num] = (2 * max_win_size - 1);
vw_size[if_id][subphy_num] = (2 * max_win_size - 1);
}
}
}
/* main flow */
/* FIXME: hard-coded "22" below for PATTERN_KILLER_DQ7_64 enum hws_pattern */
for (pattern_id = PATTERN_KILLER_DQ0, pattern_loop_idx = 0;
pattern_id <= (MV_DDR_IS_64BIT_DRAM_MODE(tm->bus_act_mask) ? 22 : PATTERN_KILLER_DQ7);
pattern_id++, pattern_loop_idx++) {
ddr3_tip_ip_training_wrapper(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, result_type, HWS_CONTROL_ELEMENT_ADLL,
PARAM_NOT_CARE, direction, tm->if_act_mask,
0x0, max_win_size - 1, max_win_size - 1, pattern_id,
EDGE_FPF, CS_SINGLE, PARAM_NOT_CARE, training_result);
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
/*
* in case the previous patterns found the current subphy as BYTE_NOT_DEFINED,
* continue to next subphy
*/
if ((patterns_byte_status[if_id][subphy_num] == BYTE_NOT_DEFINED) &&
(pattern_id != PATTERN_KILLER_DQ0))
continue;
/*
* in case the result of the current subphy is BYTE_NOT_DEFINED mark the
* pattern byte status as BYTE_NOT_DEFINED
*/
current_byte_status = mv_ddr_tip_sub_phy_byte_status_get(if_id, subphy_num);
if (current_byte_status == BYTE_NOT_DEFINED) {
DEBUG_DDR4_CENTRALIZATION
(DEBUG_LEVEL_INFO,
("%s:%s: failed to lock subphy, pat %d if %d subphy %d\n",
__func__, str_dir[mode], pattern_id, if_id, subphy_num));
patterns_byte_status[if_id][subphy_num] = BYTE_NOT_DEFINED;
/* update the valid window size which is return value from this function */
vw_size[if_id][subphy_num] = 0;
/* continue to next subphy */
continue;
}
/* set the status of this byte */
patterns_byte_status[if_id][subphy_num] |= current_byte_status;
for (search_dir = HWS_LOW2HIGH; search_dir <= HWS_HIGH2LOW; search_dir++) {
status = ddr3_tip_read_training_result(dev_num, if_id, ACCESS_TYPE_UNICAST,
subphy_num, ALL_BITS_PER_PUP,
search_dir, direction, result_type,
TRAINING_LOAD_OPERATION_UNLOAD,
CS_SINGLE, &result[search_dir],
1, 0, 0);
if (status != MV_OK)
return status;
DEBUG_DDR4_CENTRALIZATION
(DEBUG_LEVEL_INFO,
("param0 %d param1 %d pat %d if %d subphy %d "
"regs: 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
param0, param1, pattern_id, if_id, subphy_num,
result[search_dir][0], result[search_dir][1],
result[search_dir][2], result[search_dir][3],
result[search_dir][4], result[search_dir][5],
result[search_dir][6], result[search_dir][7]));
}
for (bit_num = 0; bit_num < BUS_WIDTH_IN_BITS; bit_num++) {
/* read result success */
DEBUG_DDR4_CENTRALIZATION(
DEBUG_LEVEL_INFO,
("%s %s subphy locked, pat %d if %d subphy %d\n",
__func__, str_dir[mode], pattern_id,
if_id, subphy_num));
start_win_db[pattern_loop_idx][if_id][subphy_num][bit_num] =
GET_TAP_RESULT(result[HWS_LOW2HIGH][bit_num], EDGE_1);
end_win_db[pattern_loop_idx][if_id][subphy_num][bit_num] =
GET_TAP_RESULT(result[HWS_HIGH2LOW][bit_num], EDGE_1);
}
} /* subphy */
} /* interface */
} /* pattern */
/*
* check if the current patterns subphys in all interfaces has mixed and low byte states
* in that case add 64 adlls to the low byte
*/
for (pattern_id = PATTERN_KILLER_DQ0, pattern_loop_idx = 0;
pattern_id <= (MV_DDR_IS_64BIT_DRAM_MODE(tm->bus_act_mask) ? 22 : PATTERN_KILLER_DQ7);
pattern_id++, pattern_loop_idx++) {
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
if (patterns_byte_status[if_id][subphy_num] == BYTE_NOT_DEFINED)
continue;
opt_win = 2 * max_win_size; /* initialize opt_win */
/* in case this byte in the pattern is homogeneous low add 64 adlls to the byte */
if (((patterns_byte_status[if_id][subphy_num]) &
(BYTE_HOMOGENEOUS_LOW | BYTE_SPLIT_OUT_MIX)) ==
(BYTE_HOMOGENEOUS_LOW | BYTE_SPLIT_OUT_MIX)) {
for (bit_num = 0; bit_num < BUS_WIDTH_IN_BITS; bit_num++) {
if (start_win_db[pattern_loop_idx][if_id][subphy_num][bit_num] <= 31 &&
end_win_db[pattern_loop_idx][if_id][subphy_num][bit_num] <= 31) {
start_win_db[pattern_loop_idx][if_id][subphy_num][bit_num] +=
64;
end_win_db[pattern_loop_idx][if_id][subphy_num][bit_num] += 64;
DEBUG_DDR4_CENTRALIZATION
(DEBUG_LEVEL_INFO,
("%s %s pattern %d if %d subphy %d bit %d added 64 "
"adll\n",
__func__, str_dir[mode], pattern_id, if_id,
subphy_num, bit_num));
}
}
}
/* calculations for the current pattern per subphy */
for (bit_num = 0; bit_num < BUS_WIDTH_IN_BITS; bit_num++) {
curr_win[bit_num] = end_win_db[pattern_loop_idx][if_id][subphy_num][bit_num] -
start_win_db[pattern_loop_idx][if_id][subphy_num][bit_num] + 1;
curr_start_win[bit_num] =
start_win_db[pattern_loop_idx][if_id][subphy_num][bit_num];
curr_end_win[bit_num] =
end_win_db[pattern_loop_idx][if_id][subphy_num][bit_num];
}
opt_win = GET_MIN(opt_win, ddr3_tip_get_buf_min(curr_win));
vw_size[if_id][subphy_num] =
GET_MIN(vw_size[if_id][subphy_num], ddr3_tip_get_buf_min(curr_win));
/* final subphy window length */
final_subphy_win[if_id][subphy_num] = ddr3_tip_get_buf_min(curr_end_win) -
ddr3_tip_get_buf_max(curr_start_win) + 1;
waste_win = opt_win - final_subphy_win[if_id][subphy_num];
start_win_skew = ddr3_tip_get_buf_max(curr_start_win) -
ddr3_tip_get_buf_min(curr_start_win);
end_win_skew = ddr3_tip_get_buf_max(curr_end_win) -
ddr3_tip_get_buf_min(curr_end_win);
/* min/max updated with pattern change */
curr_end_win_min = ddr3_tip_get_buf_min(curr_end_win);
curr_start_win_max = ddr3_tip_get_buf_max(curr_start_win);
subphy_end_win[mode][if_id][subphy_num] =
GET_MIN(subphy_end_win[mode][if_id][subphy_num], curr_end_win_min);
subphy_start_win[mode][if_id][subphy_num] =
GET_MAX(subphy_start_win[mode][if_id][subphy_num], curr_start_win_max);
DEBUG_DDR4_CENTRALIZATION
(DEBUG_LEVEL_TRACE,
("%s, %s pat %d if %d subphy %d opt_win %d ",
__func__, str_dir[mode], pattern_id, if_id, subphy_num, opt_win));
DEBUG_DDR4_CENTRALIZATION
(DEBUG_LEVEL_TRACE,
("final_subphy_win %d waste_win %d "
"start_win_skew %d end_win_skew %d ",
final_subphy_win[if_id][subphy_num],
waste_win, start_win_skew, end_win_skew));
DEBUG_DDR4_CENTRALIZATION(DEBUG_LEVEL_TRACE,
("curr_start_win_max %d curr_end_win_min %d "
"subphy_start_win %d subphy_end_win %d\n",
curr_start_win_max, curr_end_win_min,
subphy_start_win[mode][if_id][subphy_num],
subphy_end_win[mode][if_id][subphy_num]));
/* valid window */
DEBUG_DDR4_CENTRALIZATION(DEBUG_LEVEL_TRACE,
("valid window, pat %d if %d subphy %d\n",
pattern_id, if_id, subphy_num));
for (bit_num = 0; bit_num < BUS_WIDTH_IN_BITS; bit_num++) {
final_start_win[if_id][subphy_num][bit_num] =
GET_MAX(final_start_win[if_id][subphy_num][bit_num],
curr_start_win[bit_num]);
final_end_win[if_id][subphy_num][bit_num] =
GET_MIN(final_end_win[if_id][subphy_num][bit_num],
curr_end_win[bit_num]);
} /* bit */
} /* subphy */
} /* if_id */
} /* pattern */
/* calculate valid window for each subphy */
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
if (patterns_byte_status[if_id][subphy_num] != BYTE_NOT_DEFINED) {
/*
* in case of bytes status which were found as mixed and low
* change the their status to be mixed only, due to the fact
* that we have already dealt with this bytes by adding 64 adlls
* to the low bytes
*/
if (patterns_byte_status[if_id][subphy_num] &
(BYTE_HOMOGENEOUS_LOW | BYTE_SPLIT_OUT_MIX))
patterns_byte_status[if_id][subphy_num] = BYTE_SPLIT_OUT_MIX;
if (rx_vw_pos[if_id][subphy_num] == 0) /* rx_vw_pos is initialized during tap tune */
pbs_max = 31 - 0xa;
else
pbs_max = 31;
/* continue if locked */
/*if (centralization_state[if_id][subphy_num] == 0) {*/
status = mv_ddr4_copt_get(mode, lambda[if_id][subphy_num],
final_start_win[if_id][subphy_num],
final_end_win[if_id][subphy_num],
pbs_result[if_id][subphy_num],
&copt[if_id][subphy_num]);
/*
* after copt the adll is moved to smaller value due to pbs compensation
* so the byte status might change, here we change the byte status to be
* homogeneous low in case the center of the ui after copt is moved below
* 31 adlls
*/
if(copt[if_id][subphy_num] <= 31)
patterns_byte_status[if_id][subphy_num] = BYTE_HOMOGENEOUS_LOW;
DEBUG_DDR4_CENTRALIZATION
(DEBUG_LEVEL_INFO,
("%s %s if %d subphy %d copt %d\n",
__func__, str_dir[mode], if_id, subphy_num, copt[if_id][subphy_num]));
if (status != MV_OK) {
/*
* TODO: print out error message(s) only when all points fail
* as temporary solution, replaced ERROR to TRACE debug level
*/
DEBUG_DDR4_CENTRALIZATION
(DEBUG_LEVEL_TRACE,
("%s %s copt calculation failed, "
"no valid window for subphy %d\n",
__func__, str_dir[mode], subphy_num));
/* set the byte to 0 (fail) and clean the status (continue with algorithm) */
vw_size[if_id][subphy_num] = 0;
status = MV_OK;
if (debug_mode == 0) {
/*
* TODO: print out error message(s) only when all points fail
* as temporary solution, commented out debug level set to TRACE
*/
/*
* ddr3_hws_set_log_level(DEBUG_BLOCK_CALIBRATION, DEBUG_LEVEL_TRACE);
*/
/* open relevant log and run function again for debug */
mv_ddr4_copt_get(mode, lambda[if_id][subphy_num],
final_start_win[if_id][subphy_num],
final_end_win[if_id][subphy_num],
pbs_result[if_id][subphy_num],
&copt[if_id][subphy_num]);
/*
* ddr3_hws_set_log_level(DEBUG_BLOCK_CALIBRATION, DEBUG_LEVEL_ERROR);
*/
} /* debug mode */
} /* status */
} /* byte not defined */
} /* subphy */
} /* if_id */
/* restore cs enable value*/
for (if_id = 0; if_id < MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
status = ddr3_tip_if_write(dev_num, ACCESS_TYPE_UNICAST, if_id, DUAL_DUNIT_CFG_REG,
cs_ena_reg_val[if_id], MASK_ALL_BITS);
if (status != MV_OK)
return status;
}
return status;
}
/*
* mv_ddr4_copt_get function
* inputs:
* dir - direction; 0 is for rx, 1 for tx
* lambda - a pointer to adll to pbs ration multiplied by PBS_VAL_FACTOR
* vw_l - a pointer to valid window low limit in adll taps
* vw_h - a pointer to valid window high limit in adll taps
* outputs:
* pbs_result - a pointer to pbs new delay value; the function's output
* copt - optimal center of subphy in adll taps
* The function assumes initial pbs tap value is zero. Otherwise, it requires logic
* getting pbs value per dq and setting pbs_taps_per_dq array.
* It provides with a solution for a single subphy (8 bits).
* The calling function is responsible for any additional pbs taps for dqs
*/
static int mv_ddr4_copt_get(u8 dir, u16 *lambda, u8 *vw_l, u8 *vw_h, u8 *pbs_result, u8 *copt)
{
u8 center_per_dq[8];
u8 center_zone_low[8] = {0};
u8 center_zone_high[8] = {0};
u8 ext_center_zone_low[8] = {0};
u8 ext_center_zone_high[8] = {0};
u8 pbs_taps_per_dq[8] = {0};
u8 vw_per_dq[8];
u8 vw_zone_low[8] = {0};
u8 vw_zone_high[8] = {0};
u8 margin_vw[8] = {0};
u8 copt_val;
u8 dq_idx;
u8 center_zone_max_low = 0;
u8 center_zone_min_high = 128;
u8 vw_zone_max_low = 0;
u8 vw_zone_min_high = 128;
u8 min_vw = 63; /* minimum valid window between all bits */
u8 center_low_el;
u8 center_high_el;
/* lambda calculated as D * PBS_VALUE_FACTOR / d */
//printf("Copt::Debug::\t");
for (dq_idx = 0; dq_idx < 8; dq_idx++) {
center_per_dq[dq_idx] = (vw_h[dq_idx] + vw_l[dq_idx]) / 2;
vw_per_dq[dq_idx] = 1 + (vw_h[dq_idx] - vw_l[dq_idx]);
if (min_vw > vw_per_dq[dq_idx])
min_vw = vw_per_dq[dq_idx];
}
/* calculate center zone */
for (dq_idx = 0; dq_idx < 8; dq_idx++) {
center_low_el = center_low_element_get(dir, pbs_taps_per_dq[dq_idx], lambda[dq_idx], pbs_max);
if (center_per_dq[dq_idx] > center_low_el)
center_zone_low[dq_idx] = center_per_dq[dq_idx] - center_low_el;
center_high_el = center_high_element_get(dir, pbs_taps_per_dq[dq_idx], lambda[dq_idx], pbs_max);
center_zone_high[dq_idx] = center_per_dq[dq_idx] + center_high_el;
if (center_zone_max_low < center_zone_low[dq_idx])
center_zone_max_low = center_zone_low[dq_idx];
if (center_zone_min_high > center_zone_high[dq_idx])
center_zone_min_high = center_zone_high[dq_idx];
DEBUG_CALIBRATION(DEBUG_LEVEL_TRACE,
("center: low %d, high %d, max_low %d, min_high %d\n",
center_zone_low[dq_idx], center_zone_high[dq_idx],
center_zone_max_low, center_zone_min_high));
}
if (center_zone_min_high >= center_zone_max_low) { /* center zone visib */
/* set copt_val to high zone for rx */
copt_val = (dir == RX_DIR) ? center_zone_max_low : center_zone_min_high;
*copt = copt_val;
/* calculate additional pbs taps */
for (dq_idx = 0; dq_idx < 8; dq_idx++) {
if (dir == RX_DIR)
pbs_result[dq_idx] = (copt_val - center_per_dq[dq_idx]) *
PBS_VAL_FACTOR / lambda[dq_idx];
else
pbs_result[dq_idx] = (center_per_dq[dq_idx] - copt_val) *
PBS_VAL_FACTOR / lambda[dq_idx];
}
return MV_OK;
} else { /* not center zone visib */
for (dq_idx = 0; dq_idx < 8; dq_idx++) {
if ((center_zone_low[dq_idx] + 1) > (vw_per_dq[dq_idx] / 2 + vw_per_dq[dq_idx] % 2)) {
vw_zone_low[dq_idx] = (center_zone_low[dq_idx] + 1) -
(vw_per_dq[dq_idx] / 2 + vw_per_dq[dq_idx] % 2);
} else {
vw_zone_low[dq_idx] = 0;
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO,
("dq_idx %d, center zone low %d, vw_l %d, vw_l %d\n",
dq_idx, center_zone_low[dq_idx], vw_l[dq_idx], vw_h[dq_idx]));
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO,
("vw_l[%d], vw_lh[%d], lambda[%d]\n",
vw_l[dq_idx], vw_h[dq_idx], lambda[dq_idx]));
}
vw_zone_high[dq_idx] = center_zone_high[dq_idx] + vw_per_dq[dq_idx] / 2;
if (vw_zone_max_low < vw_zone_low[dq_idx])
vw_zone_max_low = vw_zone_low[dq_idx];
if (vw_zone_min_high > vw_zone_high[dq_idx])
vw_zone_min_high = vw_zone_high[dq_idx];
DEBUG_CALIBRATION(DEBUG_LEVEL_TRACE,
("valid_window: low %d, high %d, max_low %d, min_high %d\n",
vw_zone_low[dq_idx], vw_zone_high[dq_idx],
vw_zone_max_low, vw_zone_min_high));
}
/* try to extend center zone */
if (vw_zone_min_high >= vw_zone_max_low) { /* vw zone visib */
center_zone_max_low = 0;
center_zone_min_high = 128;
for (dq_idx = 0; dq_idx < 8; dq_idx++) {
margin_vw[dq_idx] = vw_per_dq[dq_idx] - min_vw;
if (center_zone_low[dq_idx] > margin_vw[dq_idx])
ext_center_zone_low[dq_idx] = center_zone_low[dq_idx] - margin_vw[dq_idx];
else
ext_center_zone_low[dq_idx] = 0;
ext_center_zone_high[dq_idx] = center_zone_high[dq_idx] + margin_vw[dq_idx];
if (center_zone_max_low < ext_center_zone_low[dq_idx])
center_zone_max_low = ext_center_zone_low[dq_idx];
if (center_zone_min_high > ext_center_zone_high[dq_idx])
center_zone_min_high = ext_center_zone_high[dq_idx];
DEBUG_CALIBRATION(DEBUG_LEVEL_TRACE,
("ext_center: low %d, high %d, max_low %d, min_high %d\n",
ext_center_zone_low[dq_idx], ext_center_zone_high[dq_idx],
center_zone_max_low, center_zone_min_high));
}
if (center_zone_min_high >= center_zone_max_low) { /* center zone visib */
/* get optimal center position */
copt_val = (dir == RX_DIR) ? center_zone_max_low : center_zone_min_high;
*copt = copt_val;
/* calculate additional pbs taps */
for (dq_idx = 0; dq_idx < 8; dq_idx++) {
if (dir == 0) {
if (copt_val > center_per_dq[dq_idx])
pbs_result[dq_idx] = (copt_val - center_per_dq[dq_idx]) *
PBS_VAL_FACTOR / lambda[dq_idx];
else
pbs_result[dq_idx] = 0;
} else {
if (center_per_dq[dq_idx] > copt_val)
pbs_result[dq_idx] = (center_per_dq[dq_idx] - copt_val) *
PBS_VAL_FACTOR / lambda[dq_idx];
else
pbs_result[dq_idx] = 0;
}
if (pbs_result[dq_idx] > pbs_max)
pbs_result[dq_idx] = pbs_max;
}
return MV_OK;
} else { /* not center zone visib */
/*
* TODO: print out error message(s) only when all points fail
* as temporary solution, replaced ERROR to TRACE debug level
*/
DEBUG_DDR4_CENTRALIZATION(DEBUG_LEVEL_TRACE,
("lambda: %d, %d, %d, %d, %d, %d, %d, %d\n",
lambda[0], lambda[1], lambda[2], lambda[3],
lambda[4], lambda[5], lambda[6], lambda[7]));
DEBUG_DDR4_CENTRALIZATION(DEBUG_LEVEL_TRACE,
("vw_h: %d, %d, %d, %d, %d, %d, %d, %d\n",
vw_h[0], vw_h[1], vw_h[2], vw_h[3],
vw_h[4], vw_h[5], vw_h[6], vw_h[7]));
DEBUG_DDR4_CENTRALIZATION(DEBUG_LEVEL_TRACE,
("vw_l: %d, %d, %d, %d, %d, %d, %d, %d\n",
vw_l[0], vw_l[1], vw_l[2], vw_l[3],
vw_l[4], vw_l[5], vw_l[6], vw_l[7]));
for (dq_idx = 0; dq_idx < 8; dq_idx++) {
DEBUG_DDR4_CENTRALIZATION(DEBUG_LEVEL_TRACE,
("center: low %d, high %d, "
"max_low %d, min_high %d\n",
center_zone_low[dq_idx], center_zone_high[dq_idx],
center_zone_max_low, center_zone_min_high));
DEBUG_DDR4_CENTRALIZATION(DEBUG_LEVEL_TRACE,
("valid_window: low %d, high %d, "
"max_low %d, min_high %d\n",
vw_zone_low[dq_idx], vw_zone_high[dq_idx],
vw_zone_max_low, vw_zone_min_high));
DEBUG_DDR4_CENTRALIZATION(DEBUG_LEVEL_TRACE,
("ext_center: low %d, high %d, "
"max_low %d, min_high %d\n",
ext_center_zone_low[dq_idx],
ext_center_zone_high[dq_idx],
center_zone_max_low, center_zone_min_high));
}
return MV_FAIL;
}
} else { /* not vw zone visib; failed to find a single sample point */
return MV_FAIL;
}
}
return MV_OK;
}
/*
* mv_ddr4_dqs_reposition function gets copt to align to and returns pbs value per bit
* parameters:
* dir - direction; 0 is for rx, 1 for tx
* lambda - a pointer to adll to pbs ration multiplied by PBS_VAL_FACTOR
* pbs_result - a pointer to pbs new delay value; the function's output
* delta - signed; possilbe values: +0xa, 0x0, -0xa; for rx can be only negative
* copt - optimal center of subphy in adll taps
* dqs_pbs - optimal pbs
* The function assumes initial pbs tap value is zero. Otherwise, it requires logic
* getting pbs value per dq and setting pbs_taps_per_dq array.
* It provides with a solution for a single subphy (8 bits).
* The calling function is responsible for any additional pbs taps for dqs
*/
static int mv_ddr4_dqs_reposition(u8 dir, u16 *lambda, u8 *pbs_result, char delta, u8 *copt, u8 *dqs_pbs)
{
u8 dq_idx;
u32 pbs_max_val = 0;
u32 lambda_avg = 0;
/* lambda calculated as D * X / d */
for (dq_idx = 0; dq_idx < 8; dq_idx++) {
if (pbs_max_val < pbs_result[dq_idx])
pbs_max_val = pbs_result[dq_idx];
lambda_avg += lambda[dq_idx];
}
if (delta >= 0)
*dqs_pbs = (pbs_max_val + delta) / 2;
else /* dqs already 0xa */
*dqs_pbs = pbs_max_val / 2;
lambda_avg /= 8;
/* change in dqs pbs value requires change in final copt position from mass center solution */
if (dir == TX_DIR) {
/* for tx, additional pbs on dqs in opposite direction of adll */
*copt = *copt + ((*dqs_pbs) * lambda_avg) / PBS_VAL_FACTOR;
} else {
/* for rx, additional pbs on dqs in same direction of adll */
if (delta < 0)
*copt = *copt - ((*dqs_pbs + delta) * lambda_avg) / PBS_VAL_FACTOR;
else
*copt = *copt - (*dqs_pbs * lambda_avg) / PBS_VAL_FACTOR;
}
return MV_OK;
}
/*
* mv_ddr4_center_of_mass_calc function
* parameters:
* vw_l - a pointer to valid window low limit in adll taps
* vw_h - a pointer to valid window high limit in adll taps
* vw_v - a pointer to vref value matching vw_l/h arrays
* vw_num - number of valid windows (lenght vw_v vector)
* v_opt - optimal voltage value in vref taps
* t_opt - optimal adll value in adll taps
* This function solves 2D centroid equation (e.g., adll and vref axes)
* The function doesn't differentiate between byte and bit eyes
*/
static int mv_ddr4_center_of_mass_calc(u8 dev_num, u8 if_id, u8 subphy_num, u8 mode, u8 *vw_l,
u8 *vw_h, u8 *vw_v, u8 vw_num, u8 *v_opt, u8 *t_opt)
{
u8 idx;
u8 edge_t[128], edge_v[128];
u8 min_edge_t = 127, min_edge_v = 127;
int polygon_area = 0;
int t_opt_temp = 0, v_opt_temp = 0;
int vw_avg = 0, v_avg = 0;
int s0 = 0, s1 = 0, s2 = 0, slope = 1, r_sq = 0;
u32 d_min = 10000, reg_val = 0;
int status;
/*
* reorder all polygon points counterclockwise
* get min value of each axis to shift to smaller calc value
*/
for (idx = 0; idx < vw_num; idx++) {
edge_t[idx] = vw_l[idx];
edge_v[idx] = vw_v[idx];
if (min_edge_v > vw_v[idx])
min_edge_v = vw_v[idx];
if (min_edge_t > vw_l[idx])
min_edge_t = vw_l[idx];
edge_t[vw_num * 2 - 1 - idx] = vw_h[idx];
edge_v[vw_num * 2 - 1 - idx] = vw_v[idx];
vw_avg += vw_h[idx] - vw_l[idx];
v_avg += vw_v[idx];
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO,
("%s: if %d, byte %d, direction %d, vw_v %d, vw_l %d, vw_h %d\n",
__func__, if_id, subphy_num, mode, vw_v[idx], vw_l[idx], vw_h[idx]));
}
vw_avg *= 1000 / vw_num;
v_avg /= vw_num;
for (idx = 0; idx < vw_num; idx++) {
s0 += (1000 * (vw_h[idx] - vw_l[idx]) - vw_avg) * (vw_v[idx] - v_avg);
s1 += (vw_v[idx] - v_avg) * (vw_v[idx] - v_avg);
s2 += (1000 * (vw_h[idx] - vw_l[idx]) - vw_avg) * (1000 * (vw_h[idx] - vw_l[idx]) - vw_avg);
}
r_sq = s0 * (s0 / s1);
r_sq /= (s2 / 1000);
slope = s0 / s1;
/* idx n is equal to idx 0 */
edge_t[vw_num * 2] = vw_l[0];
edge_v[vw_num * 2] = vw_v[0];
/* calculate polygon area, a (may be negative) */
for (idx = 0; idx < vw_num * 2; idx++)
polygon_area = polygon_area +
((edge_t[idx] - min_edge_t)*(edge_v[idx + 1] - min_edge_v) -
(edge_t[idx + 1] - min_edge_t)*(edge_v[idx] - min_edge_v));
/* calculate optimal point */
for (idx = 0; idx < vw_num * 2; idx++) {
t_opt_temp = t_opt_temp +
(edge_t[idx] + edge_t[idx + 1] - 2 * min_edge_t) *
((edge_t[idx] - min_edge_t)*(edge_v[idx + 1] - min_edge_v) -
(edge_t[idx + 1] - min_edge_t)*(edge_v[idx] - min_edge_v));
v_opt_temp = v_opt_temp +
(edge_v[idx] + edge_v[idx + 1] - 2 * min_edge_v) *
((edge_t[idx] - min_edge_t)*(edge_v[idx + 1] - min_edge_v) -
(edge_t[idx + 1] - min_edge_t)*(edge_v[idx] - min_edge_v));
}
*t_opt = t_opt_temp / (3 * polygon_area);
*v_opt = v_opt_temp / (3 * polygon_area);
/* re-shift */
*t_opt += min_edge_t;
*v_opt += min_edge_v;
/* calculate d_min */
for (idx = 0; idx < 2 * vw_num; idx++) {
s0 = (*t_opt - edge_t[idx]) * (*t_opt - edge_t[idx]) +
(*v_opt - edge_v[idx]) * (*v_opt - edge_v[idx]);
d_min = (d_min > s0) ? s0 : d_min;
}
DEBUG_CALIBRATION(DEBUG_LEVEL_TRACE,
("%s: r_sq %d, slope %d, area = %d, , d_min = %d\n",
__func__, r_sq, slope, polygon_area, d_min));
/* insert vw eye to register database for validation */
if (d_min < 0)
d_min = -d_min;
if (polygon_area < 0)
polygon_area = -polygon_area;
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id, ACCESS_TYPE_UNICAST, subphy_num,
DDR_PHY_DATA, RESULT_PHY_REG + effective_cs + 4 * (1 - mode),
polygon_area);
if (status != MV_OK)
return status;
status = ddr3_tip_bus_read(dev_num, if_id, ACCESS_TYPE_UNICAST,
dmin_phy_reg_table[effective_cs * 5 + subphy_num][0], DDR_PHY_CONTROL,
dmin_phy_reg_table[effective_cs * 5 + subphy_num][1], &reg_val);
if (status != MV_OK)
return status;
reg_val &= 0xff << (8 * mode); /* rx clean bits 0..8, tx bits 9..16 */
reg_val |= d_min / 2 << (8 * (1 - mode)); /* rX write bits 0..8, tx bits 9..16 */
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id, ACCESS_TYPE_UNICAST,
dmin_phy_reg_table[effective_cs * 5 + subphy_num][0], DDR_PHY_CONTROL,
dmin_phy_reg_table[effective_cs * 5 + subphy_num][1], reg_val);
if (status != MV_OK)
return status;
if (polygon_area < 400) {
DEBUG_CALIBRATION(DEBUG_LEVEL_ERROR,
("%s: if %d, subphy %d: poligon area too small %d (dmin %d)\n",
__func__, if_id, subphy_num, polygon_area, d_min));
if (debug_mode == 0)
return MV_FAIL;
}
return MV_OK;
}
/* tap tuning flow */
enum {
DQS_TO_DQ_LONG,
DQS_TO_DQ_SHORT
};
enum {
ALIGN_LEFT,
ALIGN_CENTER,
ALIGN_RIGHT
};
#define ONE_MHZ 1000000
#define MAX_SKEW_DLY 200 /* in ps */
#define NOMINAL_PBS_DLY 9 /* in ps */
#define MIN_WL_TO_CTX_ADLL_DIFF 2 /* in taps */
#define DQS_SHIFT_INIT_VAL 30
#define MAX_PBS_NUM 31
#define ADLL_TAPS_PER_PHASE 32
#define ADLL_TAPS_PER_PERIOD (ADLL_TAPS_PER_PHASE * 2)
#define ADLL_TX_RES_REG_MASK 0xff
#define VW_DESKEW_BIAS 0xa
static int mv_ddr4_tap_tuning(u8 dev, u16 (*pbs_tap_factor)[MAX_BUS_NUM][BUS_WIDTH_IN_BITS], u8 mode)
{
enum hws_training_ip_stat training_result[MAX_INTERFACE_NUM];
u32 iface, subphy, bit, pattern;
u32 limit_div;
u8 curr_start_win, curr_end_win;
u8 upd_curr_start_win, upd_curr_end_win;
u8 start_win_diff, end_win_diff;
u32 max_win_size, a, b;
u32 cs_ena_reg_val[MAX_INTERFACE_NUM];
u32 reg_addr;
enum hws_search_dir search_dir;
enum hws_dir dir;
u32 *result[MAX_BUS_NUM][HWS_SEARCH_DIR_LIMIT];
u32 result1[MAX_BUS_NUM][HWS_SEARCH_DIR_LIMIT][BUS_WIDTH_IN_BITS];
u8 subphy_max = ddr3_tip_dev_attr_get(dev, MV_ATTR_OCTET_PER_INTERFACE);
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
enum hws_training_result result_type = RESULT_PER_BIT;
int status = MV_OK;
int i;
u32 reg_val;
u32 freq = mv_ddr_freq_get(tm->interface_params->memory_freq);
/* calc adll tap in ps based on frequency */
int adll_tap = (ONE_MHZ / freq) / ADLL_TAPS_PER_PERIOD;
int dq_to_dqs_delta[MAX_BUS_NUM][BUS_WIDTH_IN_BITS]; /* skew b/w dq and dqs */
u32 wl_adll[MAX_BUS_NUM]; /* wl solution adll value */
int is_dq_dqs_short[MAX_BUS_NUM] = {0}; /* tx byte's state */
u32 new_pbs_per_byte[MAX_BUS_NUM]; /* dq pads' pbs value correction */
/* threshold to decide subphy needs dqs pbs delay */
int dq_to_dqs_min_delta_threshold = MIN_WL_TO_CTX_ADLL_DIFF + MAX_SKEW_DLY / adll_tap;
/* search init condition */
int dq_to_dqs_min_delta = dq_to_dqs_min_delta_threshold * 2;
u32 pbs_tap_factor0 = PBS_VAL_FACTOR * NOMINAL_PBS_DLY / adll_tap; /* init lambda */
/* adapt pbs to frequency */
u32 new_pbs = (1810000 - (345 * freq)) / 100000;
int stage_num, loop;
int wl_tap, new_wl_tap;
int pbs_tap_factor_avg;
int dqs_shift[MAX_BUS_NUM]; /* dqs' pbs delay */
static u16 tmp_pbs_tap_factor[MAX_INTERFACE_NUM][MAX_BUS_NUM][BUS_WIDTH_IN_BITS];
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO, ("Starting ddr4 tap tuning training stage\n"));
for (i = 0; i < MAX_BUS_NUM; i++)
dqs_shift[i] = DQS_SHIFT_INIT_VAL;
if (mode == TX_DIR) {
max_win_size = MAX_WINDOW_SIZE_TX;
dir = OPER_WRITE;
} else {
max_win_size = MAX_WINDOW_SIZE_RX;
dir = OPER_READ;
}
/* init all pbs registers */
for (iface = 0; iface < MAX_INTERFACE_NUM; iface++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, iface);
if (mode == RX_DIR)
reg_addr = PBS_RX_BCAST_PHY_REG(effective_cs);
else
reg_addr = PBS_TX_BCAST_PHY_REG(effective_cs);
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, iface, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, DDR_PHY_DATA, reg_addr, 0);
if (mode == RX_DIR)
reg_addr = PBS_RX_PHY_REG(effective_cs, DQSP_PAD);
else
reg_addr = PBS_TX_PHY_REG(effective_cs, DQSP_PAD);
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, iface, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, DDR_PHY_DATA, reg_addr, 0);
if (mode == RX_DIR)
reg_addr = PBS_RX_PHY_REG(effective_cs, DQSN_PAD);
else
reg_addr = PBS_TX_PHY_REG(effective_cs, DQSN_PAD);
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, iface, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, DDR_PHY_DATA, reg_addr, 0);
}
for (iface = 0; iface < MAX_INTERFACE_NUM; iface++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, iface);
/* save current cs enable reg val */
ddr3_tip_if_read(dev, ACCESS_TYPE_UNICAST, iface, DUAL_DUNIT_CFG_REG,
cs_ena_reg_val, MASK_ALL_BITS);
/* enable single cs */
ddr3_tip_if_write(dev, ACCESS_TYPE_UNICAST, iface, DUAL_DUNIT_CFG_REG,
(SINGLE_CS_ENA << SINGLE_CS_PIN_OFFS),
(SINGLE_CS_PIN_MASK << SINGLE_CS_PIN_OFFS));
}
/* FIXME: fix this hard-coded parameters due to compilation issue with patterns definitions */
pattern = MV_DDR_IS_64BIT_DRAM_MODE(tm->bus_act_mask) ? 73 : 23;
stage_num = (mode == RX_DIR) ? 1 : 2;
/* find window; run training */
for (loop = 0; loop < stage_num; loop++) {
ddr3_tip_ip_training_wrapper(dev, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, result_type, HWS_CONTROL_ELEMENT_ADLL, PARAM_NOT_CARE,
dir, tm->if_act_mask, 0x0, max_win_size - 1, max_win_size - 1,
pattern, EDGE_FPF, CS_SINGLE, PARAM_NOT_CARE, training_result);
for (iface = 0; iface < MAX_INTERFACE_NUM; iface++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, iface);
for (subphy = 0; subphy < subphy_max; subphy++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy);
rx_vw_pos[iface][subphy] = ALIGN_CENTER;
new_pbs_per_byte[subphy] = new_pbs; /* rx init */
if ((mode == TX_DIR) && (loop == 0)) {
/* read nominal wl */
ddr3_tip_bus_read(dev, iface, ACCESS_TYPE_UNICAST, subphy,
DDR_PHY_DATA, WL_PHY_REG(effective_cs),
&reg_val);
wl_adll[subphy] = reg_val;
}
for (search_dir = HWS_LOW2HIGH; search_dir <= HWS_HIGH2LOW; search_dir++) {
ddr3_tip_read_training_result(dev, iface, ACCESS_TYPE_UNICAST, subphy,
ALL_BITS_PER_PUP, search_dir, dir,
result_type, TRAINING_LOAD_OPERATION_UNLOAD,
CS_SINGLE, &(result[subphy][search_dir]),
1, 0, 0);
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO,
("cs %d if %d subphy %d mode %d result: "
"0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
effective_cs, iface, subphy, mode,
result[subphy][search_dir][0],
result[subphy][search_dir][1],
result[subphy][search_dir][2],
result[subphy][search_dir][3],
result[subphy][search_dir][4],
result[subphy][search_dir][5],
result[subphy][search_dir][6],
result[subphy][search_dir][7]));
}
for (bit = 0; bit < BUS_WIDTH_IN_BITS; bit++) {
a = result[subphy][HWS_LOW2HIGH][bit];
b = result[subphy][HWS_HIGH2LOW][bit];
result1[subphy][HWS_LOW2HIGH][bit] = a;
result1[subphy][HWS_HIGH2LOW][bit] = b;
/* measure distance between ctx and wl adlls */
if (mode == TX_DIR) {
a &= ADLL_TX_RES_REG_MASK;
if (a >= ADLL_TAPS_PER_PERIOD)
a -= ADLL_TAPS_PER_PERIOD;
dq_to_dqs_delta[subphy][bit] =
a - (wl_adll[subphy] & WR_LVL_REF_DLY_MASK);
if (dq_to_dqs_delta[subphy][bit] < dq_to_dqs_min_delta)
dq_to_dqs_min_delta = dq_to_dqs_delta[subphy][bit];
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO,
("%s: dq_to_dqs_delta[%d][%d] %d\n",
__func__, subphy, bit,
dq_to_dqs_delta[subphy][bit]));
}
}
/* adjust wl on the first pass only */
if ((mode == TX_DIR) && (loop == 0)) {
/* dqs pbs shift if distance b/w adll is too large */
if (dq_to_dqs_min_delta < dq_to_dqs_min_delta_threshold) {
/* first calculate the WL in taps */
wl_tap = ((wl_adll[subphy] >> WR_LVL_REF_DLY_OFFS) &
WR_LVL_REF_DLY_MASK) +
((wl_adll[subphy] >> WR_LVL_PH_SEL_OFFS) &
WR_LVL_PH_SEL_MASK) * ADLL_TAPS_PER_PHASE;
/* calc dqs pbs shift */
dqs_shift[subphy] =
dq_to_dqs_min_delta_threshold - dq_to_dqs_min_delta;
/* check that the WL result have enough taps to reduce */
if (wl_tap > 0) {
if (wl_tap < dqs_shift[subphy])
dqs_shift[subphy] = wl_tap-1;
else
dqs_shift[subphy] = dqs_shift[subphy];
} else {
dqs_shift[subphy] = 0;
}
DEBUG_TAP_TUNING_ENGINE
(DEBUG_LEVEL_INFO,
("%s: tap tune tx: subphy %d, dqs shifted by %d adll taps, ",
__func__, subphy, dqs_shift[subphy]));
dqs_shift[subphy] =
(dqs_shift[subphy] * PBS_VAL_FACTOR) / pbs_tap_factor0;
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO,
("%d pbs taps\n", dqs_shift[subphy]));
/* check high limit */
if (dqs_shift[subphy] > MAX_PBS_NUM)
dqs_shift[subphy] = MAX_PBS_NUM;
reg_addr = PBS_TX_PHY_REG(effective_cs, DQSP_PAD);
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, iface,
ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
reg_addr, dqs_shift[subphy]);
reg_addr = PBS_TX_PHY_REG(effective_cs, DQSN_PAD);
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, iface,
ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
reg_addr, dqs_shift[subphy]);
is_dq_dqs_short[subphy] = DQS_TO_DQ_SHORT;
new_wl_tap = wl_tap -
(dqs_shift[subphy] * pbs_tap_factor0) / PBS_VAL_FACTOR;
reg_val = (new_wl_tap & WR_LVL_REF_DLY_MASK) |
((new_wl_tap &
((WR_LVL_PH_SEL_MASK << WR_LVL_PH_SEL_OFFS) >> 1))
<< 1) |
(wl_adll[subphy] &
((CTRL_CENTER_DLY_MASK << CTRL_CENTER_DLY_OFFS) |
(CTRL_CENTER_DLY_INV_MASK << CTRL_CENTER_DLY_INV_OFFS)));
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, iface,
ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
WL_PHY_REG(effective_cs), reg_val);
DEBUG_TAP_TUNING_ENGINE
(DEBUG_LEVEL_INFO,
("%s: subphy %d, dq_to_dqs_min_delta %d, dqs_shift %d, old wl %d, temp wl %d 0x%08x\n",
__func__, subphy, dq_to_dqs_min_delta,
dqs_shift[subphy], wl_tap, new_wl_tap,
reg_val));
}
}
dq_to_dqs_min_delta = dq_to_dqs_min_delta_threshold * 2;
}
}
}
/* deskew dq */
for (iface = 0; iface < MAX_INTERFACE_NUM; iface++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, iface);
if (mode == RX_DIR)
reg_addr = PBS_RX_BCAST_PHY_REG(effective_cs);
else
reg_addr = PBS_TX_BCAST_PHY_REG(effective_cs);
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, iface, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
DDR_PHY_DATA, reg_addr, new_pbs_per_byte[0]);
}
/* run training search and get results */
ddr3_tip_ip_training_wrapper(dev, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, result_type, HWS_CONTROL_ELEMENT_ADLL, PARAM_NOT_CARE,
dir, tm->if_act_mask, 0x0, max_win_size - 1, max_win_size - 1,
pattern, EDGE_FPF, CS_SINGLE, PARAM_NOT_CARE, training_result);
for (iface = 0; iface < MAX_INTERFACE_NUM; iface++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, iface);
for (subphy = 0; subphy < subphy_max; subphy++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy);
/* read training ip results from db */
for (search_dir = HWS_LOW2HIGH; search_dir <= HWS_HIGH2LOW; search_dir++) {
ddr3_tip_read_training_result(dev, iface, ACCESS_TYPE_UNICAST,
subphy, ALL_BITS_PER_PUP, search_dir,
dir, result_type,
TRAINING_LOAD_OPERATION_UNLOAD, CS_SINGLE,
&(result[subphy][search_dir]),
1, 0, 0);
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO,
("cs %d if %d subphy %d mode %d result: "
"0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
effective_cs, iface, subphy, mode,
result[subphy][search_dir][0],
result[subphy][search_dir][1],
result[subphy][search_dir][2],
result[subphy][search_dir][3],
result[subphy][search_dir][4],
result[subphy][search_dir][5],
result[subphy][search_dir][6],
result[subphy][search_dir][7]));
}
/* calc dq skew impact on vw position */
for (bit = 0; bit < BUS_WIDTH_IN_BITS; bit++) {
start_win_diff = 0;
end_win_diff = 0;
limit_div = 0;
if ((GET_LOCK_RESULT(result1[subphy][HWS_LOW2HIGH][bit]) == 1) &&
(GET_LOCK_RESULT(result1[subphy][HWS_HIGH2LOW][bit]) == 1) &&
(GET_LOCK_RESULT(result[subphy][HWS_LOW2HIGH][bit]) == 1) &&
(GET_LOCK_RESULT(result[subphy][HWS_HIGH2LOW][bit]) == 1)) {
curr_start_win = GET_TAP_RESULT(result1[subphy][HWS_LOW2HIGH][bit],
EDGE_1);
curr_end_win = GET_TAP_RESULT(result1[subphy][HWS_HIGH2LOW][bit],
EDGE_1);
upd_curr_start_win = GET_TAP_RESULT(result[subphy][HWS_LOW2HIGH][bit],
EDGE_1);
upd_curr_end_win = GET_TAP_RESULT(result[subphy][HWS_HIGH2LOW][bit],
EDGE_1);
/* update tx start skew; set rx vw position */
if ((upd_curr_start_win != 0) && (curr_start_win != 0)) {
if (upd_curr_start_win > curr_start_win) {
start_win_diff = upd_curr_start_win - curr_start_win;
if (mode == TX_DIR)
start_win_diff =
curr_start_win + 64 - upd_curr_start_win;
} else {
start_win_diff = curr_start_win - upd_curr_start_win;
}
limit_div++;
} else {
rx_vw_pos[iface][subphy] = ALIGN_LEFT;
}
/* update tx end skew; set rx vw position */
if (((upd_curr_end_win != max_win_size) && (curr_end_win != max_win_size)) ||
(mode == TX_DIR)) {
if (upd_curr_end_win > curr_end_win) {
end_win_diff = upd_curr_end_win - curr_end_win;
if (mode == TX_DIR)
end_win_diff =
curr_end_win + 64 - upd_curr_end_win;
} else {
end_win_diff = curr_end_win - upd_curr_end_win;
}
limit_div++;
} else {
rx_vw_pos[iface][subphy] = ALIGN_RIGHT;
}
/*
* don't care about start in tx mode
* TODO: temporary solution for instability in the start adll search
*/
if (mode == TX_DIR) {
start_win_diff = end_win_diff;
limit_div = 2;
}
/*
* workaround for false tx measurements in tap tune stage
* tx pbs factor will use rx pbs factor results instead
*/
if ((limit_div != 0) && (mode == RX_DIR)) {
pbs_tap_factor[iface][subphy][bit] =
PBS_VAL_FACTOR * (start_win_diff + end_win_diff) /
(new_pbs_per_byte[subphy] * limit_div);
tmp_pbs_tap_factor[iface][subphy][bit] =
pbs_tap_factor[iface][subphy][bit];
} else {
pbs_tap_factor[iface][subphy][bit] =
tmp_pbs_tap_factor[iface][subphy][bit];
}
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO,
("cs %d if %d subphy %d bit %d sw1 %d sw2 %d "
"ew1 %d ew2 %d sum delta %d, align %d\n",
effective_cs, iface, subphy, bit,
curr_start_win, upd_curr_start_win,
curr_end_win, upd_curr_end_win,
pbs_tap_factor[iface][subphy][bit],
rx_vw_pos[iface][subphy]));
} else {
status = MV_FAIL;
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO,
("tap tuning fail %s cs %d if %d subphy %d bit %d\n",
(mode == RX_DIR) ? "RX" : "TX", effective_cs, iface,
subphy, bit));
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO,
("cs %d if %d subphy %d mode %d result: "
"0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
effective_cs, iface, subphy, mode,
result[subphy][HWS_LOW2HIGH][0],
result[subphy][HWS_LOW2HIGH][1],
result[subphy][HWS_LOW2HIGH][2],
result[subphy][HWS_LOW2HIGH][3],
result[subphy][HWS_LOW2HIGH][4],
result[subphy][HWS_LOW2HIGH][5],
result[subphy][HWS_LOW2HIGH][6],
result[subphy][HWS_LOW2HIGH][7]));
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO,
("cs %d if %d subphy %d mode %d result: "
"0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
effective_cs, iface, subphy, mode,
result[subphy][HWS_HIGH2LOW][0],
result[subphy][HWS_HIGH2LOW][1],
result[subphy][HWS_HIGH2LOW][2],
result[subphy][HWS_HIGH2LOW][3],
result[subphy][HWS_HIGH2LOW][4],
result[subphy][HWS_HIGH2LOW][5],
result[subphy][HWS_HIGH2LOW][6],
result[subphy][HWS_HIGH2LOW][7]));
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO,
("cs %d if %d subphy %d mode %d result: "
"0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
effective_cs, iface, subphy, mode,
result1[subphy][HWS_LOW2HIGH][0],
result1[subphy][HWS_LOW2HIGH][1],
result1[subphy][HWS_LOW2HIGH][2],
result1[subphy][HWS_LOW2HIGH][3],
result1[subphy][HWS_LOW2HIGH][4],
result1[subphy][HWS_LOW2HIGH][5],
result1[subphy][HWS_LOW2HIGH][6],
result1[subphy][HWS_LOW2HIGH][7]));
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO,
("cs %d if %d subphy %d mode %d result: "
"0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
effective_cs, iface, subphy, mode,
result1[subphy][HWS_HIGH2LOW][0],
result1[subphy][HWS_HIGH2LOW][1],
result1[subphy][HWS_HIGH2LOW][2],
result1[subphy][HWS_HIGH2LOW][3],
result1[subphy][HWS_HIGH2LOW][4],
result1[subphy][HWS_HIGH2LOW][5],
result1[subphy][HWS_HIGH2LOW][6],
result1[subphy][HWS_HIGH2LOW][7]));
}
}
}
}
/* restore cs enable value */
for (iface = 0; iface < MAX_INTERFACE_NUM; iface++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, iface);
ddr3_tip_if_write(dev, ACCESS_TYPE_UNICAST, iface, DUAL_DUNIT_CFG_REG,
cs_ena_reg_val[iface], MASK_ALL_BITS);
}
/* restore pbs (set to 0) */
for (iface = 0; iface < MAX_INTERFACE_NUM; iface++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, iface);
for (subphy = 0; subphy < subphy_max; subphy++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy);
if (mode == RX_DIR)
reg_addr = PBS_RX_BCAST_PHY_REG(effective_cs);
else
reg_addr = PBS_TX_BCAST_PHY_REG(effective_cs);
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, iface, ACCESS_TYPE_UNICAST,
subphy, DDR_PHY_DATA, reg_addr, 0);
}
}
/* set deskew bias for rx valid window */
if (mode == RX_DIR) {
/*
* pattern special for rx
* check for rx_vw_pos stat
* - add n pbs taps to every dq to align to left (pbs_max set to (31 - n))
* - add pbs taps to dqs to align to right
*/
for (iface = 0; iface < MAX_INTERFACE_NUM; iface++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, iface);
for (subphy = 0; subphy < subphy_max; subphy++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy);
if (rx_vw_pos[iface][subphy] == ALIGN_LEFT) {
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, 0,
ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
PBS_RX_BCAST_PHY_REG(effective_cs),
VW_DESKEW_BIAS);
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO,
("%s: if %d, subphy %d aligned to left\n",
__func__, iface, subphy));
} else if (rx_vw_pos[iface][subphy] == ALIGN_RIGHT) {
reg_addr = PBS_RX_PHY_REG(effective_cs, DQSP_PAD);
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, 0,
ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
reg_addr, VW_DESKEW_BIAS);
reg_addr = PBS_RX_PHY_REG(effective_cs, DQSN_PAD);
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, 0,
ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
reg_addr, VW_DESKEW_BIAS);
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO,
("%s: if %d , subphy %d aligned to right\n",
__func__, iface, subphy));
}
} /* subphy */
} /* if */
} else { /* tx mode */
/* update wl solution */
if (status == MV_OK) {
for (iface = 0; iface < MAX_INTERFACE_NUM; iface++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, iface);
for (subphy = 0; subphy < subphy_max; subphy++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy);
if (is_dq_dqs_short[subphy]) {
wl_tap = ((wl_adll[subphy] >> WR_LVL_REF_DLY_OFFS) &
WR_LVL_REF_DLY_MASK) +
((wl_adll[subphy] >> WR_LVL_PH_SEL_OFFS) &
WR_LVL_PH_SEL_MASK) * ADLL_TAPS_PER_PHASE;
pbs_tap_factor_avg = (pbs_tap_factor[iface][subphy][0] +
pbs_tap_factor[iface][subphy][1] +
pbs_tap_factor[iface][subphy][2] +
pbs_tap_factor[iface][subphy][3] +
pbs_tap_factor[iface][subphy][4] +
pbs_tap_factor[iface][subphy][5] +
pbs_tap_factor[iface][subphy][6] +
pbs_tap_factor[iface][subphy][7]) / 8;
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO,
("%s: pbs_tap_factor_avg %d\n",
__func__, pbs_tap_factor_avg));
new_wl_tap = wl_tap -
(dqs_shift[subphy] * pbs_tap_factor_avg) /
PBS_VAL_FACTOR;
/*
* check wraparound due to change in the pbs_tap_factor_avg
* vs the first guess
*/
if (new_wl_tap <= 0)
new_wl_tap = 0;
reg_val = (new_wl_tap & WR_LVL_REF_DLY_MASK) |
((new_wl_tap &
((WR_LVL_PH_SEL_MASK << WR_LVL_PH_SEL_OFFS) >> 1))
<< 1) |
(wl_adll[subphy] &
((CTRL_CENTER_DLY_MASK << CTRL_CENTER_DLY_OFFS) |
(CTRL_CENTER_DLY_INV_MASK << CTRL_CENTER_DLY_INV_OFFS)));
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, iface,
ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
WL_PHY_REG(effective_cs), reg_val);
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO,
("%s: tap tune tx algorithm final wl:\n",
__func__));
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO,
("%s: subphy %d, dqs pbs %d, old wl %d, final wl %d 0x%08x -> 0x%08x\n",
__func__, subphy, pbs_tap_factor_avg,
wl_tap, new_wl_tap, wl_adll[subphy],
reg_val));
}
}
}
} else {
/* return to nominal wl */
for (subphy = 0; subphy < subphy_max; subphy++) {
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, iface, ACCESS_TYPE_UNICAST,
subphy, DDR_PHY_DATA, WL_PHY_REG(effective_cs),
wl_adll[subphy]);
DEBUG_TAP_TUNING_ENGINE(DEBUG_LEVEL_INFO,
("%s: tap tune failed; return to nominal wl\n",
__func__));
reg_addr = PBS_TX_PHY_REG(effective_cs, DQSP_PAD);
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, iface, ACCESS_TYPE_UNICAST,
subphy, DDR_PHY_DATA, reg_addr, 0);
reg_addr = PBS_TX_PHY_REG(effective_cs, DQSN_PAD);
ddr3_tip_bus_write(dev, ACCESS_TYPE_UNICAST, iface, ACCESS_TYPE_UNICAST,
subphy, DDR_PHY_DATA, reg_addr, 0);
}
}
}
return status;
}
/* receiver duty cycle flow */
#define DDR_PHY_JIRA_ENABLE
int mv_ddr4_receiver_calibration(u8 dev_num)
{
u32 if_id, subphy_num;
u32 vref_idx, dq_idx, pad_num = 0;
u8 dq_vref_start_win[MAX_INTERFACE_NUM][MAX_BUS_NUM][RECEIVER_DC_MAX_COUNT];
u8 dq_vref_end_win[MAX_INTERFACE_NUM][MAX_BUS_NUM][RECEIVER_DC_MAX_COUNT];
u8 c_vref[MAX_INTERFACE_NUM][MAX_BUS_NUM];
u8 valid_win_size[MAX_INTERFACE_NUM][MAX_BUS_NUM];
u8 c_opt_per_bus[MAX_INTERFACE_NUM][MAX_BUS_NUM];
u8 valid_vref_cnt[MAX_INTERFACE_NUM][MAX_BUS_NUM];
u8 valid_vref_ptr[MAX_INTERFACE_NUM][MAX_BUS_NUM][RECEIVER_DC_MAX_COUNT];
u8 center_adll[MAX_INTERFACE_NUM][MAX_BUS_NUM];
u8 center_vref[MAX_INTERFACE_NUM][MAX_BUS_NUM];
u8 pbs_res_per_bus[MAX_INTERFACE_NUM][MAX_BUS_NUM][BUS_WIDTH_IN_BITS];
u16 lambda_per_dq[MAX_INTERFACE_NUM][MAX_BUS_NUM][BUS_WIDTH_IN_BITS];
u8 dqs_pbs = 0, const_pbs;
int tap_tune_passed = 0;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
enum hws_result *flow_result = ddr3_tip_get_result_ptr(training_stage);
u8 subphy_max = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
#ifdef DDR_PHY_JIRA_ENABLE
u32 dqs_pbs_jira56[MAX_INTERFACE_NUM][MAX_BUS_NUM];
u8 delta = 0;
#endif
unsigned int max_cs = mv_ddr_cs_num_get();
u32 ctr_x[4], pbs_temp[4];
u16 cs_index = 0, pbs_rx_avg, lambda_avg;
int status;
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO, ("Starting ddr4 dc calibration training stage\n"));
vdq_tv = 0;
duty_cycle = 0;
/* reset valid vref counter per if and subphy */
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++)
for (subphy_num = 0; subphy_num < MAX_BUS_NUM; subphy_num++)
valid_vref_cnt[if_id][subphy_num] = 0;
/* calculate pbs-adll tap tuning */
/* reset special pattern configuration to re-run this stage */
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, 0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
DDR_PHY_DATA, 0x5f + effective_cs * 0x10, 0x0);
if (status != MV_OK)
return status;
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, 0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
DDR_PHY_DATA, 0x54 + effective_cs * 0x10, 0x0);
if (status != MV_OK)
return status;
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, 0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
DDR_PHY_DATA, 0x55 + effective_cs * 0x10, 0x0);
if (status != MV_OK)
return status;
#ifdef DDR_PHY_JIRA_ENABLE
if (effective_cs != 0) {
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
status = ddr3_tip_bus_read(dev_num, if_id, ACCESS_TYPE_UNICAST, subphy_num,
DDR_PHY_DATA, 0x54 + 0 * 0x10,
&dqs_pbs_jira56[if_id][subphy_num]);
if (status != MV_OK)
return status;
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, 0, ACCESS_TYPE_UNICAST,
subphy_num, DDR_PHY_DATA, 0x54 + 0 * 0x10, 0x0);
if (status != MV_OK)
return status;
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, 0, ACCESS_TYPE_UNICAST,
subphy_num, DDR_PHY_DATA, 0x55 + 0 * 0x10, 0x0);
if (status != MV_OK)
return status;
}
}
}
#endif
if (mv_ddr4_tap_tuning(dev_num, lambda_per_dq, RX_DIR) == MV_OK)
tap_tune_passed = 1;
/* main loop for 2d scan (low_to_high voltage scan) */
for (duty_cycle = RECEIVER_DC_MIN_RANGE;
duty_cycle <= RECEIVER_DC_MAX_RANGE;
duty_cycle += RECEIVER_DC_STEP_SIZE) {
/* set new receiver dc training value in dram */
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
VREF_BCAST_PHY_REG(effective_cs), duty_cycle);
if (status != MV_OK)
return status;
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
VREF_PHY_REG(effective_cs, DQSP_PAD), duty_cycle);
if (status != MV_OK)
return status;
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
VREF_PHY_REG(effective_cs, DQSN_PAD), duty_cycle);
if (status != MV_OK)
return status;
if (tap_tune_passed == 0) {
if (mv_ddr4_tap_tuning(dev_num, lambda_per_dq, RX_DIR) == MV_OK) {
tap_tune_passed = 1;
} else {
DEBUG_CALIBRATION(DEBUG_LEVEL_ERROR,
("rc, tap tune failed inside calibration\n"));
continue;
}
}
if (mv_ddr4_centralization(dev_num, lambda_per_dq, c_opt_per_bus, pbs_res_per_bus,
valid_win_size, RX_DIR, vdq_tv, duty_cycle) != MV_OK) {
DEBUG_CALIBRATION(DEBUG_LEVEL_ERROR,
("error: ddr4 centralization failed (duty_cycle %d)!!!\n", duty_cycle));
if (debug_mode == 0)
break;
}
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
if (valid_win_size[if_id][subphy_num] > 8) {
/* window is valid; keep current duty_cycle value and increment counter */
vref_idx = valid_vref_cnt[if_id][subphy_num];
valid_vref_ptr[if_id][subphy_num][vref_idx] = duty_cycle;
valid_vref_cnt[if_id][subphy_num]++;
c_vref[if_id][subphy_num] = c_opt_per_bus[if_id][subphy_num];
/* set 0 for possible negative values */
dq_vref_start_win[if_id][subphy_num][vref_idx] =
c_vref[if_id][subphy_num] + 1 - valid_win_size[if_id][subphy_num] / 2;
dq_vref_start_win[if_id][subphy_num][vref_idx] =
(valid_win_size[if_id][subphy_num] % 2 == 0) ?
dq_vref_start_win[if_id][subphy_num][vref_idx] :
dq_vref_start_win[if_id][subphy_num][vref_idx] - 1;
dq_vref_end_win[if_id][subphy_num][vref_idx] =
c_vref[if_id][subphy_num] + valid_win_size[if_id][subphy_num] / 2;
}
} /* subphy */
} /* if */
} /* duty_cycle */
if (tap_tune_passed == 0) {
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO,
("%s: tap tune not passed on any duty_cycle value\n", __func__));
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
/* report fail for all active interfaces; multi-interface support - tbd */
flow_result[if_id] = TEST_FAILED;
}
return MV_FAIL;
}
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO,
("calculating center of mass for subphy %d, valid window size %d\n",
subphy_num, valid_win_size[if_id][subphy_num]));
if (valid_vref_cnt[if_id][subphy_num] > 0) {
rx_eye_hi_lvl[subphy_num] =
valid_vref_ptr[if_id][subphy_num][valid_vref_cnt[if_id][subphy_num] - 1];
rx_eye_lo_lvl[subphy_num] = valid_vref_ptr[if_id][subphy_num][0];
/* calculate center of mass sampling point (t, v) for each subphy */
status = mv_ddr4_center_of_mass_calc(dev_num, if_id, subphy_num, RX_DIR,
dq_vref_start_win[if_id][subphy_num],
dq_vref_end_win[if_id][subphy_num],
valid_vref_ptr[if_id][subphy_num],
valid_vref_cnt[if_id][subphy_num],
&center_vref[if_id][subphy_num],
&center_adll[if_id][subphy_num]);
if (status != MV_OK)
return status;
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO,
("center of mass results: vref %d, adll %d\n",
center_vref[if_id][subphy_num], center_adll[if_id][subphy_num]));
} else {
DEBUG_CALIBRATION(DEBUG_LEVEL_ERROR,
("%s: no valid window found for cs %d, subphy %d\n",
__func__, effective_cs, subphy_num));
return MV_FAIL;
}
}
}
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_UNICAST, subphy_num, DDR_PHY_DATA,
VREF_BCAST_PHY_REG(effective_cs),
center_vref[if_id][subphy_num]);
if (status != MV_OK)
return status;
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_UNICAST, subphy_num, DDR_PHY_DATA,
VREF_PHY_REG(effective_cs, DQSP_PAD),
center_vref[if_id][subphy_num]);
if (status != MV_OK)
return status;
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
ACCESS_TYPE_UNICAST, subphy_num, DDR_PHY_DATA,
VREF_PHY_REG(effective_cs, DQSN_PAD),
center_vref[if_id][subphy_num]);
if (status != MV_OK)
return status;
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO, ("final dc %d\n", center_vref[if_id][subphy_num]));
}
/* run centralization again with optimal vref to update global structures */
mv_ddr4_centralization(dev_num, lambda_per_dq, c_opt_per_bus, pbs_res_per_bus, valid_win_size,
RX_DIR, 0, center_vref[if_id][0]);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
const_pbs = 0xa;
mv_ddr4_dqs_reposition(RX_DIR, lambda_per_dq[if_id][subphy_num],
pbs_res_per_bus[if_id][subphy_num], 0x0,
&center_adll[if_id][subphy_num], &dqs_pbs);
/* dq pbs update */
for (dq_idx = 0; dq_idx < 8 ; dq_idx++) {
pad_num = dq_map_table[dq_idx +
subphy_num * BUS_WIDTH_IN_BITS +
if_id * BUS_WIDTH_IN_BITS * subphy_max];
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id, ACCESS_TYPE_UNICAST,
subphy_num, DDR_PHY_DATA,
0x50 + pad_num + effective_cs * 0x10,
const_pbs + pbs_res_per_bus[if_id][subphy_num][dq_idx]);
if (status != MV_OK)
return status;
}
/* dqs pbs update */
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, 0, ACCESS_TYPE_UNICAST, subphy_num,
DDR_PHY_DATA, 0x54 + effective_cs * 0x10, dqs_pbs);
if (status != MV_OK)
return status;
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, 0, ACCESS_TYPE_UNICAST, subphy_num,
DDR_PHY_DATA, 0x55 + effective_cs * 0x10, dqs_pbs);
if (status != MV_OK)
return status;
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id, ACCESS_TYPE_UNICAST,
subphy_num, DDR_PHY_DATA,
CRX_PHY_REG(effective_cs),
center_adll[if_id][subphy_num]);
if (status != MV_OK)
return status;
#ifdef DDR_PHY_JIRA_ENABLE
if (effective_cs != 0) {
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, 0, ACCESS_TYPE_UNICAST,
subphy_num, DDR_PHY_DATA, 0x54 + 0 * 0x10,
dqs_pbs_jira56[if_id][subphy_num]);
if (status != MV_OK)
return status;
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, 0, ACCESS_TYPE_UNICAST,
subphy_num, DDR_PHY_DATA, 0x55 + 0 * 0x10,
dqs_pbs_jira56[if_id][subphy_num]);
if (status != MV_OK)
return status;
}
#endif
}
}
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
/* report pass for all active interfaces; multi-interface support - tbd */
flow_result[if_id] = TEST_SUCCESS;
}
#ifdef DDR_PHY_JIRA_ENABLE
if (effective_cs == (max_cs - 1)) {
/* adjust dqs to be as cs0 */
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
for (subphy_num = 0; subphy_num < subphy_max; subphy_num++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy_num);
pbs_rx_avg = 0;
/* find average of all pbs of dqs and read ctr_x */
for (cs_index = 0; cs_index < max_cs; cs_index++) {
status = ddr3_tip_bus_read(dev_num, if_id, ACCESS_TYPE_UNICAST,
subphy_num, DDR_PHY_DATA,
0x54 + cs_index * 0x10,
&pbs_temp[cs_index]);
if (status != MV_OK)
return status;
status = ddr3_tip_bus_read(dev_num, if_id, ACCESS_TYPE_UNICAST,
subphy_num, DDR_PHY_DATA,
0x3 + cs_index * 0x4,
&ctr_x[cs_index]);
if (status != MV_OK)
return status;
pbs_rx_avg = pbs_rx_avg + pbs_temp[cs_index];
}
pbs_rx_avg = pbs_rx_avg / max_cs;
/* update pbs and ctr_x */
lambda_avg = (lambda_per_dq[if_id][subphy_num][0] +
lambda_per_dq[if_id][subphy_num][1] +
lambda_per_dq[if_id][subphy_num][2] +
lambda_per_dq[if_id][subphy_num][3] +
lambda_per_dq[if_id][subphy_num][4] +
lambda_per_dq[if_id][subphy_num][5] +
lambda_per_dq[if_id][subphy_num][6] +
lambda_per_dq[if_id][subphy_num][7]) / 8;
for (cs_index = 0; cs_index < max_cs; cs_index++) {
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST,
0, ACCESS_TYPE_UNICAST,
subphy_num, DDR_PHY_DATA,
0x54 + cs_index * 0x10, pbs_rx_avg);
if (status != MV_OK)
return status;
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST,
0, ACCESS_TYPE_UNICAST,
subphy_num, DDR_PHY_DATA,
0x55 + cs_index * 0x10, pbs_rx_avg);
if (status != MV_OK)
return status;
/* update */
if (pbs_rx_avg >= pbs_temp[cs_index]) {
delta = ((pbs_rx_avg - pbs_temp[cs_index]) * lambda_avg) /
PBS_VAL_FACTOR;
if (ctr_x[cs_index] >= delta) {
ctr_x[cs_index] = ctr_x[cs_index] - delta;
} else {
ctr_x[cs_index] = 0;
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO,
("jira ddrphy56 extend fix(-) required %d\n",
delta));
}
} else {
delta = ((pbs_temp[cs_index] - pbs_rx_avg) * lambda_avg) /
PBS_VAL_FACTOR;
if ((ctr_x[cs_index] + delta) > 32) {
ctr_x[cs_index] = 32;
DEBUG_CALIBRATION(DEBUG_LEVEL_INFO,
("jira ddrphy56 extend fix(+) required %d\n",
delta));
} else {
ctr_x[cs_index] = (ctr_x[cs_index] + delta);
}
}
status = ddr3_tip_bus_write(dev_num, ACCESS_TYPE_UNICAST, if_id,
ACCESS_TYPE_UNICAST, subphy_num, DDR_PHY_DATA,
CRX_PHY_REG(effective_cs),
ctr_x[cs_index]);
if (status != MV_OK)
return status;
}
}
}
}
#endif
return MV_OK;
}
#define MAX_LOOPS 2 /* maximum number of loops to get to solution */
#define LEAST_SIGNIFICANT_BYTE_MASK 0xff
#define VW_SUBPHY_LIMIT_MIN 0
#define VW_SUBPHY_LIMIT_MAX 127
#define MAX_PBS_NUM 31 /* TODO: added by another patch */
enum{
LOCKED,
UNLOCKED
};
enum {
PASS,
FAIL
};
int mv_ddr4_dm_tuning(u32 cs, u16 (*pbs_tap_factor)[MAX_BUS_NUM][BUS_WIDTH_IN_BITS])
{
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
enum hws_training_ip_stat training_result;
enum hws_training_result result_type = RESULT_PER_BIT;
enum hws_search_dir search_dir;
enum hws_dir dir = OPER_WRITE;
int vw_sphy_hi_diff = 0;
int vw_sphy_lo_diff = 0;
int x, y;
int status;
unsigned int a, b, c;
u32 ctx_vector[MAX_BUS_NUM];
u32 subphy, bit, pattern;
u32 *result[MAX_BUS_NUM][HWS_SEARCH_DIR_LIMIT];
u32 max_win_size = MAX_WINDOW_SIZE_TX;
u32 dm_lambda[MAX_BUS_NUM] = {0};
u32 loop;
u32 adll_tap;
u32 dm_pbs, max_pbs;
u32 dq_pbs[BUS_WIDTH_IN_BITS];
u32 new_dq_pbs[BUS_WIDTH_IN_BITS];
u32 dq, pad;
u32 dq_pbs_diff;
u32 byte_center, dm_center;
u32 idx, reg_val;
u32 dm_pad = mv_ddr_dm_pad_get();
u8 subphy_max = ddr3_tip_dev_attr_get(0, MV_ATTR_OCTET_PER_INTERFACE);
u8 dm_vw_vector[MAX_BUS_NUM * ADLL_TAPS_PER_PERIOD];
u8 vw_sphy_lo_lmt[MAX_BUS_NUM];
u8 vw_sphy_hi_lmt[MAX_BUS_NUM];
u8 dm_status[MAX_BUS_NUM];
/* init */
for (subphy = 0; subphy < subphy_max; subphy++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy);
dm_status[subphy] = UNLOCKED;
for (bit = 0 ; bit < BUS_WIDTH_IN_BITS; bit++)
dm_lambda[subphy] += pbs_tap_factor[0][subphy][bit];
dm_lambda[subphy] /= BUS_WIDTH_IN_BITS;
}
/* get algorithm's adll result */
for (subphy = 0; subphy < subphy_max; subphy++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy);
ddr3_tip_bus_read(0, 0, ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
CTX_PHY_REG(cs), &reg_val);
ctx_vector[subphy] = reg_val;
}
for (loop = 0; loop < MAX_LOOPS; loop++) {
for (subphy = 0; subphy < subphy_max; subphy++) {
vw_sphy_lo_lmt[subphy] = VW_SUBPHY_LIMIT_MIN;
vw_sphy_hi_lmt[subphy] = VW_SUBPHY_LIMIT_MAX;
for (adll_tap = 0; adll_tap < ADLL_TAPS_PER_PERIOD; adll_tap++) {
idx = subphy * ADLL_TAPS_PER_PERIOD + adll_tap;
dm_vw_vector[idx] = PASS;
}
}
/* get valid window of dm signal */
mv_ddr_dm_vw_get(PATTERN_ZERO, cs, dm_vw_vector);
mv_ddr_dm_vw_get(PATTERN_ONE, cs, dm_vw_vector);
/* get vw for dm disable */
pattern = MV_DDR_IS_64BIT_DRAM_MODE(tm->bus_act_mask) ? 73 : 23;
ddr3_tip_ip_training_wrapper(0, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, ACCESS_TYPE_MULTICAST,
PARAM_NOT_CARE, result_type, HWS_CONTROL_ELEMENT_ADLL, PARAM_NOT_CARE,
dir, tm->if_act_mask, 0x0, max_win_size - 1, max_win_size - 1, pattern,
EDGE_FPF, CS_SINGLE, PARAM_NOT_CARE, &training_result);
/* find skew of dm signal vs. dq data bits using its valid window */
for (subphy = 0; subphy < subphy_max; subphy++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy);
ddr3_tip_bus_write(0, ACCESS_TYPE_UNICAST, 0, ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
CTX_PHY_REG(cs), ctx_vector[subphy]);
for (search_dir = HWS_LOW2HIGH; search_dir <= HWS_HIGH2LOW; search_dir++) {
ddr3_tip_read_training_result(0, 0, ACCESS_TYPE_UNICAST, subphy,
ALL_BITS_PER_PUP, search_dir, dir, result_type,
TRAINING_LOAD_OPERATION_UNLOAD, CS_SINGLE,
&(result[subphy][search_dir]),
1, 0, 0);
DEBUG_DM_TUNING(DEBUG_LEVEL_INFO,
("dm cs %d if %d subphy %d result: 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
cs, 0, subphy,
result[subphy][search_dir][0],
result[subphy][search_dir][1],
result[subphy][search_dir][2],
result[subphy][search_dir][3],
result[subphy][search_dir][4],
result[subphy][search_dir][5],
result[subphy][search_dir][6],
result[subphy][search_dir][7]));
}
if (dm_status[subphy] == LOCKED)
continue;
for (bit = 0; bit < BUS_WIDTH_IN_BITS; bit++) {
result[subphy][HWS_LOW2HIGH][bit] &= LEAST_SIGNIFICANT_BYTE_MASK;
result[subphy][HWS_HIGH2LOW][bit] &= LEAST_SIGNIFICANT_BYTE_MASK;
if (result[subphy][HWS_LOW2HIGH][bit] > vw_sphy_lo_lmt[subphy])
vw_sphy_lo_lmt[subphy] = result[subphy][HWS_LOW2HIGH][bit];
if (result[subphy][HWS_HIGH2LOW][bit] < vw_sphy_hi_lmt[subphy])
vw_sphy_hi_lmt[subphy] = result[subphy][HWS_HIGH2LOW][bit];
}
DEBUG_DM_TUNING(DEBUG_LEVEL_INFO,
("loop %d, dm subphy %d, vw %d, %d\n", loop, subphy,
vw_sphy_lo_lmt[subphy], vw_sphy_hi_lmt[subphy]));
idx = subphy * ADLL_TAPS_PER_PERIOD;
status = mv_ddr_dm_to_dq_diff_get(vw_sphy_hi_lmt[subphy], vw_sphy_lo_lmt[subphy],
&dm_vw_vector[idx], &vw_sphy_hi_diff, &vw_sphy_lo_diff);
if (status != MV_OK)
return MV_FAIL;
DEBUG_DM_TUNING(DEBUG_LEVEL_INFO,
("vw_sphy_lo_diff %d, vw_sphy_hi_diff %d\n",
vw_sphy_lo_diff, vw_sphy_hi_diff));
/* dm is the strongest signal */
if ((vw_sphy_hi_diff >= 0) &&
(vw_sphy_lo_diff >= 0)) {
dm_status[subphy] = LOCKED;
} else if ((vw_sphy_hi_diff >= 0) &&
(vw_sphy_lo_diff < 0) &&
(loop == 0)) { /* update dm only */
ddr3_tip_bus_read(0, 0, ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
PBS_TX_PHY_REG(cs, dm_pad), &dm_pbs);
x = -vw_sphy_lo_diff; /* get positive x */
a = (unsigned int)x * PBS_VAL_FACTOR;
b = dm_lambda[subphy];
if (round_div(a, b, &c) != MV_OK)
return MV_FAIL;
dm_pbs += (u32)c;
dm_pbs = (dm_pbs > MAX_PBS_NUM) ? MAX_PBS_NUM : dm_pbs;
ddr3_tip_bus_write(0, ACCESS_TYPE_UNICAST, 0, ACCESS_TYPE_UNICAST,
subphy, DDR_PHY_DATA,
PBS_TX_PHY_REG(cs, dm_pad), dm_pbs);
} else if ((vw_sphy_hi_diff < 0) &&
(vw_sphy_lo_diff >= 0) &&
(loop == 0)) { /* update dq and c_opt */
max_pbs = 0;
for (dq = 0; dq < BUS_WIDTH_IN_BITS; dq++) {
idx = dq + subphy * BUS_WIDTH_IN_BITS;
pad = dq_map_table[idx];
ddr3_tip_bus_read(0, 0, ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
PBS_TX_PHY_REG(cs, pad), &reg_val);
dq_pbs[dq] = reg_val;
x = -vw_sphy_hi_diff; /* get positive x */
a = (unsigned int)x * PBS_VAL_FACTOR;
b = pbs_tap_factor[0][subphy][dq];
if (round_div(a, b, &c) != MV_OK)
return MV_FAIL;
new_dq_pbs[dq] = dq_pbs[dq] + (u32)c;
if (max_pbs < new_dq_pbs[dq])
max_pbs = new_dq_pbs[dq];
}
dq_pbs_diff = (max_pbs > MAX_PBS_NUM) ? (max_pbs - MAX_PBS_NUM) : 0;
for (dq = 0; dq < BUS_WIDTH_IN_BITS; dq++) {
idx = dq + subphy * BUS_WIDTH_IN_BITS;
reg_val = new_dq_pbs[dq] - dq_pbs_diff;
if (reg_val < 0) {
DEBUG_DM_TUNING(DEBUG_LEVEL_ERROR,
("unexpected negative value found\n"));
return MV_FAIL;
}
pad = dq_map_table[idx];
ddr3_tip_bus_write(0, ACCESS_TYPE_UNICAST, 0,
ACCESS_TYPE_UNICAST, subphy,
DDR_PHY_DATA,
PBS_TX_PHY_REG(cs, pad),
reg_val);
}
a = dm_lambda[subphy];
b = dq_pbs_diff * PBS_VAL_FACTOR;
if (b > 0) {
if (round_div(a, b, &c) != MV_OK)
return MV_FAIL;
dq_pbs_diff = (u32)c;
}
x = (int)ctx_vector[subphy];
if (x < 0) {
DEBUG_DM_TUNING(DEBUG_LEVEL_ERROR,
("unexpected negative value found\n"));
return MV_FAIL;
}
y = (int)dq_pbs_diff;
if (y < 0) {
DEBUG_DM_TUNING(DEBUG_LEVEL_ERROR,
("unexpected negative value found\n"));
return MV_FAIL;
}
x += (y + vw_sphy_hi_diff) / 2;
x %= ADLL_TAPS_PER_PERIOD;
ctx_vector[subphy] = (u32)x;
} else if (((vw_sphy_hi_diff < 0) && (vw_sphy_lo_diff < 0)) ||
(loop == 1)) { /* dm is the weakest signal */
/* update dq and c_opt */
dm_status[subphy] = LOCKED;
byte_center = (vw_sphy_lo_lmt[subphy] + vw_sphy_hi_lmt[subphy]) / 2;
x = (int)byte_center;
if (x < 0) {
DEBUG_DM_TUNING(DEBUG_LEVEL_ERROR,
("unexpected negative value found\n"));
return MV_FAIL;
}
x += (vw_sphy_hi_diff - vw_sphy_lo_diff) / 2;
if (x < 0) {
DEBUG_DM_TUNING(DEBUG_LEVEL_ERROR,
("unexpected negative value found\n"));
return MV_FAIL;
}
dm_center = (u32)x;
if (byte_center > dm_center) {
max_pbs = 0;
for (dq = 0; dq < BUS_WIDTH_IN_BITS; dq++) {
pad = dq_map_table[dq + subphy * BUS_WIDTH_IN_BITS];
ddr3_tip_bus_read(0, 0, ACCESS_TYPE_UNICAST,
subphy, DDR_PHY_DATA,
PBS_TX_PHY_REG(cs, pad),
&reg_val);
dq_pbs[dq] = reg_val;
a = (byte_center - dm_center) * PBS_VAL_FACTOR;
b = pbs_tap_factor[0][subphy][dq];
if (round_div(a, b, &c) != MV_OK)
return MV_FAIL;
new_dq_pbs[dq] = dq_pbs[dq] + (u32)c;
if (max_pbs < new_dq_pbs[dq])
max_pbs = new_dq_pbs[dq];
}
dq_pbs_diff = (max_pbs > MAX_PBS_NUM) ? (max_pbs - MAX_PBS_NUM) : 0;
for (int dq = 0; dq < BUS_WIDTH_IN_BITS; dq++) {
idx = dq + subphy * BUS_WIDTH_IN_BITS;
pad = dq_map_table[idx];
reg_val = new_dq_pbs[dq] - dq_pbs_diff;
if (reg_val < 0) {
DEBUG_DM_TUNING(DEBUG_LEVEL_ERROR,
("unexpected negative value found\n"));
return MV_FAIL;
}
ddr3_tip_bus_write(0, ACCESS_TYPE_UNICAST, 0,
ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
PBS_TX_PHY_REG(cs, pad),
reg_val);
}
ctx_vector[subphy] = dm_center % ADLL_TAPS_PER_PERIOD;
} else {
ddr3_tip_bus_read(0, 0, ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
PBS_TX_PHY_REG(cs, dm_pad), &dm_pbs);
a = (dm_center - byte_center) * PBS_VAL_FACTOR;
b = dm_lambda[subphy];
if (round_div(a, b, &c) != MV_OK)
return MV_FAIL;
dm_pbs += (u32)c;
ddr3_tip_bus_write(0, ACCESS_TYPE_UNICAST, 0,
ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
PBS_TX_PHY_REG(cs, dm_pad), dm_pbs);
}
} else {
/* below is the check whether dm signal per subphy converged or not */
}
}
}
for (subphy = 0; subphy < subphy_max; subphy++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy);
ddr3_tip_bus_write(0, ACCESS_TYPE_UNICAST, 0, ACCESS_TYPE_UNICAST, subphy, DDR_PHY_DATA,
CTX_PHY_REG(cs), ctx_vector[subphy]);
}
for (subphy = 0; subphy < subphy_max; subphy++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, subphy);
if (dm_status[subphy] != LOCKED) {
DEBUG_DM_TUNING(DEBUG_LEVEL_ERROR,
("no convergence for dm signal[%u] found\n", subphy));
return MV_FAIL;
}
}
return MV_OK;
}
void refresh(void)
{
u32 data_read[MAX_INTERFACE_NUM];
ddr3_tip_if_read(0, ACCESS_TYPE_UNICAST, 0, ODPG_DATA_CTRL_REG, data_read, MASK_ALL_BITS);
/* Refresh Command for CS0*/
ddr3_tip_if_write(0, ACCESS_TYPE_UNICAST, 0, ODPG_DATA_CTRL_REG, (0 << 26), (3 << 26));
ddr3_tip_if_write(0, ACCESS_TYPE_UNICAST, 0, SDRAM_OP_REG, 0xe02, 0xf1f);
if (ddr3_tip_if_polling(0, ACCESS_TYPE_UNICAST, 0, 0, 0x1f, SDRAM_OP_REG, MAX_POLLING_ITERATIONS) != MV_OK)
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("DDR3 poll failed"));
/* Refresh Command for CS1*/
ddr3_tip_if_write(0, ACCESS_TYPE_UNICAST, 0, ODPG_DATA_CTRL_REG, (1 << 26), (3 << 26));
ddr3_tip_if_write(0, ACCESS_TYPE_UNICAST, 0, SDRAM_OP_REG, 0xd02, 0xf1f);
if (ddr3_tip_if_polling(0, ACCESS_TYPE_UNICAST, 0, 0, 0x1f, SDRAM_OP_REG, MAX_POLLING_ITERATIONS) != MV_OK)
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("DDR3 poll failed"));
/* Restore Register*/
ddr3_tip_if_write(0, ACCESS_TYPE_UNICAST, 0, ODPG_DATA_CTRL_REG, data_read[0] , MASK_ALL_BITS);
}
#endif /* CONFIG_DDR4 */