u-boot/drivers/net/dc2114x.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

761 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0+
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <netdev.h>
#include <pci.h>
#undef DEBUG_SROM
#undef DEBUG_SROM2
#undef UPDATE_SROM
/* PCI Registers.
*/
#define PCI_CFDA_PSM 0x43
#define CFRV_RN 0x000000f0 /* Revision Number */
#define WAKEUP 0x00 /* Power Saving Wakeup */
#define SLEEP 0x80 /* Power Saving Sleep Mode */
#define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
/* Ethernet chip registers.
*/
#define DE4X5_BMR 0x000 /* Bus Mode Register */
#define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
#define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
#define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
#define DE4X5_STS 0x028 /* Status Register */
#define DE4X5_OMR 0x030 /* Operation Mode Register */
#define DE4X5_SICR 0x068 /* SIA Connectivity Register */
#define DE4X5_APROM 0x048 /* Ethernet Address PROM */
/* Register bits.
*/
#define BMR_SWR 0x00000001 /* Software Reset */
#define STS_TS 0x00700000 /* Transmit Process State */
#define STS_RS 0x000e0000 /* Receive Process State */
#define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
#define OMR_SR 0x00000002 /* Start/Stop Receive */
#define OMR_PS 0x00040000 /* Port Select */
#define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
#define OMR_PM 0x00000080 /* Pass All Multicast */
/* Descriptor bits.
*/
#define R_OWN 0x80000000 /* Own Bit */
#define RD_RER 0x02000000 /* Receive End Of Ring */
#define RD_LS 0x00000100 /* Last Descriptor */
#define RD_ES 0x00008000 /* Error Summary */
#define TD_TER 0x02000000 /* Transmit End Of Ring */
#define T_OWN 0x80000000 /* Own Bit */
#define TD_LS 0x40000000 /* Last Segment */
#define TD_FS 0x20000000 /* First Segment */
#define TD_ES 0x00008000 /* Error Summary */
#define TD_SET 0x08000000 /* Setup Packet */
/* The EEPROM commands include the alway-set leading bit. */
#define SROM_WRITE_CMD 5
#define SROM_READ_CMD 6
#define SROM_ERASE_CMD 7
#define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
#define SROM_RD 0x00004000 /* Read from Boot ROM */
#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
#define EE_WRITE_0 0x4801
#define EE_WRITE_1 0x4805
#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
#define SROM_SR 0x00000800 /* Select Serial ROM when set */
#define DT_IN 0x00000004 /* Serial Data In */
#define DT_CLK 0x00000002 /* Serial ROM Clock */
#define DT_CS 0x00000001 /* Serial ROM Chip Select */
#define POLL_DEMAND 1
#ifdef CONFIG_TULIP_FIX_DAVICOM
#define RESET_DM9102(dev) {\
unsigned long i;\
i=INL(dev, 0x0);\
udelay(1000);\
OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
udelay(1000);\
}
#else
#define RESET_DE4X5(dev) {\
int i;\
i=INL(dev, DE4X5_BMR);\
udelay(1000);\
OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
udelay(1000);\
OUTL(dev, i, DE4X5_BMR);\
udelay(1000);\
for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
udelay(1000);\
}
#endif
#define START_DE4X5(dev) {\
s32 omr; \
omr = INL(dev, DE4X5_OMR);\
omr |= OMR_ST | OMR_SR;\
OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\
}
#define STOP_DE4X5(dev) {\
s32 omr; \
omr = INL(dev, DE4X5_OMR);\
omr &= ~(OMR_ST|OMR_SR);\
OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
}
#define NUM_RX_DESC PKTBUFSRX
#ifndef CONFIG_TULIP_FIX_DAVICOM
#define NUM_TX_DESC 1 /* Number of TX descriptors */
#else
#define NUM_TX_DESC 4
#endif
#define RX_BUFF_SZ PKTSIZE_ALIGN
#define TOUT_LOOP 1000000
#define SETUP_FRAME_LEN 192
#define ETH_ALEN 6
struct de4x5_desc {
volatile s32 status;
u32 des1;
u32 buf;
u32 next;
};
static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring */
static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring */
static int rx_new; /* RX descriptor ring pointer */
static int tx_new; /* TX descriptor ring pointer */
static char rxRingSize;
static char txRingSize;
#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
static void sendto_srom(struct eth_device* dev, u_int command, u_long addr);
static int getfrom_srom(struct eth_device* dev, u_long addr);
static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
static int do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
#endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
#ifdef UPDATE_SROM
static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
static void update_srom(struct eth_device *dev, bd_t *bis);
#endif
#ifndef CONFIG_TULIP_FIX_DAVICOM
static int read_srom(struct eth_device *dev, u_long ioaddr, int index);
static void read_hw_addr(struct eth_device* dev, bd_t * bis);
#endif /* CONFIG_TULIP_FIX_DAVICOM */
static void send_setup_frame(struct eth_device* dev, bd_t * bis);
static int dc21x4x_init(struct eth_device* dev, bd_t* bis);
static int dc21x4x_send(struct eth_device *dev, void *packet, int length);
static int dc21x4x_recv(struct eth_device* dev);
static void dc21x4x_halt(struct eth_device* dev);
#ifdef CONFIG_TULIP_SELECT_MEDIA
extern void dc21x4x_select_media(struct eth_device* dev);
#endif
#if defined(CONFIG_E500)
#define phys_to_bus(a) (a)
#else
#define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
#endif
static int INL(struct eth_device* dev, u_long addr)
{
return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
}
static void OUTL(struct eth_device* dev, int command, u_long addr)
{
*(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
}
static struct pci_device_id supported[] = {
{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
#ifdef CONFIG_TULIP_FIX_DAVICOM
{ PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
#endif
{ }
};
int dc21x4x_initialize(bd_t *bis)
{
int idx=0;
int card_number = 0;
unsigned int cfrv;
unsigned char timer;
pci_dev_t devbusfn;
unsigned int iobase;
unsigned short status;
struct eth_device* dev;
while(1) {
devbusfn = pci_find_devices(supported, idx++);
if (devbusfn == -1) {
break;
}
/* Get the chip configuration revision register. */
pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
#ifndef CONFIG_TULIP_FIX_DAVICOM
if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
printf("Error: The chip is not DC21143.\n");
continue;
}
#endif
pci_read_config_word(devbusfn, PCI_COMMAND, &status);
status |=
#ifdef CONFIG_TULIP_USE_IO
PCI_COMMAND_IO |
#else
PCI_COMMAND_MEMORY |
#endif
PCI_COMMAND_MASTER;
pci_write_config_word(devbusfn, PCI_COMMAND, status);
pci_read_config_word(devbusfn, PCI_COMMAND, &status);
#ifdef CONFIG_TULIP_USE_IO
if (!(status & PCI_COMMAND_IO)) {
printf("Error: Can not enable I/O access.\n");
continue;
}
#else
if (!(status & PCI_COMMAND_MEMORY)) {
printf("Error: Can not enable MEMORY access.\n");
continue;
}
#endif
if (!(status & PCI_COMMAND_MASTER)) {
printf("Error: Can not enable Bus Mastering.\n");
continue;
}
/* Check the latency timer for values >= 0x60. */
pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
if (timer < 0x60) {
pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
}
#ifdef CONFIG_TULIP_USE_IO
/* read BAR for memory space access */
pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
iobase &= PCI_BASE_ADDRESS_IO_MASK;
#else
/* read BAR for memory space access */
pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
iobase &= PCI_BASE_ADDRESS_MEM_MASK;
#endif
debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
dev = (struct eth_device*) malloc(sizeof *dev);
if (!dev) {
printf("Can not allocalte memory of dc21x4x\n");
break;
}
memset(dev, 0, sizeof(*dev));
#ifdef CONFIG_TULIP_FIX_DAVICOM
sprintf(dev->name, "Davicom#%d", card_number);
#else
sprintf(dev->name, "dc21x4x#%d", card_number);
#endif
#ifdef CONFIG_TULIP_USE_IO
dev->iobase = pci_io_to_phys(devbusfn, iobase);
#else
dev->iobase = pci_mem_to_phys(devbusfn, iobase);
#endif
dev->priv = (void*) devbusfn;
dev->init = dc21x4x_init;
dev->halt = dc21x4x_halt;
dev->send = dc21x4x_send;
dev->recv = dc21x4x_recv;
/* Ensure we're not sleeping. */
pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
udelay(10 * 1000);
#ifndef CONFIG_TULIP_FIX_DAVICOM
read_hw_addr(dev, bis);
#endif
eth_register(dev);
card_number++;
}
return card_number;
}
static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
{
int i;
int devbusfn = (int) dev->priv;
/* Ensure we're not sleeping. */
pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
#ifdef CONFIG_TULIP_FIX_DAVICOM
RESET_DM9102(dev);
#else
RESET_DE4X5(dev);
#endif
if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
printf("Error: Cannot reset ethernet controller.\n");
return -1;
}
#ifdef CONFIG_TULIP_SELECT_MEDIA
dc21x4x_select_media(dev);
#else
OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
#endif
for (i = 0; i < NUM_RX_DESC; i++) {
rx_ring[i].status = cpu_to_le32(R_OWN);
rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
rx_ring[i].buf = cpu_to_le32(
phys_to_bus((u32)net_rx_packets[i]));
#ifdef CONFIG_TULIP_FIX_DAVICOM
rx_ring[i].next = cpu_to_le32(
phys_to_bus((u32)&rx_ring[(i + 1) % NUM_RX_DESC]));
#else
rx_ring[i].next = 0;
#endif
}
for (i=0; i < NUM_TX_DESC; i++) {
tx_ring[i].status = 0;
tx_ring[i].des1 = 0;
tx_ring[i].buf = 0;
#ifdef CONFIG_TULIP_FIX_DAVICOM
tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
#else
tx_ring[i].next = 0;
#endif
}
rxRingSize = NUM_RX_DESC;
txRingSize = NUM_TX_DESC;
/* Write the end of list marker to the descriptor lists. */
rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
/* Tell the adapter where the TX/RX rings are located. */
OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
START_DE4X5(dev);
tx_new = 0;
rx_new = 0;
send_setup_frame(dev, bis);
return 0;
}
static int dc21x4x_send(struct eth_device *dev, void *packet, int length)
{
int status = -1;
int i;
if (length <= 0) {
printf("%s: bad packet size: %d\n", dev->name, length);
goto Done;
}
for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i >= TOUT_LOOP) {
printf("%s: tx error buffer not ready\n", dev->name);
goto Done;
}
}
tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet));
tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
tx_ring[tx_new].status = cpu_to_le32(T_OWN);
OUTL(dev, POLL_DEMAND, DE4X5_TPD);
for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i >= TOUT_LOOP) {
printf(".%s: tx buffer not ready\n", dev->name);
goto Done;
}
}
if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
#if 0 /* test-only */
printf("TX error status = 0x%08X\n",
le32_to_cpu(tx_ring[tx_new].status));
#endif
tx_ring[tx_new].status = 0x0;
goto Done;
}
status = length;
Done:
tx_new = (tx_new+1) % NUM_TX_DESC;
return status;
}
static int dc21x4x_recv(struct eth_device* dev)
{
s32 status;
int length = 0;
for ( ; ; ) {
status = (s32)le32_to_cpu(rx_ring[rx_new].status);
if (status & R_OWN) {
break;
}
if (status & RD_LS) {
/* Valid frame status.
*/
if (status & RD_ES) {
/* There was an error.
*/
printf("RX error status = 0x%08X\n", status);
} else {
/* A valid frame received.
*/
length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
/* Pass the packet up to the protocol
* layers.
*/
net_process_received_packet(
net_rx_packets[rx_new], length - 4);
}
/* Change buffer ownership for this frame, back
* to the adapter.
*/
rx_ring[rx_new].status = cpu_to_le32(R_OWN);
}
/* Update entry information.
*/
rx_new = (rx_new + 1) % rxRingSize;
}
return length;
}
static void dc21x4x_halt(struct eth_device* dev)
{
int devbusfn = (int) dev->priv;
STOP_DE4X5(dev);
OUTL(dev, 0, DE4X5_SICR);
pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
}
static void send_setup_frame(struct eth_device* dev, bd_t *bis)
{
int i;
char setup_frame[SETUP_FRAME_LEN];
char *pa = &setup_frame[0];
memset(pa, 0xff, SETUP_FRAME_LEN);
for (i = 0; i < ETH_ALEN; i++) {
*(pa + (i & 1)) = dev->enetaddr[i];
if (i & 0x01) {
pa += 4;
}
}
for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i >= TOUT_LOOP) {
printf("%s: tx error buffer not ready\n", dev->name);
goto Done;
}
}
tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
tx_ring[tx_new].status = cpu_to_le32(T_OWN);
OUTL(dev, POLL_DEMAND, DE4X5_TPD);
for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i >= TOUT_LOOP) {
printf("%s: tx buffer not ready\n", dev->name);
goto Done;
}
}
if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
}
tx_new = (tx_new+1) % NUM_TX_DESC;
Done:
return;
}
#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
/* SROM Read and write routines.
*/
static void
sendto_srom(struct eth_device* dev, u_int command, u_long addr)
{
OUTL(dev, command, addr);
udelay(1);
}
static int
getfrom_srom(struct eth_device* dev, u_long addr)
{
s32 tmp;
tmp = INL(dev, addr);
udelay(1);
return tmp;
}
/* Note: this routine returns extra data bits for size detection. */
static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
{
int i;
unsigned retval = 0;
int read_cmd = location | (SROM_READ_CMD << addr_len);
sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
#ifdef DEBUG_SROM
printf(" EEPROM read at %d ", location);
#endif
/* Shift the read command bits out. */
for (i = 4 + addr_len; i >= 0; i--) {
short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
udelay(10);
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
udelay(10);
#ifdef DEBUG_SROM2
printf("%X", getfrom_srom(dev, ioaddr) & 15);
#endif
retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
}
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
#ifdef DEBUG_SROM2
printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
#endif
for (i = 16; i > 0; i--) {
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
udelay(10);
#ifdef DEBUG_SROM2
printf("%X", getfrom_srom(dev, ioaddr) & 15);
#endif
retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
udelay(10);
}
/* Terminate the EEPROM access. */
sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
#ifdef DEBUG_SROM2
printf(" EEPROM value at %d is %5.5x.\n", location, retval);
#endif
return retval;
}
#endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
/* This executes a generic EEPROM command, typically a write or write
* enable. It returns the data output from the EEPROM, and thus may
* also be used for reads.
*/
#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
{
unsigned retval = 0;
#ifdef DEBUG_SROM
printf(" EEPROM op 0x%x: ", cmd);
#endif
sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
/* Shift the command bits out. */
do {
short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
sendto_srom(dev,dataval, ioaddr);
udelay(10);
#ifdef DEBUG_SROM2
printf("%X", getfrom_srom(dev,ioaddr) & 15);
#endif
sendto_srom(dev,dataval | DT_CLK, ioaddr);
udelay(10);
retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
} while (--cmd_len >= 0);
sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
/* Terminate the EEPROM access. */
sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
#ifdef DEBUG_SROM
printf(" EEPROM result is 0x%5.5x.\n", retval);
#endif
return retval;
}
#endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
#ifndef CONFIG_TULIP_FIX_DAVICOM
static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
{
int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
return do_eeprom_cmd(dev, ioaddr,
(((SROM_READ_CMD << ee_addr_size) | index) << 16)
| 0xffff, 3 + ee_addr_size + 16);
}
#endif /* CONFIG_TULIP_FIX_DAVICOM */
#ifdef UPDATE_SROM
static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
{
int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
int i;
unsigned short newval;
udelay(10*1000); /* test-only */
#ifdef DEBUG_SROM
printf("ee_addr_size=%d.\n", ee_addr_size);
printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
#endif
/* Enable programming modes. */
do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
/* Do the actual write. */
do_eeprom_cmd(dev, ioaddr,
(((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
3 + ee_addr_size + 16);
/* Poll for write finished. */
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
for (i = 0; i < 10000; i++) /* Typical 2000 ticks */
if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
break;
#ifdef DEBUG_SROM
printf(" Write finished after %d ticks.\n", i);
#endif
/* Disable programming. */
do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
/* And read the result. */
newval = do_eeprom_cmd(dev, ioaddr,
(((SROM_READ_CMD<<ee_addr_size)|index) << 16)
| 0xffff, 3 + ee_addr_size + 16);
#ifdef DEBUG_SROM
printf(" New value at offset %d is %4.4x.\n", index, newval);
#endif
return 1;
}
#endif
#ifndef CONFIG_TULIP_FIX_DAVICOM
static void read_hw_addr(struct eth_device *dev, bd_t *bis)
{
u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
int i, j = 0;
for (i = 0; i < (ETH_ALEN >> 1); i++) {
tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
*p = le16_to_cpu(tmp);
j += *p++;
}
if ((j == 0) || (j == 0x2fffd)) {
memset (dev->enetaddr, 0, ETH_ALEN);
debug ("Warning: can't read HW address from SROM.\n");
goto Done;
}
return;
Done:
#ifdef UPDATE_SROM
update_srom(dev, bis);
#endif
return;
}
#endif /* CONFIG_TULIP_FIX_DAVICOM */
#ifdef UPDATE_SROM
static void update_srom(struct eth_device *dev, bd_t *bis)
{
int i;
static unsigned short eeprom[0x40] = {
0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
};
uchar enetaddr[6];
/* Ethernet Addr... */
if (!eth_env_get_enetaddr("ethaddr", enetaddr))
return;
eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
for (i=0; i<0x40; i++) {
write_srom(dev, DE4X5_APROM, i, eeprom[i]);
}
}
#endif /* UPDATE_SROM */