mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-12 21:28:58 +00:00
edf0e2524a
Previously if we >=4G of memory and !CONFIG_PHYS_64BIT we'd report an error and hang. Instead of doing that since DDR is mapped in the lowest priority LAWs we setup the DDR controller and the max amount of memory we report back is what we can map (CONFIG_MAX_MEM_MAPPED) Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Acked-by: Becky Bruce <beckyb@kernel.crashing.org>
521 lines
14 KiB
C
521 lines
14 KiB
C
/*
|
|
* Copyright 2008 Freescale Semiconductor, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* Version 2 as published by the Free Software Foundation.
|
|
*/
|
|
|
|
/*
|
|
* Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
|
|
* Based on code from spd_sdram.c
|
|
* Author: James Yang [at freescale.com]
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/fsl_ddr_sdram.h>
|
|
|
|
#include "ddr.h"
|
|
|
|
extern void fsl_ddr_set_lawbar(
|
|
const common_timing_params_t *memctl_common_params,
|
|
unsigned int memctl_interleaved,
|
|
unsigned int ctrl_num);
|
|
|
|
/* processor specific function */
|
|
extern void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
|
|
unsigned int ctrl_num);
|
|
|
|
/* Board-specific functions defined in each board's ddr.c */
|
|
extern void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
|
|
unsigned int ctrl_num);
|
|
|
|
/*
|
|
* ASSUMPTIONS:
|
|
* - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
|
|
* - Same memory data bus width on all controllers
|
|
*
|
|
* NOTES:
|
|
*
|
|
* The memory controller and associated documentation use confusing
|
|
* terminology when referring to the orgranization of DRAM.
|
|
*
|
|
* Here is a terminology translation table:
|
|
*
|
|
* memory controller/documention |industry |this code |signals
|
|
* -------------------------------|-----------|-----------|-----------------
|
|
* physical bank/bank |rank |rank |chip select (CS)
|
|
* logical bank/sub-bank |bank |bank |bank address (BA)
|
|
* page/row |row |page |row address
|
|
* ??? |column |column |column address
|
|
*
|
|
* The naming confusion is further exacerbated by the descriptions of the
|
|
* memory controller interleaving feature, where accesses are interleaved
|
|
* _BETWEEN_ two seperate memory controllers. This is configured only in
|
|
* CS0_CONFIG[INTLV_CTL] of each memory controller.
|
|
*
|
|
* memory controller documentation | number of chip selects
|
|
* | per memory controller supported
|
|
* --------------------------------|-----------------------------------------
|
|
* cache line interleaving | 1 (CS0 only)
|
|
* page interleaving | 1 (CS0 only)
|
|
* bank interleaving | 1 (CS0 only)
|
|
* superbank interleraving | depends on bank (chip select)
|
|
* | interleraving [rank interleaving]
|
|
* | mode used on every memory controller
|
|
*
|
|
* Even further confusing is the existence of the interleaving feature
|
|
* _WITHIN_ each memory controller. The feature is referred to in
|
|
* documentation as chip select interleaving or bank interleaving,
|
|
* although it is configured in the DDR_SDRAM_CFG field.
|
|
*
|
|
* Name of field | documentation name | this code
|
|
* -----------------------------|-----------------------|------------------
|
|
* DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving
|
|
* | interleaving
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
const char *step_string_tbl[] = {
|
|
"STEP_GET_SPD",
|
|
"STEP_COMPUTE_DIMM_PARMS",
|
|
"STEP_COMPUTE_COMMON_PARMS",
|
|
"STEP_GATHER_OPTS",
|
|
"STEP_ASSIGN_ADDRESSES",
|
|
"STEP_COMPUTE_REGS",
|
|
"STEP_PROGRAM_REGS",
|
|
"STEP_ALL"
|
|
};
|
|
|
|
const char * step_to_string(unsigned int step) {
|
|
|
|
unsigned int s = __ilog2(step);
|
|
|
|
if ((1 << s) != step)
|
|
return step_string_tbl[7];
|
|
|
|
return step_string_tbl[s];
|
|
}
|
|
#endif
|
|
|
|
int step_assign_addresses(fsl_ddr_info_t *pinfo,
|
|
unsigned int dbw_cap_adj[],
|
|
unsigned int *memctl_interleaving,
|
|
unsigned int *rank_interleaving)
|
|
{
|
|
int i, j;
|
|
|
|
/*
|
|
* If a reduced data width is requested, but the SPD
|
|
* specifies a physically wider device, adjust the
|
|
* computed dimm capacities accordingly before
|
|
* assigning addresses.
|
|
*/
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
unsigned int found = 0;
|
|
|
|
switch (pinfo->memctl_opts[i].data_bus_width) {
|
|
case 2:
|
|
/* 16-bit */
|
|
printf("can't handle 16-bit mode yet\n");
|
|
break;
|
|
|
|
case 1:
|
|
/* 32-bit */
|
|
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
|
|
unsigned int dw;
|
|
dw = pinfo->dimm_params[i][j].data_width;
|
|
if (pinfo->dimm_params[i][j].n_ranks
|
|
&& (dw == 72 || dw == 64)) {
|
|
/*
|
|
* FIXME: can't really do it
|
|
* like this because this just
|
|
* further reduces the memory
|
|
*/
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (found) {
|
|
dbw_cap_adj[i] = 1;
|
|
}
|
|
break;
|
|
|
|
case 0:
|
|
/* 64-bit */
|
|
break;
|
|
|
|
default:
|
|
printf("unexpected data bus width "
|
|
"specified controller %u\n", i);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if all controllers are configured for memory
|
|
* controller interleaving.
|
|
*/
|
|
j = 0;
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
if (pinfo->memctl_opts[i].memctl_interleaving) {
|
|
j++;
|
|
}
|
|
}
|
|
if (j == 2) {
|
|
*memctl_interleaving = 1;
|
|
|
|
printf("\nMemory controller interleaving enabled: ");
|
|
|
|
switch (pinfo->memctl_opts[0].memctl_interleaving_mode) {
|
|
case FSL_DDR_CACHE_LINE_INTERLEAVING:
|
|
printf("Cache-line interleaving!\n");
|
|
break;
|
|
case FSL_DDR_PAGE_INTERLEAVING:
|
|
printf("Page interleaving!\n");
|
|
break;
|
|
case FSL_DDR_BANK_INTERLEAVING:
|
|
printf("Bank interleaving!\n");
|
|
break;
|
|
case FSL_DDR_SUPERBANK_INTERLEAVING:
|
|
printf("Super bank interleaving\n");
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check that all controllers are rank interleaving. */
|
|
j = 0;
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
if (pinfo->memctl_opts[i].ba_intlv_ctl) {
|
|
j++;
|
|
}
|
|
}
|
|
if (j == 2) {
|
|
*rank_interleaving = 1;
|
|
|
|
printf("Bank(chip-select) interleaving enabled: ");
|
|
|
|
switch (pinfo->memctl_opts[0].ba_intlv_ctl &
|
|
FSL_DDR_CS0_CS1_CS2_CS3) {
|
|
case FSL_DDR_CS0_CS1_CS2_CS3:
|
|
printf("CS0+CS1+CS2+CS3\n");
|
|
break;
|
|
case FSL_DDR_CS0_CS1:
|
|
printf("CS0+CS1\n");
|
|
break;
|
|
case FSL_DDR_CS2_CS3:
|
|
printf("CS2+CS3\n");
|
|
break;
|
|
case FSL_DDR_CS0_CS1_AND_CS2_CS3:
|
|
printf("CS0+CS1 and CS2+CS3\n");
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (*memctl_interleaving) {
|
|
phys_addr_t addr;
|
|
phys_size_t total_mem_per_ctlr = 0;
|
|
|
|
/*
|
|
* If interleaving between memory controllers,
|
|
* make each controller start at a base address
|
|
* of 0.
|
|
*
|
|
* Also, if bank interleaving (chip select
|
|
* interleaving) is enabled on each memory
|
|
* controller, CS0 needs to be programmed to
|
|
* cover the entire memory range on that memory
|
|
* controller
|
|
*
|
|
* Bank interleaving also implies that each
|
|
* addressed chip select is identical in size.
|
|
*/
|
|
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
addr = 0;
|
|
pinfo->common_timing_params[i].base_address =
|
|
(phys_addr_t)addr;
|
|
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
|
|
unsigned long long cap
|
|
= pinfo->dimm_params[i][j].capacity;
|
|
|
|
pinfo->dimm_params[i][j].base_address = addr;
|
|
addr += (phys_addr_t)(cap >> dbw_cap_adj[i]);
|
|
total_mem_per_ctlr += cap >> dbw_cap_adj[i];
|
|
}
|
|
}
|
|
pinfo->common_timing_params[0].total_mem = total_mem_per_ctlr;
|
|
} else {
|
|
/*
|
|
* Simple linear assignment if memory
|
|
* controllers are not interleaved.
|
|
*/
|
|
phys_size_t cur_memsize = 0;
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
phys_size_t total_mem_per_ctlr = 0;
|
|
pinfo->common_timing_params[i].base_address =
|
|
(phys_addr_t)cur_memsize;
|
|
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
|
|
/* Compute DIMM base addresses. */
|
|
unsigned long long cap =
|
|
pinfo->dimm_params[i][j].capacity;
|
|
|
|
pinfo->dimm_params[i][j].base_address =
|
|
(phys_addr_t)cur_memsize;
|
|
cur_memsize += cap >> dbw_cap_adj[i];
|
|
total_mem_per_ctlr += cap >> dbw_cap_adj[i];
|
|
}
|
|
pinfo->common_timing_params[i].total_mem =
|
|
total_mem_per_ctlr;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
phys_size_t
|
|
fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step)
|
|
{
|
|
unsigned int i, j;
|
|
unsigned int all_controllers_memctl_interleaving = 0;
|
|
unsigned int all_controllers_rank_interleaving = 0;
|
|
phys_size_t total_mem = 0;
|
|
|
|
fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
|
|
common_timing_params_t *timing_params = pinfo->common_timing_params;
|
|
|
|
/* data bus width capacity adjust shift amount */
|
|
unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
|
|
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
dbw_capacity_adjust[i] = 0;
|
|
}
|
|
|
|
debug("starting at step %u (%s)\n",
|
|
start_step, step_to_string(start_step));
|
|
|
|
switch (start_step) {
|
|
case STEP_GET_SPD:
|
|
/* STEP 1: Gather all DIMM SPD data */
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i);
|
|
}
|
|
|
|
case STEP_COMPUTE_DIMM_PARMS:
|
|
/* STEP 2: Compute DIMM parameters from SPD data */
|
|
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
|
|
unsigned int retval;
|
|
generic_spd_eeprom_t *spd =
|
|
&(pinfo->spd_installed_dimms[i][j]);
|
|
dimm_params_t *pdimm =
|
|
&(pinfo->dimm_params[i][j]);
|
|
|
|
retval = compute_dimm_parameters(spd, pdimm, i);
|
|
if (retval == 2) {
|
|
printf("Error: compute_dimm_parameters"
|
|
" non-zero returned FATAL value "
|
|
"for memctl=%u dimm=%u\n", i, j);
|
|
return 0;
|
|
}
|
|
if (retval) {
|
|
debug("Warning: compute_dimm_parameters"
|
|
" non-zero return value for memctl=%u "
|
|
"dimm=%u\n", i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
case STEP_COMPUTE_COMMON_PARMS:
|
|
/*
|
|
* STEP 3: Compute a common set of timing parameters
|
|
* suitable for all of the DIMMs on each memory controller
|
|
*/
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
debug("Computing lowest common DIMM"
|
|
" parameters for memctl=%u\n", i);
|
|
compute_lowest_common_dimm_parameters(
|
|
pinfo->dimm_params[i],
|
|
&timing_params[i],
|
|
CONFIG_DIMM_SLOTS_PER_CTLR);
|
|
}
|
|
|
|
case STEP_GATHER_OPTS:
|
|
/* STEP 4: Gather configuration requirements from user */
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
debug("Reloading memory controller "
|
|
"configuration options for memctl=%u\n", i);
|
|
/*
|
|
* This "reloads" the memory controller options
|
|
* to defaults. If the user "edits" an option,
|
|
* next_step points to the step after this,
|
|
* which is currently STEP_ASSIGN_ADDRESSES.
|
|
*/
|
|
populate_memctl_options(
|
|
timing_params[i].all_DIMMs_registered,
|
|
&pinfo->memctl_opts[i],
|
|
pinfo->dimm_params[i], i);
|
|
}
|
|
|
|
case STEP_ASSIGN_ADDRESSES:
|
|
/* STEP 5: Assign addresses to chip selects */
|
|
step_assign_addresses(pinfo,
|
|
dbw_capacity_adjust,
|
|
&all_controllers_memctl_interleaving,
|
|
&all_controllers_rank_interleaving);
|
|
|
|
case STEP_COMPUTE_REGS:
|
|
/* STEP 6: compute controller register values */
|
|
debug("FSL Memory ctrl cg register computation\n");
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
if (timing_params[i].ndimms_present == 0) {
|
|
memset(&ddr_reg[i], 0,
|
|
sizeof(fsl_ddr_cfg_regs_t));
|
|
continue;
|
|
}
|
|
|
|
compute_fsl_memctl_config_regs(
|
|
&pinfo->memctl_opts[i],
|
|
&ddr_reg[i], &timing_params[i],
|
|
pinfo->dimm_params[i],
|
|
dbw_capacity_adjust[i]);
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Compute the total amount of memory. */
|
|
|
|
/*
|
|
* If bank interleaving but NOT memory controller interleaving
|
|
* CS_BNDS describe the quantity of memory on each memory
|
|
* controller, so the total is the sum across.
|
|
*/
|
|
if (!all_controllers_memctl_interleaving
|
|
&& all_controllers_rank_interleaving) {
|
|
total_mem = 0;
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
total_mem += timing_params[i].total_mem;
|
|
}
|
|
|
|
} else {
|
|
/*
|
|
* Compute the amount of memory available just by
|
|
* looking for the highest valid CSn_BNDS value.
|
|
* This allows us to also experiment with using
|
|
* only CS0 when using dual-rank DIMMs.
|
|
*/
|
|
unsigned int max_end = 0;
|
|
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
|
|
fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
|
|
if (reg->cs[j].config & 0x80000000) {
|
|
unsigned int end;
|
|
end = reg->cs[j].bnds & 0xFFF;
|
|
if (end > max_end) {
|
|
max_end = end;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !defined(CONFIG_PHYS_64BIT)
|
|
/* Check for 4G or more with a 32-bit phys_addr_t. Bad. */
|
|
if (max_end >= 0xff) {
|
|
printf("This U-Boot only supports < 4G of DDR\n");
|
|
printf("You could rebuild it with CONFIG_PHYS_64BIT\n");
|
|
return CONFIG_MAX_MEM_MAPPED;
|
|
}
|
|
#endif
|
|
|
|
total_mem = 1 + (((unsigned long long)max_end << 24ULL)
|
|
| 0xFFFFFFULL);
|
|
}
|
|
|
|
return total_mem;
|
|
}
|
|
|
|
/*
|
|
* fsl_ddr_sdram() -- this is the main function to be called by
|
|
* initdram() in the board file.
|
|
*
|
|
* It returns amount of memory configured in bytes.
|
|
*/
|
|
phys_size_t fsl_ddr_sdram(void)
|
|
{
|
|
unsigned int i;
|
|
unsigned int memctl_interleaved;
|
|
phys_size_t total_memory;
|
|
fsl_ddr_info_t info;
|
|
|
|
/* Reset info structure. */
|
|
memset(&info, 0, sizeof(fsl_ddr_info_t));
|
|
|
|
/* Compute it once normally. */
|
|
total_memory = fsl_ddr_compute(&info, STEP_GET_SPD);
|
|
|
|
/* Check for memory controller interleaving. */
|
|
memctl_interleaved = 0;
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
memctl_interleaved +=
|
|
info.memctl_opts[i].memctl_interleaving;
|
|
}
|
|
|
|
if (memctl_interleaved) {
|
|
if (memctl_interleaved == CONFIG_NUM_DDR_CONTROLLERS) {
|
|
debug("memctl interleaving\n");
|
|
/*
|
|
* Change the meaning of memctl_interleaved
|
|
* to be "boolean".
|
|
*/
|
|
memctl_interleaved = 1;
|
|
} else {
|
|
printf("Warning: memctl interleaving not "
|
|
"properly configured on all controllers\n");
|
|
memctl_interleaved = 0;
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++)
|
|
info.memctl_opts[i].memctl_interleaving = 0;
|
|
debug("Recomputing with memctl_interleaving off.\n");
|
|
total_memory = fsl_ddr_compute(&info,
|
|
STEP_ASSIGN_ADDRESSES);
|
|
}
|
|
}
|
|
|
|
/* Program configuration registers. */
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
debug("Programming controller %u\n", i);
|
|
if (info.common_timing_params[i].ndimms_present == 0) {
|
|
debug("No dimms present on controller %u; "
|
|
"skipping programming\n", i);
|
|
continue;
|
|
}
|
|
|
|
fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i);
|
|
}
|
|
|
|
if (memctl_interleaved) {
|
|
const unsigned int ctrl_num = 0;
|
|
|
|
/* Only set LAWBAR1 if memory controller interleaving is on. */
|
|
fsl_ddr_set_lawbar(&info.common_timing_params[0],
|
|
memctl_interleaved, ctrl_num);
|
|
} else {
|
|
/*
|
|
* Memory controller interleaving is NOT on;
|
|
* set each lawbar individually.
|
|
*/
|
|
for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
|
|
fsl_ddr_set_lawbar(&info.common_timing_params[i],
|
|
0, i);
|
|
}
|
|
}
|
|
|
|
debug("total_memory = %llu\n", (u64)total_memory);
|
|
|
|
return total_memory;
|
|
}
|