mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-14 08:57:58 +00:00
51014aabc2
So far we don't allow entries to change size when repacking. But this is not very useful since it is common for entries to change size after an updated binary is built, etc. Add support for this, respecting the original offset/size/alignment constraints of the image layout. For this to work the original image must have been created with the 'allow-repack' property. This does not support entry types with sub-entries such as files and CBFS, but it does support sections. Signed-off-by: Simon Glass <sjg@chromium.org>
326 lines
11 KiB
Python
326 lines
11 KiB
Python
# SPDX-License-Identifier: GPL-2.0+
|
|
# Copyright (c) 2016 Google, Inc
|
|
# Written by Simon Glass <sjg@chromium.org>
|
|
#
|
|
# Class for an image, the output of binman
|
|
#
|
|
|
|
from __future__ import print_function
|
|
|
|
from collections import OrderedDict
|
|
import fnmatch
|
|
from operator import attrgetter
|
|
import os
|
|
import re
|
|
import sys
|
|
|
|
from entry import Entry
|
|
from etype import fdtmap
|
|
from etype import image_header
|
|
from etype import section
|
|
import fdt
|
|
import fdt_util
|
|
import tools
|
|
import tout
|
|
|
|
class Image(section.Entry_section):
|
|
"""A Image, representing an output from binman
|
|
|
|
An image is comprised of a collection of entries each containing binary
|
|
data. The image size must be large enough to hold all of this data.
|
|
|
|
This class implements the various operations needed for images.
|
|
|
|
Attributes:
|
|
filename: Output filename for image
|
|
image_node: Name of node containing the description for this image
|
|
fdtmap_dtb: Fdt object for the fdtmap when loading from a file
|
|
fdtmap_data: Contents of the fdtmap when loading from a file
|
|
allow_repack: True to add properties to allow the image to be safely
|
|
repacked later
|
|
|
|
Args:
|
|
copy_to_orig: Copy offset/size to orig_offset/orig_size after reading
|
|
from the device tree
|
|
test: True if this is being called from a test of Images. This this case
|
|
there is no device tree defining the structure of the section, so
|
|
we create a section manually.
|
|
"""
|
|
def __init__(self, name, node, copy_to_orig=True, test=False):
|
|
section.Entry_section.__init__(self, None, 'section', node, test=test)
|
|
self.copy_to_orig = copy_to_orig
|
|
self.name = 'main-section'
|
|
self.image_name = name
|
|
self._filename = '%s.bin' % self.image_name
|
|
self.fdtmap_dtb = None
|
|
self.fdtmap_data = None
|
|
self.allow_repack = False
|
|
if not test:
|
|
self.ReadNode()
|
|
|
|
def ReadNode(self):
|
|
section.Entry_section.ReadNode(self)
|
|
filename = fdt_util.GetString(self._node, 'filename')
|
|
if filename:
|
|
self._filename = filename
|
|
self.allow_repack = fdt_util.GetBool(self._node, 'allow-repack')
|
|
|
|
@classmethod
|
|
def FromFile(cls, fname):
|
|
"""Convert an image file into an Image for use in binman
|
|
|
|
Args:
|
|
fname: Filename of image file to read
|
|
|
|
Returns:
|
|
Image object on success
|
|
|
|
Raises:
|
|
ValueError if something goes wrong
|
|
"""
|
|
data = tools.ReadFile(fname)
|
|
size = len(data)
|
|
|
|
# First look for an image header
|
|
pos = image_header.LocateHeaderOffset(data)
|
|
if pos is None:
|
|
# Look for the FDT map
|
|
pos = fdtmap.LocateFdtmap(data)
|
|
if pos is None:
|
|
raise ValueError('Cannot find FDT map in image')
|
|
|
|
# We don't know the FDT size, so check its header first
|
|
probe_dtb = fdt.Fdt.FromData(
|
|
data[pos + fdtmap.FDTMAP_HDR_LEN:pos + 256])
|
|
dtb_size = probe_dtb.GetFdtObj().totalsize()
|
|
fdtmap_data = data[pos:pos + dtb_size + fdtmap.FDTMAP_HDR_LEN]
|
|
fdt_data = fdtmap_data[fdtmap.FDTMAP_HDR_LEN:]
|
|
out_fname = tools.GetOutputFilename('fdtmap.in.dtb')
|
|
tools.WriteFile(out_fname, fdt_data)
|
|
dtb = fdt.Fdt(out_fname)
|
|
dtb.Scan()
|
|
|
|
# Return an Image with the associated nodes
|
|
root = dtb.GetRoot()
|
|
image = Image('image', root, copy_to_orig=False)
|
|
|
|
image.image_node = fdt_util.GetString(root, 'image-node', 'image')
|
|
image.fdtmap_dtb = dtb
|
|
image.fdtmap_data = fdtmap_data
|
|
image._data = data
|
|
image._filename = fname
|
|
image.image_name, _ = os.path.splitext(fname)
|
|
return image
|
|
|
|
def Raise(self, msg):
|
|
"""Convenience function to raise an error referencing an image"""
|
|
raise ValueError("Image '%s': %s" % (self._node.path, msg))
|
|
|
|
def PackEntries(self):
|
|
"""Pack all entries into the image"""
|
|
section.Entry_section.Pack(self, 0)
|
|
|
|
def SetImagePos(self):
|
|
# This first section in the image so it starts at 0
|
|
section.Entry_section.SetImagePos(self, 0)
|
|
|
|
def ProcessEntryContents(self):
|
|
"""Call the ProcessContents() method for each entry
|
|
|
|
This is intended to adjust the contents as needed by the entry type.
|
|
|
|
Returns:
|
|
True if the new data size is OK, False if expansion is needed
|
|
"""
|
|
sizes_ok = True
|
|
for entry in self._entries.values():
|
|
if not entry.ProcessContents():
|
|
sizes_ok = False
|
|
tout.Debug("Entry '%s' size change" % self._node.path)
|
|
return sizes_ok
|
|
|
|
def WriteSymbols(self):
|
|
"""Write symbol values into binary files for access at run time"""
|
|
section.Entry_section.WriteSymbols(self, self)
|
|
|
|
def BuildImage(self):
|
|
"""Write the image to a file"""
|
|
fname = tools.GetOutputFilename(self._filename)
|
|
tout.Info("Writing image to '%s'" % fname)
|
|
with open(fname, 'wb') as fd:
|
|
data = self.GetData()
|
|
fd.write(data)
|
|
tout.Info("Wrote %#x bytes" % len(data))
|
|
|
|
def WriteMap(self):
|
|
"""Write a map of the image to a .map file
|
|
|
|
Returns:
|
|
Filename of map file written
|
|
"""
|
|
filename = '%s.map' % self.image_name
|
|
fname = tools.GetOutputFilename(filename)
|
|
with open(fname, 'w') as fd:
|
|
print('%8s %8s %8s %s' % ('ImagePos', 'Offset', 'Size', 'Name'),
|
|
file=fd)
|
|
section.Entry_section.WriteMap(self, fd, 0)
|
|
return fname
|
|
|
|
def BuildEntryList(self):
|
|
"""List the files in an image
|
|
|
|
Returns:
|
|
List of entry.EntryInfo objects describing all entries in the image
|
|
"""
|
|
entries = []
|
|
self.ListEntries(entries, 0)
|
|
return entries
|
|
|
|
def FindEntryPath(self, entry_path):
|
|
"""Find an entry at a given path in the image
|
|
|
|
Args:
|
|
entry_path: Path to entry (e.g. /ro-section/u-boot')
|
|
|
|
Returns:
|
|
Entry object corresponding to that past
|
|
|
|
Raises:
|
|
ValueError if no entry found
|
|
"""
|
|
parts = entry_path.split('/')
|
|
entries = self.GetEntries()
|
|
parent = '/'
|
|
for part in parts:
|
|
entry = entries.get(part)
|
|
if not entry:
|
|
raise ValueError("Entry '%s' not found in '%s'" %
|
|
(part, parent))
|
|
parent = entry.GetPath()
|
|
entries = entry.GetEntries()
|
|
return entry
|
|
|
|
def ReadData(self, decomp=True):
|
|
return self._data
|
|
|
|
def GetListEntries(self, entry_paths):
|
|
"""List the entries in an image
|
|
|
|
This decodes the supplied image and returns a list of entries from that
|
|
image, preceded by a header.
|
|
|
|
Args:
|
|
entry_paths: List of paths to match (each can have wildcards). Only
|
|
entries whose names match one of these paths will be printed
|
|
|
|
Returns:
|
|
String error message if something went wrong, otherwise
|
|
3-Tuple:
|
|
List of EntryInfo objects
|
|
List of lines, each
|
|
List of text columns, each a string
|
|
List of widths of each column
|
|
"""
|
|
def _EntryToStrings(entry):
|
|
"""Convert an entry to a list of strings, one for each column
|
|
|
|
Args:
|
|
entry: EntryInfo object containing information to output
|
|
|
|
Returns:
|
|
List of strings, one for each field in entry
|
|
"""
|
|
def _AppendHex(val):
|
|
"""Append a hex value, or an empty string if val is None
|
|
|
|
Args:
|
|
val: Integer value, or None if none
|
|
"""
|
|
args.append('' if val is None else '>%x' % val)
|
|
|
|
args = [' ' * entry.indent + entry.name]
|
|
_AppendHex(entry.image_pos)
|
|
_AppendHex(entry.size)
|
|
args.append(entry.etype)
|
|
_AppendHex(entry.offset)
|
|
_AppendHex(entry.uncomp_size)
|
|
return args
|
|
|
|
def _DoLine(lines, line):
|
|
"""Add a line to the output list
|
|
|
|
This adds a line (a list of columns) to the output list. It also updates
|
|
the widths[] array with the maximum width of each column
|
|
|
|
Args:
|
|
lines: List of lines to add to
|
|
line: List of strings, one for each column
|
|
"""
|
|
for i, item in enumerate(line):
|
|
widths[i] = max(widths[i], len(item))
|
|
lines.append(line)
|
|
|
|
def _NameInPaths(fname, entry_paths):
|
|
"""Check if a filename is in a list of wildcarded paths
|
|
|
|
Args:
|
|
fname: Filename to check
|
|
entry_paths: List of wildcarded paths (e.g. ['*dtb*', 'u-boot*',
|
|
'section/u-boot'])
|
|
|
|
Returns:
|
|
True if any wildcard matches the filename (using Unix filename
|
|
pattern matching, not regular expressions)
|
|
False if not
|
|
"""
|
|
for path in entry_paths:
|
|
if fnmatch.fnmatch(fname, path):
|
|
return True
|
|
return False
|
|
|
|
entries = self.BuildEntryList()
|
|
|
|
# This is our list of lines. Each item in the list is a list of strings, one
|
|
# for each column
|
|
lines = []
|
|
HEADER = ['Name', 'Image-pos', 'Size', 'Entry-type', 'Offset',
|
|
'Uncomp-size']
|
|
num_columns = len(HEADER)
|
|
|
|
# This records the width of each column, calculated as the maximum width of
|
|
# all the strings in that column
|
|
widths = [0] * num_columns
|
|
_DoLine(lines, HEADER)
|
|
|
|
# We won't print anything unless it has at least this indent. So at the
|
|
# start we will print nothing, unless a path matches (or there are no
|
|
# entry paths)
|
|
MAX_INDENT = 100
|
|
min_indent = MAX_INDENT
|
|
path_stack = []
|
|
path = ''
|
|
indent = 0
|
|
selected_entries = []
|
|
for entry in entries:
|
|
if entry.indent > indent:
|
|
path_stack.append(path)
|
|
elif entry.indent < indent:
|
|
path_stack.pop()
|
|
if path_stack:
|
|
path = path_stack[-1] + '/' + entry.name
|
|
indent = entry.indent
|
|
|
|
# If there are entry paths to match and we are not looking at a
|
|
# sub-entry of a previously matched entry, we need to check the path
|
|
if entry_paths and indent <= min_indent:
|
|
if _NameInPaths(path[1:], entry_paths):
|
|
# Print this entry and all sub-entries (=higher indent)
|
|
min_indent = indent
|
|
else:
|
|
# Don't print this entry, nor any following entries until we get
|
|
# a path match
|
|
min_indent = MAX_INDENT
|
|
continue
|
|
_DoLine(lines, _EntryToStrings(entry))
|
|
selected_entries.append(entry)
|
|
return selected_entries, lines, widths
|