u-boot/board/anbernic/rgxx3_rk3566/rgxx3-rk3566.c
Chris Morgan 0cc6cbe84d board: rockchip: Add support for new boards to RGxx3
Add support for the Anbernic RG-ARC-D, Anbernic RG-ARC-S, Powkiddy
RK2023, and Powkiddy RGB30 to the Anbernic RGxx3. While the Powkiddy
devices are manufactured by Powkiddy instead of Anbernic,
the hardware is so similar they can all use the same bootloader.

Signed-off-by: Chris Morgan <macromorgan@hotmail.com>
Reviewed-by: Kever Yang <kever.yang@rock-chips.com>
2024-01-19 10:57:36 +08:00

483 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2023 Chris Morgan <macromorgan@hotmail.com>
*/
#include <abuf.h>
#include <adc.h>
#include <asm/io.h>
#include <display.h>
#include <dm.h>
#include <dm/lists.h>
#include <env.h>
#include <fdt_support.h>
#include <linux/delay.h>
#include <mipi_dsi.h>
#include <mmc.h>
#include <panel.h>
#include <pwm.h>
#include <stdlib.h>
#include <video_bridge.h>
#define GPIO0_BASE 0xfdd60000
#define GPIO4_BASE 0xfe770000
#define GPIO_SWPORT_DR_L 0x0000
#define GPIO_SWPORT_DR_H 0x0004
#define GPIO_SWPORT_DDR_L 0x0008
#define GPIO_SWPORT_DDR_H 0x000c
#define GPIO_A0 BIT(0)
#define GPIO_C5 BIT(5)
#define GPIO_C6 BIT(6)
#define GPIO_C7 BIT(7)
#define GPIO_WRITEMASK(bits) ((bits) << 16)
#define DTB_DIR "rockchip/"
struct rg3xx_model {
const u16 adc_value;
const char *board;
const char *board_name;
const char *fdtfile;
const bool detect_panel;
};
enum rgxx3_device_id {
RG353M,
RG353P,
RG353V,
RG503,
RGB30,
RK2023,
RGARCD,
/* Devices with duplicate ADC value */
RG353PS,
RG353VS,
RGARCS,
};
static const struct rg3xx_model rg3xx_model_details[] = {
[RG353M] = {
.adc_value = 517, /* Observed average from device */
.board = "rk3566-anbernic-rg353m",
.board_name = "RG353M",
/* Device is identical to RG353P. */
.fdtfile = DTB_DIR "rk3566-anbernic-rg353p.dtb",
.detect_panel = 1,
},
[RG353P] = {
.adc_value = 860, /* Documented value of 860 */
.board = "rk3566-anbernic-rg353p",
.board_name = "RG353P",
.fdtfile = DTB_DIR "rk3566-anbernic-rg353p.dtb",
.detect_panel = 1,
},
[RG353V] = {
.adc_value = 695, /* Observed average from device */
.board = "rk3566-anbernic-rg353v",
.board_name = "RG353V",
.fdtfile = DTB_DIR "rk3566-anbernic-rg353v.dtb",
.detect_panel = 1,
},
[RG503] = {
.adc_value = 1023, /* Observed average from device */
.board = "rk3566-anbernic-rg503",
.board_name = "RG503",
.fdtfile = DTB_DIR "rk3566-anbernic-rg503.dtb",
.detect_panel = 0,
},
[RGB30] = {
.adc_value = 383, /* Gathered from second hand information */
.board = "rk3566-powkiddy-rgb30",
.board_name = "RGB30",
.fdtfile = DTB_DIR "rk3566-powkiddy-rgb30.dtb",
.detect_panel = 0,
},
[RK2023] = {
.adc_value = 635, /* Observed average from device */
.board = "rk3566-powkiddy-rk2023",
.board_name = "RK2023",
.fdtfile = DTB_DIR "rk3566-powkiddy-rk2023.dtb",
.detect_panel = 0,
},
[RGARCD] = {
.adc_value = 183, /* Observed average from device */
.board = "rk3566-anbernic-rg-arc-d",
.board_name = "Anbernic RG ARC-D",
.fdtfile = DTB_DIR "rk3566-anbernic-rg-arc-d.dtb",
.detect_panel = 0,
},
/* Devices with duplicate ADC value */
[RG353PS] = {
.adc_value = 860, /* Observed average from device */
.board = "rk3566-anbernic-rg353ps",
.board_name = "RG353PS",
.fdtfile = DTB_DIR "rk3566-anbernic-rg353ps.dtb",
.detect_panel = 1,
},
[RG353VS] = {
.adc_value = 695, /* Gathered from second hand information */
.board = "rk3566-anbernic-rg353vs",
.board_name = "RG353VS",
.fdtfile = DTB_DIR "rk3566-anbernic-rg353vs.dtb",
.detect_panel = 1,
},
[RGARCS] = {
.adc_value = 183, /* Observed average from device */
.board = "rk3566-anbernic-rg-arc-s",
.board_name = "Anbernic RG ARC-S",
.fdtfile = DTB_DIR "rk3566-anbernic-rg-arc-s.dtb",
.detect_panel = 0,
},
};
struct rg353_panel {
const u16 id;
const char *panel_compat[2];
};
static const struct rg353_panel rg353_panel_details[] = {
{
.id = 0x3052,
.panel_compat[0] = "anbernic,rg353p-panel",
.panel_compat[1] = "newvision,nv3051d",
},
{
.id = 0x3821,
.panel_compat[0] = "anbernic,rg353v-panel-v2",
.panel_compat[1] = NULL,
},
};
/*
* Start LED very early so user knows device is on. Set color
* to red.
*/
void spl_board_init(void)
{
/* Set GPIO0_C5, GPIO0_C6, and GPIO0_C7 to output. */
writel(GPIO_WRITEMASK(GPIO_C7 | GPIO_C6 | GPIO_C5) | \
(GPIO_C7 | GPIO_C6 | GPIO_C5),
(GPIO0_BASE + GPIO_SWPORT_DDR_H));
/* Set GPIO0_C5 and GPIO_C6 to 0 and GPIO0_C7 to 1. */
writel(GPIO_WRITEMASK(GPIO_C7 | GPIO_C6 | GPIO_C5) | GPIO_C7,
(GPIO0_BASE + GPIO_SWPORT_DR_H));
}
/*
* Buzz the buzzer so the user knows something is going on. Make it
* optional in case PWM is disabled.
*/
void __maybe_unused startup_buzz(void)
{
struct udevice *dev;
int err;
err = uclass_get_device(UCLASS_PWM, 0, &dev);
if (err)
printf("pwm not found\n");
pwm_set_enable(dev, 0, 1);
mdelay(200);
pwm_set_enable(dev, 0, 0);
}
/*
* Provide the bare minimum to identify the panel for the RG353
* series. Since we don't have a working framebuffer device, no
* need to init the panel; just identify it and provide the
* clocks so we know what to set the different clock values to.
*/
static const struct display_timing rg353_default_timing = {
.pixelclock.typ = 24150000,
.hactive.typ = 640,
.hfront_porch.typ = 40,
.hback_porch.typ = 80,
.hsync_len.typ = 2,
.vactive.typ = 480,
.vfront_porch.typ = 18,
.vback_porch.typ = 28,
.vsync_len.typ = 2,
.flags = DISPLAY_FLAGS_HSYNC_HIGH |
DISPLAY_FLAGS_VSYNC_HIGH,
};
static int anbernic_rg353_panel_get_timing(struct udevice *dev,
struct display_timing *timings)
{
memcpy(timings, &rg353_default_timing, sizeof(*timings));
return 0;
}
static int anbernic_rg353_panel_probe(struct udevice *dev)
{
struct mipi_dsi_panel_plat *plat = dev_get_plat(dev);
plat->lanes = 4;
plat->format = MIPI_DSI_FMT_RGB888;
plat->mode_flags = MIPI_DSI_MODE_VIDEO |
MIPI_DSI_MODE_VIDEO_BURST |
MIPI_DSI_MODE_EOT_PACKET |
MIPI_DSI_MODE_LPM;
return 0;
}
static const struct panel_ops anbernic_rg353_panel_ops = {
.get_display_timing = anbernic_rg353_panel_get_timing,
};
U_BOOT_DRIVER(anbernic_rg353_panel) = {
.name = "anbernic_rg353_panel",
.id = UCLASS_PANEL,
.ops = &anbernic_rg353_panel_ops,
.probe = anbernic_rg353_panel_probe,
.plat_auto = sizeof(struct mipi_dsi_panel_plat),
};
int rgxx3_detect_display(void)
{
struct udevice *dev;
struct mipi_dsi_device *dsi;
struct mipi_dsi_panel_plat *mplat;
const struct rg353_panel *panel;
int ret = 0;
int i;
u8 panel_id[2];
/*
* Take panel out of reset status.
* Set GPIO4_A0 to output.
*/
writel(GPIO_WRITEMASK(GPIO_A0) | GPIO_A0,
(GPIO4_BASE + GPIO_SWPORT_DDR_L));
/* Set GPIO4_A0 to 1. */
writel(GPIO_WRITEMASK(GPIO_A0) | GPIO_A0,
(GPIO4_BASE + GPIO_SWPORT_DR_L));
/* Probe the DSI controller. */
ret = uclass_get_device_by_name(UCLASS_VIDEO_BRIDGE,
"dsi@fe060000", &dev);
if (ret) {
printf("DSI host not probed: %d\n", ret);
return ret;
}
/* Probe the DSI panel. */
ret = device_bind_driver_to_node(dev, "anbernic_rg353_panel",
"anbernic_rg353_panel",
dev_ofnode(dev), NULL);
if (ret) {
printf("Failed to probe RG353 panel: %d\n", ret);
return ret;
}
/*
* Attach the DSI controller which will also probe and attach
* the DSIDPHY.
*/
ret = video_bridge_attach(dev);
if (ret) {
printf("Failed to attach DSI controller: %d\n", ret);
return ret;
}
/*
* Get the panel which should have already been probed by the
* video_bridge_attach() function.
*/
ret = uclass_first_device_err(UCLASS_PANEL, &dev);
if (ret) {
printf("Panel device error: %d\n", ret);
return ret;
}
/* Now call the panel via DSI commands to get the panel ID. */
mplat = dev_get_plat(dev);
dsi = mplat->device;
mipi_dsi_set_maximum_return_packet_size(dsi, sizeof(panel_id));
ret = mipi_dsi_dcs_read(dsi, MIPI_DCS_GET_DISPLAY_ID, &panel_id,
sizeof(panel_id));
if (ret < 0) {
printf("Unable to read panel ID: %d\n", ret);
return ret;
}
/* Get the correct panel compatible from the table. */
for (i = 0; i < ARRAY_SIZE(rg353_panel_details); i++) {
if (rg353_panel_details[i].id == ((panel_id[0] << 8) |
panel_id[1])) {
panel = &rg353_panel_details[i];
break;
}
}
if (!panel) {
printf("Unable to identify panel_id %x\n",
(panel_id[0] << 8) | panel_id[1]);
return -EINVAL;
}
env_set("panel", panel->panel_compat[0]);
return 0;
}
/* Detect which Anbernic RGXX3 device we are using so as to load the
* correct devicetree for Linux. Set an environment variable once
* found. The detection depends on the value of ADC channel 1, the
* presence of an eMMC on mmc0, and querying the DSI panel.
*/
int rgxx3_detect_device(void)
{
u32 adc_info;
int ret, i;
int board_id = -ENXIO;
struct mmc *mmc;
ret = adc_channel_single_shot("saradc@fe720000", 1, &adc_info);
if (ret) {
printf("Read SARADC failed with error %d\n", ret);
return ret;
}
/*
* Get the correct device from the table. The ADC value is
* determined by a resistor on ADC channel 0. The hardware
* design calls for no more than a 1% variance on the
* resistor, so assume a +- value of 15 should be enough.
*/
for (i = 0; i < ARRAY_SIZE(rg3xx_model_details); i++) {
u32 adc_min = rg3xx_model_details[i].adc_value - 15;
u32 adc_max = rg3xx_model_details[i].adc_value + 15;
if (adc_min < adc_info && adc_max > adc_info) {
board_id = i;
break;
}
}
/*
* Try to access the eMMC on an RG353V, RG353P, or RG Arc D.
* If it's missing, it's an RG353VS, RG353PS, or RG Arc S.
* Note we could also check for a touchscreen at 0x1a on i2c2.
*/
if (board_id == RG353V || board_id == RG353P || board_id == RGARCD) {
mmc = find_mmc_device(0);
if (mmc) {
ret = mmc_init(mmc);
if (ret) {
if (board_id == RG353V)
board_id = RG353VS;
else if (board_id == RG353P)
board_id = RG353PS;
else
board_id = RGARCS;
}
}
}
if (board_id < 0)
return board_id;
env_set("board", rg3xx_model_details[board_id].board);
env_set("board_name",
rg3xx_model_details[board_id].board_name);
env_set("fdtfile", rg3xx_model_details[board_id].fdtfile);
/* Skip panel detection for when it is not needed. */
if (!rg3xx_model_details[board_id].detect_panel)
return 0;
/* Warn but don't fail for errors in auto-detection of the panel. */
ret = rgxx3_detect_display();
if (ret)
printf("Failed to detect panel type\n");
return 0;
}
int rk_board_late_init(void)
{
int ret;
ret = rgxx3_detect_device();
if (ret) {
printf("Unable to detect device type: %d\n", ret);
return ret;
}
/* Turn off red LED and turn on orange LED. */
writel(GPIO_WRITEMASK(GPIO_C7 | GPIO_C6 | GPIO_C5) | GPIO_C6,
(GPIO0_BASE + GPIO_SWPORT_DR_H));
if (IS_ENABLED(CONFIG_DM_PWM))
startup_buzz();
return 0;
}
int ft_board_setup(void *blob, struct bd_info *bd)
{
const struct rg353_panel *panel = NULL;
int node, ret, i;
char *env;
/* No fixups necessary for the RG503 */
env = env_get("board_name");
if (env && (!strcmp(env, rg3xx_model_details[RG503].board_name)))
return 0;
/* Change the model name of the RG353M */
if (env && (!strcmp(env, rg3xx_model_details[RG353M].board_name)))
fdt_setprop(blob, 0, "model",
rg3xx_model_details[RG353M].board_name,
sizeof(rg3xx_model_details[RG353M].board_name));
env = env_get("panel");
if (!env) {
printf("Can't get panel env\n");
return 0;
}
/*
* Check if the environment variable doesn't equal the panel.
* If it doesn't, update the devicetree to the correct panel.
*/
node = fdt_path_offset(blob, "/dsi@fe060000/panel@0");
if (!(node > 0)) {
printf("Can't find the DSI node\n");
return -ENODEV;
}
ret = fdt_node_check_compatible(blob, node, env);
if (ret < 0)
return -ENODEV;
/* Panels match, return 0. */
if (!ret)
return 0;
/* Panels don't match, search by first compatible value. */
for (i = 0; i < ARRAY_SIZE(rg353_panel_details); i++) {
if (!strcmp(env, rg353_panel_details[i].panel_compat[0])) {
panel = &rg353_panel_details[i];
break;
}
}
if (!panel) {
printf("Unable to identify panel by compat string\n");
return -ENODEV;
}
/* Set the compatible with the auto-detected values */
fdt_setprop_string(blob, node, "compatible", panel->panel_compat[0]);
if (panel->panel_compat[1])
fdt_appendprop_string(blob, node, "compatible",
panel->panel_compat[1]);
return 0;
}