u-boot/drivers/mmc/zynq_sdhci.c
Michal Simek ed99a77b2a mmc: zynq: Sync with upstream DT binding
Versal NET is not in production yet that's why no need to keep backward
compatible with previously used compatible string.

Link: https://lore.kernel.org/r/20230403102551.3763054-2-sai.krishna.potthuri@amd.com
Signed-off-by: Michal Simek <michal.simek@amd.com>
Link: https://lore.kernel.org/r/0d355f4fbaf6a3521d41ee43f17dde2515ff7ab7.1684311766.git.michal.simek@amd.com
2023-06-12 13:24:31 +02:00

1236 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2013 - 2022, Xilinx, Inc.
* (C) Copyright 2022, Advanced Micro Devices, Inc.
*
* Xilinx Zynq SD Host Controller Interface
*/
#include <clk.h>
#include <common.h>
#include <dm.h>
#include <fdtdec.h>
#include <linux/delay.h>
#include "mmc_private.h"
#include <log.h>
#include <reset.h>
#include <asm/arch/sys_proto.h>
#include <dm/device_compat.h>
#include <linux/err.h>
#include <linux/libfdt.h>
#include <linux/iopoll.h>
#include <asm/types.h>
#include <linux/math64.h>
#include <asm/cache.h>
#include <malloc.h>
#include <sdhci.h>
#include <zynqmp_firmware.h>
#define SDHCI_ARASAN_ITAPDLY_REGISTER 0xF0F8
#define SDHCI_ARASAN_ITAPDLY_SEL_MASK GENMASK(7, 0)
#define SDHCI_ARASAN_OTAPDLY_REGISTER 0xF0FC
#define SDHCI_ARASAN_OTAPDLY_SEL_MASK GENMASK(5, 0)
#define SDHCI_ITAPDLY_CHGWIN BIT(9)
#define SDHCI_ITAPDLY_ENABLE BIT(8)
#define SDHCI_OTAPDLY_ENABLE BIT(6)
#define SDHCI_TUNING_LOOP_COUNT 40
#define MMC_BANK2 0x2
#define SD_DLL_CTRL 0xFF180358
#define SD_ITAP_DLY 0xFF180314
#define SD_OTAP_DLY 0xFF180318
#define SD0_DLL_RST BIT(2)
#define SD1_DLL_RST BIT(18)
#define SD0_ITAPCHGWIN BIT(9)
#define SD1_ITAPCHGWIN BIT(25)
#define SD0_ITAPDLYENA BIT(8)
#define SD1_ITAPDLYENA BIT(24)
#define SD0_ITAPDLYSEL_MASK GENMASK(7, 0)
#define SD1_ITAPDLYSEL_MASK GENMASK(23, 16)
#define SD0_OTAPDLYSEL_MASK GENMASK(5, 0)
#define SD1_OTAPDLYSEL_MASK GENMASK(21, 16)
#define MIN_PHY_CLK_HZ 50000000
#define PHY_CTRL_REG1 0x270
#define PHY_CTRL_ITAPDLY_ENA_MASK BIT(0)
#define PHY_CTRL_ITAPDLY_SEL_MASK GENMASK(5, 1)
#define PHY_CTRL_ITAPDLY_SEL_SHIFT 1
#define PHY_CTRL_ITAP_CHG_WIN_MASK BIT(6)
#define PHY_CTRL_OTAPDLY_ENA_MASK BIT(8)
#define PHY_CTRL_OTAPDLY_SEL_MASK GENMASK(15, 12)
#define PHY_CTRL_OTAPDLY_SEL_SHIFT 12
#define PHY_CTRL_STRB_SEL_MASK GENMASK(23, 16)
#define PHY_CTRL_STRB_SEL_SHIFT 16
#define PHY_CTRL_TEST_CTRL_MASK GENMASK(31, 24)
#define PHY_CTRL_REG2 0x274
#define PHY_CTRL_EN_DLL_MASK BIT(0)
#define PHY_CTRL_DLL_RDY_MASK BIT(1)
#define PHY_CTRL_FREQ_SEL_MASK GENMASK(6, 4)
#define PHY_CTRL_FREQ_SEL_SHIFT 4
#define PHY_CTRL_SEL_DLY_TX_MASK BIT(16)
#define PHY_CTRL_SEL_DLY_RX_MASK BIT(17)
#define FREQSEL_200M_170M 0x0
#define FREQSEL_170M_140M 0x1
#define FREQSEL_140M_110M 0x2
#define FREQSEL_110M_80M 0x3
#define FREQSEL_80M_50M 0x4
#define FREQSEL_275M_250M 0x5
#define FREQSEL_250M_225M 0x6
#define FREQSEL_225M_200M 0x7
#define PHY_DLL_TIMEOUT_MS 100
#define VERSAL_NET_EMMC_ICLK_PHASE_DDR52_DLY_CHAIN 39
#define VERSAL_NET_EMMC_ICLK_PHASE_DDR52_DLL 146
#define VERSAL_NET_PHY_CTRL_STRB90_STRB180_VAL 0X77
struct arasan_sdhci_clk_data {
int clk_phase_in[MMC_TIMING_MMC_HS400 + 1];
int clk_phase_out[MMC_TIMING_MMC_HS400 + 1];
};
struct arasan_sdhci_plat {
struct mmc_config cfg;
struct mmc mmc;
};
struct arasan_sdhci_priv {
struct sdhci_host *host;
struct arasan_sdhci_clk_data clk_data;
u32 node_id;
u8 bank;
u8 no_1p8;
bool internal_phy_reg;
struct reset_ctl_bulk resets;
};
/* For Versal platforms zynqmp_mmio_write() won't be available */
__weak int zynqmp_mmio_write(const u32 address, const u32 mask, const u32 value)
{
return 0;
}
__weak int xilinx_pm_request(u32 api_id, u32 arg0, u32 arg1, u32 arg2,
u32 arg3, u32 *ret_payload)
{
return 0;
}
__weak int zynqmp_pm_is_function_supported(const u32 api_id, const u32 id)
{
return 1;
}
#if defined(CONFIG_ARCH_ZYNQMP) || defined(CONFIG_ARCH_VERSAL) || defined(CONFIG_ARCH_VERSAL_NET)
/* Default settings for ZynqMP Clock Phases */
static const u32 zynqmp_iclk_phases[] = {0, 63, 63, 0, 63, 0,
0, 183, 54, 0, 0};
static const u32 zynqmp_oclk_phases[] = {0, 72, 60, 0, 60, 72,
135, 48, 72, 135, 0};
/* Default settings for Versal Clock Phases */
static const u32 versal_iclk_phases[] = {0, 132, 132, 0, 132,
0, 0, 162, 90, 0, 0};
static const u32 versal_oclk_phases[] = {0, 60, 48, 0, 48, 72,
90, 36, 60, 90, 0};
/* Default settings for versal-net eMMC Clock Phases */
static const u32 versal_net_emmc_iclk_phases[] = {0, 0, 0, 0, 0, 0, 0, 0, 39,
0, 0};
static const u32 versal_net_emmc_oclk_phases[] = {0, 113, 0, 0, 0, 0, 0, 0,
113, 79, 45};
static const u8 mode2timing[] = {
[MMC_LEGACY] = MMC_TIMING_LEGACY,
[MMC_HS] = MMC_TIMING_MMC_HS,
[SD_HS] = MMC_TIMING_SD_HS,
[MMC_HS_52] = MMC_TIMING_MMC_HS,
[MMC_DDR_52] = MMC_TIMING_MMC_DDR52,
[UHS_SDR12] = MMC_TIMING_UHS_SDR12,
[UHS_SDR25] = MMC_TIMING_UHS_SDR25,
[UHS_SDR50] = MMC_TIMING_UHS_SDR50,
[UHS_DDR50] = MMC_TIMING_UHS_DDR50,
[UHS_SDR104] = MMC_TIMING_UHS_SDR104,
[MMC_HS_200] = MMC_TIMING_MMC_HS200,
[MMC_HS_400] = MMC_TIMING_MMC_HS400,
};
#if defined(CONFIG_ARCH_VERSAL_NET)
/**
* arasan_phy_set_delaychain - Set eMMC delay chain based Input/Output clock
*
* @host: Pointer to the sdhci_host structure
* @enable: Enable or disable Delay chain based Tx and Rx clock
* Return: None
*
* Enable or disable eMMC delay chain based Input and Output clock in
* PHY_CTRL_REG2
*/
static void arasan_phy_set_delaychain(struct sdhci_host *host, bool enable)
{
u32 reg;
reg = sdhci_readw(host, PHY_CTRL_REG2);
if (enable)
reg |= PHY_CTRL_SEL_DLY_TX_MASK | PHY_CTRL_SEL_DLY_RX_MASK;
else
reg &= ~(PHY_CTRL_SEL_DLY_TX_MASK | PHY_CTRL_SEL_DLY_RX_MASK);
sdhci_writew(host, reg, PHY_CTRL_REG2);
}
/**
* arasan_phy_set_dll - Set eMMC DLL clock
*
* @host: Pointer to the sdhci_host structure
* @enable: Enable or disable DLL clock
* Return: 0 if success or timeout error
*
* Enable or disable eMMC DLL clock in PHY_CTRL_REG2. When DLL enable is
* set, wait till DLL is locked
*/
static int arasan_phy_set_dll(struct sdhci_host *host, bool enable)
{
u32 reg;
reg = sdhci_readw(host, PHY_CTRL_REG2);
if (enable)
reg |= PHY_CTRL_EN_DLL_MASK;
else
reg &= ~PHY_CTRL_EN_DLL_MASK;
sdhci_writew(host, reg, PHY_CTRL_REG2);
/* If DLL is disabled return success */
if (!enable)
return 0;
/* If DLL is enabled wait till DLL loop is locked, which is
* indicated by dll_rdy bit(bit1) in PHY_CTRL_REG2
*/
return readl_relaxed_poll_timeout(host->ioaddr + PHY_CTRL_REG2, reg,
(reg & PHY_CTRL_DLL_RDY_MASK),
1000 * PHY_DLL_TIMEOUT_MS);
}
/**
* arasan_phy_dll_set_freq - Select frequency range of DLL for eMMC
*
* @host: Pointer to the sdhci_host structure
* @clock: clock value
* Return: None
*
* Set frequency range bits based on the selected clock for eMMC
*/
static void arasan_phy_dll_set_freq(struct sdhci_host *host, int clock)
{
u32 reg, freq_sel, freq;
freq = DIV_ROUND_CLOSEST(clock, 1000000);
if (freq <= 200 && freq > 170)
freq_sel = FREQSEL_200M_170M;
else if (freq <= 170 && freq > 140)
freq_sel = FREQSEL_170M_140M;
else if (freq <= 140 && freq > 110)
freq_sel = FREQSEL_140M_110M;
else if (freq <= 110 && freq > 80)
freq_sel = FREQSEL_110M_80M;
else
freq_sel = FREQSEL_80M_50M;
reg = sdhci_readw(host, PHY_CTRL_REG2);
reg &= ~PHY_CTRL_FREQ_SEL_MASK;
reg |= (freq_sel << PHY_CTRL_FREQ_SEL_SHIFT);
sdhci_writew(host, reg, PHY_CTRL_REG2);
}
static int arasan_sdhci_config_dll(struct sdhci_host *host, unsigned int clock, bool enable)
{
struct mmc *mmc = (struct mmc *)host->mmc;
struct arasan_sdhci_priv *priv = dev_get_priv(mmc->dev);
if (enable) {
if (priv->internal_phy_reg && clock >= MIN_PHY_CLK_HZ && enable)
arasan_phy_set_dll(host, 1);
return 0;
}
if (priv->internal_phy_reg && clock >= MIN_PHY_CLK_HZ) {
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
arasan_phy_set_dll(host, 0);
arasan_phy_set_delaychain(host, 0);
arasan_phy_dll_set_freq(host, clock);
return 0;
}
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
arasan_phy_set_delaychain(host, 1);
return 0;
}
#endif
static inline int arasan_zynqmp_set_in_tapdelay(u32 node_id, u32 itap_delay)
{
int ret;
if (IS_ENABLED(CONFIG_SPL_BUILD) || current_el() == 3) {
if (node_id == NODE_SD_0) {
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD0_ITAPCHGWIN,
SD0_ITAPCHGWIN);
if (ret)
return ret;
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD0_ITAPDLYENA,
SD0_ITAPDLYENA);
if (ret)
return ret;
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD0_ITAPDLYSEL_MASK,
itap_delay);
if (ret)
return ret;
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD0_ITAPCHGWIN, 0);
if (ret)
return ret;
}
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD1_ITAPCHGWIN,
SD1_ITAPCHGWIN);
if (ret)
return ret;
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD1_ITAPDLYENA,
SD1_ITAPDLYENA);
if (ret)
return ret;
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD1_ITAPDLYSEL_MASK,
(itap_delay << 16));
if (ret)
return ret;
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD1_ITAPCHGWIN, 0);
if (ret)
return ret;
} else {
return xilinx_pm_request(PM_IOCTL, node_id,
IOCTL_SET_SD_TAPDELAY,
PM_TAPDELAY_INPUT, itap_delay, NULL);
}
return 0;
}
static inline int arasan_zynqmp_set_out_tapdelay(u32 node_id, u32 otap_delay)
{
if (IS_ENABLED(CONFIG_SPL_BUILD) || current_el() == 3) {
if (node_id == NODE_SD_0)
return zynqmp_mmio_write(SD_OTAP_DLY,
SD0_OTAPDLYSEL_MASK,
otap_delay);
return zynqmp_mmio_write(SD_OTAP_DLY, SD1_OTAPDLYSEL_MASK,
(otap_delay << 16));
} else {
return xilinx_pm_request(PM_IOCTL, node_id,
IOCTL_SET_SD_TAPDELAY,
PM_TAPDELAY_OUTPUT, otap_delay, NULL);
}
}
static inline int zynqmp_dll_reset(u32 node_id, u32 type)
{
if (IS_ENABLED(CONFIG_SPL_BUILD) || current_el() == 3) {
if (node_id == NODE_SD_0)
return zynqmp_mmio_write(SD_DLL_CTRL, SD0_DLL_RST,
type == PM_DLL_RESET_ASSERT ?
SD0_DLL_RST : 0);
return zynqmp_mmio_write(SD_DLL_CTRL, SD1_DLL_RST,
type == PM_DLL_RESET_ASSERT ?
SD1_DLL_RST : 0);
} else {
return xilinx_pm_request(PM_IOCTL, node_id,
IOCTL_SD_DLL_RESET, type, 0, NULL);
}
}
static int arasan_zynqmp_dll_reset(struct sdhci_host *host, u32 node_id)
{
struct mmc *mmc = (struct mmc *)host->mmc;
struct udevice *dev = mmc->dev;
unsigned long timeout;
int ret;
u16 clk;
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~(SDHCI_CLOCK_CARD_EN);
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Issue DLL Reset */
ret = zynqmp_dll_reset(node_id, PM_DLL_RESET_ASSERT);
if (ret) {
dev_err(dev, "dll_reset assert failed with err: %d\n", ret);
return ret;
}
/* Allow atleast 1ms delay for proper DLL reset */
mdelay(1);
ret = zynqmp_dll_reset(node_id, PM_DLL_RESET_RELEASE);
if (ret) {
dev_err(dev, "dll_reset release failed with err: %d\n", ret);
return ret;
}
/* Wait max 20 ms */
timeout = 100;
while (!((clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL))
& SDHCI_CLOCK_INT_STABLE)) {
if (timeout == 0) {
dev_err(dev, ": Internal clock never stabilised.\n");
return -EBUSY;
}
timeout--;
udelay(1000);
}
clk |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
return 0;
}
static int arasan_sdhci_execute_tuning(struct mmc *mmc, u8 opcode)
{
struct mmc_cmd cmd;
struct mmc_data data;
u32 ctrl;
struct sdhci_host *host;
struct arasan_sdhci_priv *priv = dev_get_priv(mmc->dev);
int tuning_loop_counter = SDHCI_TUNING_LOOP_COUNT;
dev_dbg(mmc->dev, "%s\n", __func__);
host = priv->host;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl |= SDHCI_CTRL_EXEC_TUNING;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
mdelay(1);
arasan_zynqmp_dll_reset(host, priv->node_id);
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_INT_ENABLE);
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_SIGNAL_ENABLE);
do {
cmd.cmdidx = opcode;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
if (tuning_loop_counter-- == 0)
break;
if (cmd.cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200 &&
mmc->bus_width == 8)
data.blocksize = 128;
sdhci_writew(host, SDHCI_MAKE_BLKSZ(SDHCI_DEFAULT_BOUNDARY_ARG,
data.blocksize),
SDHCI_BLOCK_SIZE);
sdhci_writew(host, data.blocks, SDHCI_BLOCK_COUNT);
sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE);
mmc_send_cmd(mmc, &cmd, NULL);
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (cmd.cmdidx == MMC_CMD_SEND_TUNING_BLOCK)
udelay(1);
} while (ctrl & SDHCI_CTRL_EXEC_TUNING);
if (tuning_loop_counter < 0) {
ctrl &= ~SDHCI_CTRL_TUNED_CLK;
sdhci_writel(host, ctrl, SDHCI_HOST_CONTROL2);
}
if (!(ctrl & SDHCI_CTRL_TUNED_CLK)) {
printf("%s:Tuning failed\n", __func__);
return -1;
}
udelay(1);
arasan_zynqmp_dll_reset(host, priv->node_id);
/* Enable only interrupts served by the SD controller */
sdhci_writel(host, SDHCI_INT_DATA_MASK | SDHCI_INT_CMD_MASK,
SDHCI_INT_ENABLE);
/* Mask all sdhci interrupt sources */
sdhci_writel(host, 0x0, SDHCI_SIGNAL_ENABLE);
return 0;
}
/**
* sdhci_zynqmp_sdcardclk_set_phase - Set the SD Output Clock Tap Delays
*
* @host: Pointer to the sdhci_host structure.
* @degrees: The clock phase shift between 0 - 359.
* Return: 0
*
* Set the SD Output Clock Tap Delays for Output path
*/
static int sdhci_zynqmp_sdcardclk_set_phase(struct sdhci_host *host,
int degrees)
{
struct mmc *mmc = (struct mmc *)host->mmc;
struct udevice *dev = mmc->dev;
struct arasan_sdhci_priv *priv = dev_get_priv(mmc->dev);
u8 tap_delay, tap_max = 0;
int timing = mode2timing[mmc->selected_mode];
int ret;
/*
* This is applicable for SDHCI_SPEC_300 and above
* ZynqMP does not set phase for <=25MHz clock.
* If degrees is zero, no need to do anything.
*/
if (SDHCI_GET_VERSION(host) < SDHCI_SPEC_300)
return 0;
switch (timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 30 Taps are available */
tap_max = 30;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 15 Taps are available */
tap_max = 15;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 8 Taps are available */
tap_max = 8;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Limit output tap_delay value to 6 bits */
tap_delay &= SDHCI_ARASAN_OTAPDLY_SEL_MASK;
/* Set the Clock Phase */
ret = arasan_zynqmp_set_out_tapdelay(priv->node_id, tap_delay);
if (ret) {
dev_err(dev, "Error setting output Tap Delay\n");
return ret;
}
/* Release DLL Reset */
ret = zynqmp_dll_reset(priv->node_id, PM_DLL_RESET_RELEASE);
if (ret) {
dev_err(dev, "dll_reset release failed with err: %d\n", ret);
return ret;
}
return 0;
}
/**
* sdhci_zynqmp_sampleclk_set_phase - Set the SD Input Clock Tap Delays
*
* @host: Pointer to the sdhci_host structure.
* @degrees: The clock phase shift between 0 - 359.
* Return: 0
*
* Set the SD Input Clock Tap Delays for Input path
*/
static int sdhci_zynqmp_sampleclk_set_phase(struct sdhci_host *host,
int degrees)
{
struct mmc *mmc = (struct mmc *)host->mmc;
struct udevice *dev = mmc->dev;
struct arasan_sdhci_priv *priv = dev_get_priv(mmc->dev);
u8 tap_delay, tap_max = 0;
int timing = mode2timing[mmc->selected_mode];
int ret;
/*
* This is applicable for SDHCI_SPEC_300 and above
* ZynqMP does not set phase for <=25MHz clock.
* If degrees is zero, no need to do anything.
*/
if (SDHCI_GET_VERSION(host) < SDHCI_SPEC_300)
return 0;
/* Assert DLL Reset */
ret = zynqmp_dll_reset(priv->node_id, PM_DLL_RESET_ASSERT);
if (ret) {
dev_err(dev, "dll_reset assert failed with err: %d\n", ret);
return ret;
}
switch (timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 120 Taps are available */
tap_max = 120;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 60 Taps are available */
tap_max = 60;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 30 Taps are available */
tap_max = 30;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Limit input tap_delay value to 8 bits */
tap_delay &= SDHCI_ARASAN_ITAPDLY_SEL_MASK;
ret = arasan_zynqmp_set_in_tapdelay(priv->node_id, tap_delay);
if (ret) {
dev_err(dev, "Error setting Input Tap Delay\n");
return ret;
}
return 0;
}
/**
* sdhci_versal_sdcardclk_set_phase - Set the SD Output Clock Tap Delays
*
* @host: Pointer to the sdhci_host structure.
* @degrees: The clock phase shift between 0 - 359.
* Return: 0
*
* Set the SD Output Clock Tap Delays for Output path
*/
static int sdhci_versal_sdcardclk_set_phase(struct sdhci_host *host,
int degrees)
{
struct mmc *mmc = (struct mmc *)host->mmc;
u8 tap_delay, tap_max = 0;
int timing = mode2timing[mmc->selected_mode];
u32 regval;
/*
* This is applicable for SDHCI_SPEC_300 and above
* Versal does not set phase for <=25MHz clock.
* If degrees is zero, no need to do anything.
*/
if (SDHCI_GET_VERSION(host) < SDHCI_SPEC_300)
return 0;
switch (timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 30 Taps are available */
tap_max = 30;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 15 Taps are available */
tap_max = 15;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 8 Taps are available */
tap_max = 8;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Limit output tap_delay value to 6 bits */
tap_delay &= SDHCI_ARASAN_OTAPDLY_SEL_MASK;
/* Set the Clock Phase */
regval = sdhci_readl(host, SDHCI_ARASAN_OTAPDLY_REGISTER);
regval |= SDHCI_OTAPDLY_ENABLE;
sdhci_writel(host, regval, SDHCI_ARASAN_OTAPDLY_REGISTER);
regval &= ~SDHCI_ARASAN_OTAPDLY_SEL_MASK;
regval |= tap_delay;
sdhci_writel(host, regval, SDHCI_ARASAN_OTAPDLY_REGISTER);
return 0;
}
/**
* sdhci_versal_sampleclk_set_phase - Set the SD Input Clock Tap Delays
*
* @host: Pointer to the sdhci_host structure.
* @degrees: The clock phase shift between 0 - 359.
* Return: 0
*
* Set the SD Input Clock Tap Delays for Input path
*/
static int sdhci_versal_sampleclk_set_phase(struct sdhci_host *host,
int degrees)
{
struct mmc *mmc = (struct mmc *)host->mmc;
u8 tap_delay, tap_max = 0;
int timing = mode2timing[mmc->selected_mode];
u32 regval;
/*
* This is applicable for SDHCI_SPEC_300 and above
* Versal does not set phase for <=25MHz clock.
* If degrees is zero, no need to do anything.
*/
if (SDHCI_GET_VERSION(host) < SDHCI_SPEC_300)
return 0;
switch (timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 120 Taps are available */
tap_max = 120;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 60 Taps are available */
tap_max = 60;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 30 Taps are available */
tap_max = 30;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Limit input tap_delay value to 8 bits */
tap_delay &= SDHCI_ARASAN_ITAPDLY_SEL_MASK;
/* Set the Clock Phase */
regval = sdhci_readl(host, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval |= SDHCI_ITAPDLY_CHGWIN;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval |= SDHCI_ITAPDLY_ENABLE;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval &= ~SDHCI_ARASAN_ITAPDLY_SEL_MASK;
regval |= tap_delay;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval &= ~SDHCI_ITAPDLY_CHGWIN;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
return 0;
}
/**
* sdhci_versal_net_emmc_sdcardclk_set_phase - Set eMMC Output Clock Tap Delays
*
* @host: Pointer to the sdhci_host structure.
* @degrees: The clock phase shift between 0 - 359.
* Return: 0
*
* Set eMMC Output Clock Tap Delays for Output path
*/
static int sdhci_versal_net_emmc_sdcardclk_set_phase(struct sdhci_host *host, int degrees)
{
struct mmc *mmc = (struct mmc *)host->mmc;
int timing = mode2timing[mmc->selected_mode];
u8 tap_delay, tap_max = 0;
u32 regval;
switch (timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_MMC_DDR52:
tap_max = 16;
break;
case MMC_TIMING_MMC_HS200:
case MMC_TIMING_MMC_HS400:
/* For 200MHz clock, 32 Taps are available */
tap_max = 32;
break;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Set the Clock Phase */
if (tap_delay) {
regval = sdhci_readl(host, PHY_CTRL_REG1);
regval |= PHY_CTRL_OTAPDLY_ENA_MASK;
sdhci_writel(host, regval, PHY_CTRL_REG1);
regval &= ~PHY_CTRL_OTAPDLY_SEL_MASK;
regval |= tap_delay << PHY_CTRL_OTAPDLY_SEL_SHIFT;
sdhci_writel(host, regval, PHY_CTRL_REG1);
}
return 0;
}
/**
* sdhci_versal_net_emmc_sampleclk_set_phase - Set eMMC Input Clock Tap Delays
*
* @host: Pointer to the sdhci_host structure.
* @degrees: The clock phase shift between 0 - 359.
* Return: 0
*
* Set eMMC Input Clock Tap Delays for Input path. If HS400 is selected,
* set strobe90 and strobe180 in PHY_CTRL_REG1.
*/
static int sdhci_versal_net_emmc_sampleclk_set_phase(struct sdhci_host *host, int degrees)
{
struct mmc *mmc = (struct mmc *)host->mmc;
int timing = mode2timing[mmc->selected_mode];
u8 tap_delay, tap_max = 0;
u32 regval;
switch (timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_MMC_DDR52:
tap_max = 32;
break;
case MMC_TIMING_MMC_HS400:
/* Strobe select tap point for strb90 and strb180 */
regval = sdhci_readl(host, PHY_CTRL_REG1);
regval &= ~PHY_CTRL_STRB_SEL_MASK;
regval |= VERSAL_NET_PHY_CTRL_STRB90_STRB180_VAL << PHY_CTRL_STRB_SEL_SHIFT;
sdhci_writel(host, regval, PHY_CTRL_REG1);
break;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Set the Clock Phase */
if (tap_delay) {
regval = sdhci_readl(host, PHY_CTRL_REG1);
regval |= PHY_CTRL_ITAP_CHG_WIN_MASK;
sdhci_writel(host, regval, PHY_CTRL_REG1);
regval |= PHY_CTRL_ITAPDLY_ENA_MASK;
sdhci_writel(host, regval, PHY_CTRL_REG1);
regval &= ~PHY_CTRL_ITAPDLY_SEL_MASK;
regval |= tap_delay << PHY_CTRL_ITAPDLY_SEL_SHIFT;
sdhci_writel(host, regval, PHY_CTRL_REG1);
regval &= ~PHY_CTRL_ITAP_CHG_WIN_MASK;
sdhci_writel(host, regval, PHY_CTRL_REG1);
}
return 0;
}
static int arasan_sdhci_set_tapdelay(struct sdhci_host *host)
{
struct arasan_sdhci_priv *priv = dev_get_priv(host->mmc->dev);
struct arasan_sdhci_clk_data *clk_data = &priv->clk_data;
struct mmc *mmc = (struct mmc *)host->mmc;
struct udevice *dev = mmc->dev;
u8 timing = mode2timing[mmc->selected_mode];
u32 iclk_phase = clk_data->clk_phase_in[timing];
u32 oclk_phase = clk_data->clk_phase_out[timing];
int ret;
dev_dbg(dev, "%s, host:%s, mode:%d\n", __func__, host->name, timing);
if (IS_ENABLED(CONFIG_ARCH_ZYNQMP) &&
device_is_compatible(dev, "xlnx,zynqmp-8.9a")) {
ret = sdhci_zynqmp_sampleclk_set_phase(host, iclk_phase);
if (ret)
return ret;
ret = sdhci_zynqmp_sdcardclk_set_phase(host, oclk_phase);
if (ret)
return ret;
} else if (IS_ENABLED(CONFIG_ARCH_VERSAL) &&
device_is_compatible(dev, "xlnx,versal-8.9a")) {
ret = sdhci_versal_sampleclk_set_phase(host, iclk_phase);
if (ret)
return ret;
ret = sdhci_versal_sdcardclk_set_phase(host, oclk_phase);
if (ret)
return ret;
} else if (IS_ENABLED(CONFIG_ARCH_VERSAL_NET) &&
device_is_compatible(dev, "xlnx,versal-net-emmc")) {
if (mmc->clock >= MIN_PHY_CLK_HZ)
if (iclk_phase == VERSAL_NET_EMMC_ICLK_PHASE_DDR52_DLY_CHAIN)
iclk_phase = VERSAL_NET_EMMC_ICLK_PHASE_DDR52_DLL;
ret = sdhci_versal_net_emmc_sampleclk_set_phase(host, iclk_phase);
if (ret)
return ret;
ret = sdhci_versal_net_emmc_sdcardclk_set_phase(host, oclk_phase);
if (ret)
return ret;
}
return 0;
}
static void arasan_dt_read_clk_phase(struct udevice *dev, unsigned char timing,
const char *prop)
{
struct arasan_sdhci_priv *priv = dev_get_priv(dev);
struct arasan_sdhci_clk_data *clk_data = &priv->clk_data;
u32 clk_phase[2] = {0};
/*
* Read Tap Delay values from DT, if the DT does not contain the
* Tap Values then use the pre-defined values
*/
if (dev_read_u32_array(dev, prop, &clk_phase[0], 2)) {
dev_dbg(dev, "Using predefined clock phase for %s = %d %d\n",
prop, clk_data->clk_phase_in[timing],
clk_data->clk_phase_out[timing]);
return;
}
/* The values read are Input and Output Clock Delays in order */
clk_data->clk_phase_in[timing] = clk_phase[0];
clk_data->clk_phase_out[timing] = clk_phase[1];
}
/**
* arasan_dt_parse_clk_phases - Read Tap Delay values from DT
*
* @dev: Pointer to our struct udevice.
*
* Called at initialization to parse the values of Tap Delays.
*/
static void arasan_dt_parse_clk_phases(struct udevice *dev)
{
struct arasan_sdhci_priv *priv = dev_get_priv(dev);
struct arasan_sdhci_clk_data *clk_data = &priv->clk_data;
int i;
if (IS_ENABLED(CONFIG_ARCH_ZYNQMP) &&
device_is_compatible(dev, "xlnx,zynqmp-8.9a")) {
for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) {
clk_data->clk_phase_in[i] = zynqmp_iclk_phases[i];
clk_data->clk_phase_out[i] = zynqmp_oclk_phases[i];
}
if (priv->bank == MMC_BANK2) {
clk_data->clk_phase_out[MMC_TIMING_UHS_SDR104] = 90;
clk_data->clk_phase_out[MMC_TIMING_MMC_HS200] = 90;
}
}
if (IS_ENABLED(CONFIG_ARCH_VERSAL) &&
device_is_compatible(dev, "xlnx,versal-8.9a")) {
for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) {
clk_data->clk_phase_in[i] = versal_iclk_phases[i];
clk_data->clk_phase_out[i] = versal_oclk_phases[i];
}
}
if (IS_ENABLED(CONFIG_ARCH_VERSAL_NET) &&
device_is_compatible(dev, "xlnx,versal-net-emmc")) {
for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) {
clk_data->clk_phase_in[i] = versal_net_emmc_iclk_phases[i];
clk_data->clk_phase_out[i] = versal_net_emmc_oclk_phases[i];
}
}
arasan_dt_read_clk_phase(dev, MMC_TIMING_LEGACY,
"clk-phase-legacy");
arasan_dt_read_clk_phase(dev, MMC_TIMING_MMC_HS,
"clk-phase-mmc-hs");
arasan_dt_read_clk_phase(dev, MMC_TIMING_SD_HS,
"clk-phase-sd-hs");
arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_SDR12,
"clk-phase-uhs-sdr12");
arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_SDR25,
"clk-phase-uhs-sdr25");
arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_SDR50,
"clk-phase-uhs-sdr50");
arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_SDR104,
"clk-phase-uhs-sdr104");
arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_DDR50,
"clk-phase-uhs-ddr50");
arasan_dt_read_clk_phase(dev, MMC_TIMING_MMC_DDR52,
"clk-phase-mmc-ddr52");
arasan_dt_read_clk_phase(dev, MMC_TIMING_MMC_HS200,
"clk-phase-mmc-hs200");
arasan_dt_read_clk_phase(dev, MMC_TIMING_MMC_HS400,
"clk-phase-mmc-hs400");
}
static const struct sdhci_ops arasan_ops = {
.platform_execute_tuning = &arasan_sdhci_execute_tuning,
.set_delay = &arasan_sdhci_set_tapdelay,
.set_control_reg = &sdhci_set_control_reg,
#if defined(CONFIG_ARCH_VERSAL_NET)
.config_dll = &arasan_sdhci_config_dll,
#endif
};
#endif
#if defined(CONFIG_ARCH_ZYNQMP) && defined(CONFIG_ZYNQMP_FIRMWARE)
static int sdhci_zynqmp_set_dynamic_config(struct arasan_sdhci_priv *priv,
struct udevice *dev)
{
int ret;
struct clk clk;
unsigned long clock, mhz;
ret = xilinx_pm_request(PM_REQUEST_NODE, priv->node_id,
ZYNQMP_PM_CAPABILITY_ACCESS, ZYNQMP_PM_MAX_QOS,
ZYNQMP_PM_REQUEST_ACK_NO, NULL);
if (ret) {
dev_err(dev, "Request node failed for %d\n", priv->node_id);
return ret;
}
ret = reset_get_bulk(dev, &priv->resets);
if (ret == -ENOTSUPP || ret == -ENOENT) {
dev_err(dev, "Reset not found\n");
return 0;
} else if (ret) {
dev_err(dev, "Reset failed\n");
return ret;
}
ret = reset_assert_bulk(&priv->resets);
if (ret) {
dev_err(dev, "Reset assert failed\n");
return ret;
}
ret = zynqmp_pm_set_sd_config(priv->node_id, SD_CONFIG_FIXED, 0);
if (ret) {
dev_err(dev, "SD_CONFIG_FIXED failed\n");
return ret;
}
ret = zynqmp_pm_set_sd_config(priv->node_id, SD_CONFIG_EMMC_SEL,
dev_read_bool(dev, "non-removable"));
if (ret) {
dev_err(dev, "SD_CONFIG_EMMC_SEL failed\n");
return ret;
}
ret = clk_get_by_index(dev, 0, &clk);
if (ret < 0) {
dev_err(dev, "failed to get clock\n");
return ret;
}
clock = clk_get_rate(&clk);
if (IS_ERR_VALUE(clock)) {
dev_err(dev, "failed to get rate\n");
return clock;
}
mhz = DIV64_U64_ROUND_UP(clock, 1000000);
if (mhz > 100 && mhz <= 200)
mhz = 200;
else if (mhz > 50 && mhz <= 100)
mhz = 100;
else if (mhz > 25 && mhz <= 50)
mhz = 50;
else
mhz = 25;
ret = zynqmp_pm_set_sd_config(priv->node_id, SD_CONFIG_BASECLK, mhz);
if (ret) {
dev_err(dev, "SD_CONFIG_BASECLK failed\n");
return ret;
}
ret = zynqmp_pm_set_sd_config(priv->node_id, SD_CONFIG_8BIT,
(dev_read_u32_default(dev, "bus-width", 1) == 8));
if (ret) {
dev_err(dev, "SD_CONFIG_8BIT failed\n");
return ret;
}
ret = reset_deassert_bulk(&priv->resets);
if (ret) {
dev_err(dev, "Reset release failed\n");
return ret;
}
return 0;
}
#endif
static int arasan_sdhci_probe(struct udevice *dev)
{
struct arasan_sdhci_plat *plat = dev_get_plat(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct arasan_sdhci_priv *priv = dev_get_priv(dev);
struct sdhci_host *host;
struct clk clk;
unsigned long clock;
int ret;
host = priv->host;
#if defined(CONFIG_ARCH_ZYNQMP) && defined(CONFIG_ZYNQMP_FIRMWARE)
if (device_is_compatible(dev, "xlnx,zynqmp-8.9a")) {
ret = zynqmp_pm_is_function_supported(PM_IOCTL,
IOCTL_SET_SD_CONFIG);
if (!ret) {
ret = sdhci_zynqmp_set_dynamic_config(priv, dev);
if (ret)
return ret;
}
}
#endif
if (device_is_compatible(dev, "xlnx,versal-net-emmc"))
priv->internal_phy_reg = true;
ret = clk_get_by_index(dev, 0, &clk);
if (ret < 0) {
dev_err(dev, "failed to get clock\n");
return ret;
}
clock = clk_get_rate(&clk);
if (IS_ERR_VALUE(clock)) {
dev_err(dev, "failed to get rate\n");
return clock;
}
dev_dbg(dev, "%s: CLK %ld\n", __func__, clock);
ret = clk_enable(&clk);
if (ret) {
dev_err(dev, "failed to enable clock\n");
return ret;
}
host->quirks = SDHCI_QUIRK_WAIT_SEND_CMD |
SDHCI_QUIRK_BROKEN_R1B;
#ifdef CONFIG_ZYNQ_HISPD_BROKEN
host->quirks |= SDHCI_QUIRK_BROKEN_HISPD_MODE;
#endif
if (priv->no_1p8)
host->quirks |= SDHCI_QUIRK_NO_1_8_V;
if (CONFIG_IS_ENABLED(ARCH_VERSAL_NET) &&
device_is_compatible(dev, "xlnx,versal-net-emmc"))
host->quirks |= SDHCI_QUIRK_CAPS_BIT63_FOR_HS400;
plat->cfg.f_max = CONFIG_ZYNQ_SDHCI_MAX_FREQ;
ret = mmc_of_parse(dev, &plat->cfg);
if (ret)
return ret;
host->max_clk = clock;
host->mmc = &plat->mmc;
host->mmc->dev = dev;
host->mmc->priv = host;
ret = sdhci_setup_cfg(&plat->cfg, host, plat->cfg.f_max,
CONFIG_ZYNQ_SDHCI_MIN_FREQ);
if (ret)
return ret;
upriv->mmc = host->mmc;
/*
* WORKAROUND: Versal platforms have an issue with card detect state.
* Due to this, host controller is switching off voltage to sd card
* causing sd card timeout error. Workaround this by adding a wait for
* 1000msec till the card detect state gets stable.
*/
if (IS_ENABLED(CONFIG_ARCH_ZYNQMP) || IS_ENABLED(CONFIG_ARCH_VERSAL)) {
u32 timeout = 1000000;
while (((sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_STATE_STABLE) == 0) && timeout) {
udelay(1);
timeout--;
}
if (!timeout) {
dev_err(dev, "Sdhci card detect state not stable\n");
return -ETIMEDOUT;
}
}
return sdhci_probe(dev);
}
static int arasan_sdhci_of_to_plat(struct udevice *dev)
{
struct arasan_sdhci_priv *priv = dev_get_priv(dev);
u32 pm_info[2];
priv->host = calloc(1, sizeof(struct sdhci_host));
if (!priv->host)
return -1;
priv->host->name = dev->name;
#if defined(CONFIG_ARCH_ZYNQMP) || defined(CONFIG_ARCH_VERSAL) || defined(CONFIG_ARCH_VERSAL_NET)
priv->host->ops = &arasan_ops;
arasan_dt_parse_clk_phases(dev);
#endif
priv->host->ioaddr = dev_read_addr_ptr(dev);
if (!priv->host->ioaddr)
return -EINVAL;
priv->bank = dev_read_u32_default(dev, "xlnx,mio-bank", 0);
priv->no_1p8 = dev_read_bool(dev, "no-1-8-v");
priv->node_id = 0;
if (!dev_read_u32_array(dev, "power-domains", pm_info, ARRAY_SIZE(pm_info)))
priv->node_id = pm_info[1];
return 0;
}
static int arasan_sdhci_bind(struct udevice *dev)
{
struct arasan_sdhci_plat *plat = dev_get_plat(dev);
return sdhci_bind(dev, &plat->mmc, &plat->cfg);
}
static const struct udevice_id arasan_sdhci_ids[] = {
{ .compatible = "arasan,sdhci-8.9a" },
{ .compatible = "xlnx,versal-net-emmc" },
{ }
};
U_BOOT_DRIVER(arasan_sdhci_drv) = {
.name = "arasan_sdhci",
.id = UCLASS_MMC,
.of_match = arasan_sdhci_ids,
.of_to_plat = arasan_sdhci_of_to_plat,
.ops = &sdhci_ops,
.bind = arasan_sdhci_bind,
.probe = arasan_sdhci_probe,
.priv_auto = sizeof(struct arasan_sdhci_priv),
.plat_auto = sizeof(struct arasan_sdhci_plat),
};