mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-08 22:24:32 +00:00
fa64df4602
Introduce disable_ipu_clock(). This is done in preparation for configuring the NoC registers on i.MX6QP in SPL. Afer the NoC registers are set the IPU clocks can be disabled. Signed-off-by: Fabio Estevam <festevam@gmail.com> Reviewed-by: Peng Fan <peng.fan@nxp.com>
1497 lines
38 KiB
C
1497 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <div64.h>
|
|
#include <asm/io.h>
|
|
#include <linux/errno.h>
|
|
#include <asm/arch/imx-regs.h>
|
|
#include <asm/arch/crm_regs.h>
|
|
#include <asm/arch/clock.h>
|
|
#include <asm/arch/sys_proto.h>
|
|
|
|
enum pll_clocks {
|
|
PLL_SYS, /* System PLL */
|
|
PLL_BUS, /* System Bus PLL*/
|
|
PLL_USBOTG, /* OTG USB PLL */
|
|
PLL_ENET, /* ENET PLL */
|
|
PLL_AUDIO, /* AUDIO PLL */
|
|
PLL_VIDEO, /* VIDEO PLL */
|
|
};
|
|
|
|
struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
|
|
|
|
#ifdef CONFIG_MXC_OCOTP
|
|
void enable_ocotp_clk(unsigned char enable)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = __raw_readl(&imx_ccm->CCGR2);
|
|
if (enable)
|
|
reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
|
|
else
|
|
reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
|
|
__raw_writel(reg, &imx_ccm->CCGR2);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_NAND_MXS
|
|
void setup_gpmi_io_clk(u32 cfg)
|
|
{
|
|
/* Disable clocks per ERR007177 from MX6 errata */
|
|
clrbits_le32(&imx_ccm->CCGR4,
|
|
MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
|
|
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
|
|
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
|
|
MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
|
|
MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
|
|
|
|
#if defined(CONFIG_MX6SX)
|
|
clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
|
|
|
|
clrsetbits_le32(&imx_ccm->cs2cdr,
|
|
MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
|
|
MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
|
|
MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK,
|
|
cfg);
|
|
|
|
setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
|
|
#else
|
|
clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
|
|
|
|
clrsetbits_le32(&imx_ccm->cs2cdr,
|
|
MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |
|
|
MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |
|
|
MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK,
|
|
cfg);
|
|
|
|
setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
|
|
#endif
|
|
setbits_le32(&imx_ccm->CCGR4,
|
|
MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
|
|
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
|
|
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
|
|
MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
|
|
MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
|
|
}
|
|
#endif
|
|
|
|
void enable_usboh3_clk(unsigned char enable)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = __raw_readl(&imx_ccm->CCGR6);
|
|
if (enable)
|
|
reg |= MXC_CCM_CCGR6_USBOH3_MASK;
|
|
else
|
|
reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
|
|
__raw_writel(reg, &imx_ccm->CCGR6);
|
|
|
|
}
|
|
|
|
#if defined(CONFIG_FEC_MXC) && !defined(CONFIG_MX6SX)
|
|
void enable_enet_clk(unsigned char enable)
|
|
{
|
|
u32 mask, *addr;
|
|
|
|
if (is_mx6ull()) {
|
|
mask = MXC_CCM_CCGR0_ENET_CLK_ENABLE_MASK;
|
|
addr = &imx_ccm->CCGR0;
|
|
} else if (is_mx6ul()) {
|
|
mask = MXC_CCM_CCGR3_ENET_MASK;
|
|
addr = &imx_ccm->CCGR3;
|
|
} else {
|
|
mask = MXC_CCM_CCGR1_ENET_MASK;
|
|
addr = &imx_ccm->CCGR1;
|
|
}
|
|
|
|
if (enable)
|
|
setbits_le32(addr, mask);
|
|
else
|
|
clrbits_le32(addr, mask);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MXC_UART
|
|
void enable_uart_clk(unsigned char enable)
|
|
{
|
|
u32 mask;
|
|
|
|
if (is_mx6ul() || is_mx6ull())
|
|
mask = MXC_CCM_CCGR5_UART_MASK;
|
|
else
|
|
mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK;
|
|
|
|
if (enable)
|
|
setbits_le32(&imx_ccm->CCGR5, mask);
|
|
else
|
|
clrbits_le32(&imx_ccm->CCGR5, mask);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MMC
|
|
int enable_usdhc_clk(unsigned char enable, unsigned bus_num)
|
|
{
|
|
u32 mask;
|
|
|
|
if (bus_num > 3)
|
|
return -EINVAL;
|
|
|
|
mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2);
|
|
if (enable)
|
|
setbits_le32(&imx_ccm->CCGR6, mask);
|
|
else
|
|
clrbits_le32(&imx_ccm->CCGR6, mask);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SYS_I2C_MXC
|
|
/* i2c_num can be from 0 - 3 */
|
|
int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
|
|
{
|
|
u32 reg;
|
|
u32 mask;
|
|
u32 *addr;
|
|
|
|
if (i2c_num > 3)
|
|
return -EINVAL;
|
|
if (i2c_num < 3) {
|
|
mask = MXC_CCM_CCGR_CG_MASK
|
|
<< (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET
|
|
+ (i2c_num << 1));
|
|
reg = __raw_readl(&imx_ccm->CCGR2);
|
|
if (enable)
|
|
reg |= mask;
|
|
else
|
|
reg &= ~mask;
|
|
__raw_writel(reg, &imx_ccm->CCGR2);
|
|
} else {
|
|
if (is_mx6sll())
|
|
return -EINVAL;
|
|
if (is_mx6sx() || is_mx6ul() || is_mx6ull()) {
|
|
mask = MXC_CCM_CCGR6_I2C4_MASK;
|
|
addr = &imx_ccm->CCGR6;
|
|
} else {
|
|
mask = MXC_CCM_CCGR1_I2C4_SERIAL_MASK;
|
|
addr = &imx_ccm->CCGR1;
|
|
}
|
|
reg = __raw_readl(addr);
|
|
if (enable)
|
|
reg |= mask;
|
|
else
|
|
reg &= ~mask;
|
|
__raw_writel(reg, addr);
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* spi_num can be from 0 - SPI_MAX_NUM */
|
|
int enable_spi_clk(unsigned char enable, unsigned spi_num)
|
|
{
|
|
u32 reg;
|
|
u32 mask;
|
|
|
|
if (spi_num > SPI_MAX_NUM)
|
|
return -EINVAL;
|
|
|
|
mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1);
|
|
reg = __raw_readl(&imx_ccm->CCGR1);
|
|
if (enable)
|
|
reg |= mask;
|
|
else
|
|
reg &= ~mask;
|
|
__raw_writel(reg, &imx_ccm->CCGR1);
|
|
return 0;
|
|
}
|
|
static u32 decode_pll(enum pll_clocks pll, u32 infreq)
|
|
{
|
|
u32 div, test_div, pll_num, pll_denom;
|
|
|
|
switch (pll) {
|
|
case PLL_SYS:
|
|
div = __raw_readl(&imx_ccm->analog_pll_sys);
|
|
div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
|
|
|
|
return (infreq * div) >> 1;
|
|
case PLL_BUS:
|
|
div = __raw_readl(&imx_ccm->analog_pll_528);
|
|
div &= BM_ANADIG_PLL_528_DIV_SELECT;
|
|
|
|
return infreq * (20 + (div << 1));
|
|
case PLL_USBOTG:
|
|
div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
|
|
div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
|
|
|
|
return infreq * (20 + (div << 1));
|
|
case PLL_ENET:
|
|
div = __raw_readl(&imx_ccm->analog_pll_enet);
|
|
div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
|
|
|
|
return 25000000 * (div + (div >> 1) + 1);
|
|
case PLL_AUDIO:
|
|
div = __raw_readl(&imx_ccm->analog_pll_audio);
|
|
if (!(div & BM_ANADIG_PLL_AUDIO_ENABLE))
|
|
return 0;
|
|
/* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
|
|
if (div & BM_ANADIG_PLL_AUDIO_BYPASS)
|
|
return MXC_HCLK;
|
|
pll_num = __raw_readl(&imx_ccm->analog_pll_audio_num);
|
|
pll_denom = __raw_readl(&imx_ccm->analog_pll_audio_denom);
|
|
test_div = (div & BM_ANADIG_PLL_AUDIO_TEST_DIV_SELECT) >>
|
|
BP_ANADIG_PLL_AUDIO_TEST_DIV_SELECT;
|
|
div &= BM_ANADIG_PLL_AUDIO_DIV_SELECT;
|
|
if (test_div == 3) {
|
|
debug("Error test_div\n");
|
|
return 0;
|
|
}
|
|
test_div = 1 << (2 - test_div);
|
|
|
|
return infreq * (div + pll_num / pll_denom) / test_div;
|
|
case PLL_VIDEO:
|
|
div = __raw_readl(&imx_ccm->analog_pll_video);
|
|
if (!(div & BM_ANADIG_PLL_VIDEO_ENABLE))
|
|
return 0;
|
|
/* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
|
|
if (div & BM_ANADIG_PLL_VIDEO_BYPASS)
|
|
return MXC_HCLK;
|
|
pll_num = __raw_readl(&imx_ccm->analog_pll_video_num);
|
|
pll_denom = __raw_readl(&imx_ccm->analog_pll_video_denom);
|
|
test_div = (div & BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT) >>
|
|
BP_ANADIG_PLL_VIDEO_POST_DIV_SELECT;
|
|
div &= BM_ANADIG_PLL_VIDEO_DIV_SELECT;
|
|
if (test_div == 3) {
|
|
debug("Error test_div\n");
|
|
return 0;
|
|
}
|
|
test_div = 1 << (2 - test_div);
|
|
|
|
return infreq * (div + pll_num / pll_denom) / test_div;
|
|
default:
|
|
return 0;
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
|
|
{
|
|
u32 div;
|
|
u64 freq;
|
|
|
|
switch (pll) {
|
|
case PLL_BUS:
|
|
if (!is_mx6ul() && !is_mx6ull()) {
|
|
if (pfd_num == 3) {
|
|
/* No PFD3 on PLL2 */
|
|
return 0;
|
|
}
|
|
}
|
|
div = __raw_readl(&imx_ccm->analog_pfd_528);
|
|
freq = (u64)decode_pll(PLL_BUS, MXC_HCLK);
|
|
break;
|
|
case PLL_USBOTG:
|
|
div = __raw_readl(&imx_ccm->analog_pfd_480);
|
|
freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
|
|
break;
|
|
default:
|
|
/* No PFD on other PLL */
|
|
return 0;
|
|
}
|
|
|
|
return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
|
|
ANATOP_PFD_FRAC_SHIFT(pfd_num));
|
|
}
|
|
|
|
static u32 get_mcu_main_clk(void)
|
|
{
|
|
u32 reg, freq;
|
|
|
|
reg = __raw_readl(&imx_ccm->cacrr);
|
|
reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
|
|
reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
|
|
freq = decode_pll(PLL_SYS, MXC_HCLK);
|
|
|
|
return freq / (reg + 1);
|
|
}
|
|
|
|
u32 get_periph_clk(void)
|
|
{
|
|
u32 reg, div = 0, freq = 0;
|
|
|
|
reg = __raw_readl(&imx_ccm->cbcdr);
|
|
if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
|
|
div = (reg & MXC_CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >>
|
|
MXC_CCM_CBCDR_PERIPH_CLK2_PODF_OFFSET;
|
|
reg = __raw_readl(&imx_ccm->cbcmr);
|
|
reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
|
|
reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
|
|
|
|
switch (reg) {
|
|
case 0:
|
|
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
freq = MXC_HCLK;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
reg = __raw_readl(&imx_ccm->cbcmr);
|
|
reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
|
|
reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
|
|
|
|
switch (reg) {
|
|
case 0:
|
|
freq = decode_pll(PLL_BUS, MXC_HCLK);
|
|
break;
|
|
case 1:
|
|
freq = mxc_get_pll_pfd(PLL_BUS, 2);
|
|
break;
|
|
case 2:
|
|
freq = mxc_get_pll_pfd(PLL_BUS, 0);
|
|
break;
|
|
case 3:
|
|
/* static / 2 divider */
|
|
freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return freq / (div + 1);
|
|
}
|
|
|
|
static u32 get_ipg_clk(void)
|
|
{
|
|
u32 reg, ipg_podf;
|
|
|
|
reg = __raw_readl(&imx_ccm->cbcdr);
|
|
reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
|
|
ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
|
|
|
|
return get_ahb_clk() / (ipg_podf + 1);
|
|
}
|
|
|
|
static u32 get_ipg_per_clk(void)
|
|
{
|
|
u32 reg, perclk_podf;
|
|
|
|
reg = __raw_readl(&imx_ccm->cscmr1);
|
|
if (is_mx6sll() || is_mx6sl() || is_mx6sx() ||
|
|
is_mx6dqp() || is_mx6ul() || is_mx6ull()) {
|
|
if (reg & MXC_CCM_CSCMR1_PER_CLK_SEL_MASK)
|
|
return MXC_HCLK; /* OSC 24Mhz */
|
|
}
|
|
|
|
perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
|
|
|
|
return get_ipg_clk() / (perclk_podf + 1);
|
|
}
|
|
|
|
static u32 get_uart_clk(void)
|
|
{
|
|
u32 reg, uart_podf;
|
|
u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
|
|
reg = __raw_readl(&imx_ccm->cscdr1);
|
|
|
|
if (is_mx6sl() || is_mx6sx() || is_mx6dqp() || is_mx6ul() ||
|
|
is_mx6sll() || is_mx6ull()) {
|
|
if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
|
|
freq = MXC_HCLK;
|
|
}
|
|
|
|
reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
|
|
uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
|
|
|
|
return freq / (uart_podf + 1);
|
|
}
|
|
|
|
static u32 get_cspi_clk(void)
|
|
{
|
|
u32 reg, cspi_podf;
|
|
|
|
reg = __raw_readl(&imx_ccm->cscdr2);
|
|
cspi_podf = (reg & MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK) >>
|
|
MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
|
|
|
|
if (is_mx6dqp() || is_mx6sl() || is_mx6sx() || is_mx6ul() ||
|
|
is_mx6sll() || is_mx6ull()) {
|
|
if (reg & MXC_CCM_CSCDR2_ECSPI_CLK_SEL_MASK)
|
|
return MXC_HCLK / (cspi_podf + 1);
|
|
}
|
|
|
|
return decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
|
|
}
|
|
|
|
static u32 get_axi_clk(void)
|
|
{
|
|
u32 root_freq, axi_podf;
|
|
u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
|
|
|
|
axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
|
|
axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
|
|
|
|
if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
|
|
if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
|
|
root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
|
|
else
|
|
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
|
|
} else
|
|
root_freq = get_periph_clk();
|
|
|
|
return root_freq / (axi_podf + 1);
|
|
}
|
|
|
|
static u32 get_emi_slow_clk(void)
|
|
{
|
|
u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
|
|
|
|
cscmr1 = __raw_readl(&imx_ccm->cscmr1);
|
|
emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
|
|
emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
|
|
emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
|
|
emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
|
|
|
|
switch (emi_clk_sel) {
|
|
case 0:
|
|
root_freq = get_axi_clk();
|
|
break;
|
|
case 1:
|
|
root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
|
|
break;
|
|
case 2:
|
|
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
|
|
break;
|
|
case 3:
|
|
root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
|
|
break;
|
|
}
|
|
|
|
return root_freq / (emi_slow_podf + 1);
|
|
}
|
|
|
|
static u32 get_mmdc_ch0_clk(void)
|
|
{
|
|
u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
|
|
u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
|
|
|
|
u32 freq, podf, per2_clk2_podf, pmu_misc2_audio_div;
|
|
|
|
if (is_mx6sx() || is_mx6ul() || is_mx6ull() || is_mx6sl() ||
|
|
is_mx6sll()) {
|
|
podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) >>
|
|
MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
|
|
if (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK_SEL) {
|
|
per2_clk2_podf = (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_MASK) >>
|
|
MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_OFFSET;
|
|
if (is_mx6sl()) {
|
|
if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
|
|
freq = MXC_HCLK;
|
|
else
|
|
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
|
|
} else {
|
|
if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
|
|
freq = decode_pll(PLL_BUS, MXC_HCLK);
|
|
else
|
|
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
|
|
}
|
|
} else {
|
|
per2_clk2_podf = 0;
|
|
switch ((cbcmr &
|
|
MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
|
|
MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
|
|
case 0:
|
|
freq = decode_pll(PLL_BUS, MXC_HCLK);
|
|
break;
|
|
case 1:
|
|
freq = mxc_get_pll_pfd(PLL_BUS, 2);
|
|
break;
|
|
case 2:
|
|
freq = mxc_get_pll_pfd(PLL_BUS, 0);
|
|
break;
|
|
case 3:
|
|
if (is_mx6sl()) {
|
|
freq = mxc_get_pll_pfd(PLL_BUS, 2) >> 1;
|
|
break;
|
|
}
|
|
|
|
pmu_misc2_audio_div = PMU_MISC2_AUDIO_DIV(__raw_readl(&imx_ccm->pmu_misc2));
|
|
switch (pmu_misc2_audio_div) {
|
|
case 0:
|
|
case 2:
|
|
pmu_misc2_audio_div = 1;
|
|
break;
|
|
case 1:
|
|
pmu_misc2_audio_div = 2;
|
|
break;
|
|
case 3:
|
|
pmu_misc2_audio_div = 4;
|
|
break;
|
|
}
|
|
freq = decode_pll(PLL_AUDIO, MXC_HCLK) /
|
|
pmu_misc2_audio_div;
|
|
break;
|
|
}
|
|
}
|
|
return freq / (podf + 1) / (per2_clk2_podf + 1);
|
|
} else {
|
|
podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
|
|
MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
|
|
return get_periph_clk() / (podf + 1);
|
|
}
|
|
}
|
|
|
|
#if defined(CONFIG_VIDEO_MXS)
|
|
static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
|
|
u32 post_div)
|
|
{
|
|
u32 reg = 0;
|
|
ulong start;
|
|
|
|
debug("pll5 div = %d, num = %d, denom = %d\n",
|
|
pll_div, pll_num, pll_denom);
|
|
|
|
/* Power up PLL5 video */
|
|
writel(BM_ANADIG_PLL_VIDEO_POWERDOWN |
|
|
BM_ANADIG_PLL_VIDEO_BYPASS |
|
|
BM_ANADIG_PLL_VIDEO_DIV_SELECT |
|
|
BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT,
|
|
&imx_ccm->analog_pll_video_clr);
|
|
|
|
/* Set div, num and denom */
|
|
switch (post_div) {
|
|
case 1:
|
|
writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
|
|
BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x2),
|
|
&imx_ccm->analog_pll_video_set);
|
|
break;
|
|
case 2:
|
|
writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
|
|
BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x1),
|
|
&imx_ccm->analog_pll_video_set);
|
|
break;
|
|
case 4:
|
|
writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
|
|
BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x0),
|
|
&imx_ccm->analog_pll_video_set);
|
|
break;
|
|
default:
|
|
puts("Wrong test_div!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
writel(BF_ANADIG_PLL_VIDEO_NUM_A(pll_num),
|
|
&imx_ccm->analog_pll_video_num);
|
|
writel(BF_ANADIG_PLL_VIDEO_DENOM_B(pll_denom),
|
|
&imx_ccm->analog_pll_video_denom);
|
|
|
|
/* Wait PLL5 lock */
|
|
start = get_timer(0); /* Get current timestamp */
|
|
|
|
do {
|
|
reg = readl(&imx_ccm->analog_pll_video);
|
|
if (reg & BM_ANADIG_PLL_VIDEO_LOCK) {
|
|
/* Enable PLL out */
|
|
writel(BM_ANADIG_PLL_VIDEO_ENABLE,
|
|
&imx_ccm->analog_pll_video_set);
|
|
return 0;
|
|
}
|
|
} while (get_timer(0) < (start + 10)); /* Wait 10ms */
|
|
|
|
puts("Lock PLL5 timeout\n");
|
|
|
|
return -ETIME;
|
|
}
|
|
|
|
/*
|
|
* 24M--> PLL_VIDEO -> LCDIFx_PRED -> LCDIFx_PODF -> LCD
|
|
*
|
|
* 'freq' using KHz as unit, see driver/video/mxsfb.c.
|
|
*/
|
|
void mxs_set_lcdclk(u32 base_addr, u32 freq)
|
|
{
|
|
u32 reg = 0;
|
|
u32 hck = MXC_HCLK / 1000;
|
|
/* DIV_SELECT ranges from 27 to 54 */
|
|
u32 min = hck * 27;
|
|
u32 max = hck * 54;
|
|
u32 temp, best = 0;
|
|
u32 i, j, max_pred = 8, max_postd = 8, pred = 1, postd = 1;
|
|
u32 pll_div, pll_num, pll_denom, post_div = 1;
|
|
|
|
debug("mxs_set_lcdclk, freq = %dKHz\n", freq);
|
|
|
|
if (!is_mx6sx() && !is_mx6ul() && !is_mx6ull() && !is_mx6sl() &&
|
|
!is_mx6sll()) {
|
|
debug("This chip not support lcd!\n");
|
|
return;
|
|
}
|
|
|
|
if (!is_mx6sl()) {
|
|
if (base_addr == LCDIF1_BASE_ADDR) {
|
|
reg = readl(&imx_ccm->cscdr2);
|
|
/* Can't change clocks when clock not from pre-mux */
|
|
if ((reg & MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK) != 0)
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (is_mx6sx()) {
|
|
reg = readl(&imx_ccm->cscdr2);
|
|
/* Can't change clocks when clock not from pre-mux */
|
|
if ((reg & MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK) != 0)
|
|
return;
|
|
}
|
|
|
|
temp = freq * max_pred * max_postd;
|
|
if (temp < min) {
|
|
/*
|
|
* Register: PLL_VIDEO
|
|
* Bit Field: POST_DIV_SELECT
|
|
* 00 — Divide by 4.
|
|
* 01 — Divide by 2.
|
|
* 10 — Divide by 1.
|
|
* 11 — Reserved
|
|
* No need to check post_div(1)
|
|
*/
|
|
for (post_div = 2; post_div <= 4; post_div <<= 1) {
|
|
if ((temp * post_div) > min) {
|
|
freq *= post_div;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (post_div > 4) {
|
|
printf("Fail to set rate to %dkhz", freq);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Choose the best pred and postd to match freq for lcd */
|
|
for (i = 1; i <= max_pred; i++) {
|
|
for (j = 1; j <= max_postd; j++) {
|
|
temp = freq * i * j;
|
|
if (temp > max || temp < min)
|
|
continue;
|
|
if (best == 0 || temp < best) {
|
|
best = temp;
|
|
pred = i;
|
|
postd = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (best == 0) {
|
|
printf("Fail to set rate to %dKHz", freq);
|
|
return;
|
|
}
|
|
|
|
debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
|
|
|
|
pll_div = best / hck;
|
|
pll_denom = 1000000;
|
|
pll_num = (best - hck * pll_div) * pll_denom / hck;
|
|
|
|
/*
|
|
* pll_num
|
|
* (24MHz * (pll_div + --------- ))
|
|
* pll_denom
|
|
*freq KHz = --------------------------------
|
|
* post_div * pred * postd * 1000
|
|
*/
|
|
|
|
if (base_addr == LCDIF1_BASE_ADDR) {
|
|
if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
|
|
return;
|
|
|
|
enable_lcdif_clock(base_addr, 0);
|
|
if (!is_mx6sl()) {
|
|
/* Select pre-lcd clock to PLL5 and set pre divider */
|
|
clrsetbits_le32(&imx_ccm->cscdr2,
|
|
MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_MASK |
|
|
MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_MASK,
|
|
(0x2 << MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_OFFSET) |
|
|
((pred - 1) <<
|
|
MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_OFFSET));
|
|
|
|
/* Set the post divider */
|
|
clrsetbits_le32(&imx_ccm->cbcmr,
|
|
MXC_CCM_CBCMR_LCDIF1_PODF_MASK,
|
|
((postd - 1) <<
|
|
MXC_CCM_CBCMR_LCDIF1_PODF_OFFSET));
|
|
} else {
|
|
/* Select pre-lcd clock to PLL5 and set pre divider */
|
|
clrsetbits_le32(&imx_ccm->cscdr2,
|
|
MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_MASK |
|
|
MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_MASK,
|
|
(0x2 << MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_OFFSET) |
|
|
((pred - 1) <<
|
|
MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_OFFSET));
|
|
|
|
/* Set the post divider */
|
|
clrsetbits_le32(&imx_ccm->cscmr1,
|
|
MXC_CCM_CSCMR1_LCDIF_PIX_PODF_MASK,
|
|
(((postd - 1)^0x6) <<
|
|
MXC_CCM_CSCMR1_LCDIF_PIX_PODF_OFFSET));
|
|
}
|
|
|
|
enable_lcdif_clock(base_addr, 1);
|
|
} else if (is_mx6sx()) {
|
|
/* Setting LCDIF2 for i.MX6SX */
|
|
if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
|
|
return;
|
|
|
|
enable_lcdif_clock(base_addr, 0);
|
|
/* Select pre-lcd clock to PLL5 and set pre divider */
|
|
clrsetbits_le32(&imx_ccm->cscdr2,
|
|
MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_MASK |
|
|
MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_MASK,
|
|
(0x2 << MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_OFFSET) |
|
|
((pred - 1) <<
|
|
MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_OFFSET));
|
|
|
|
/* Set the post divider */
|
|
clrsetbits_le32(&imx_ccm->cscmr1,
|
|
MXC_CCM_CSCMR1_LCDIF2_PODF_MASK,
|
|
((postd - 1) <<
|
|
MXC_CCM_CSCMR1_LCDIF2_PODF_OFFSET));
|
|
|
|
enable_lcdif_clock(base_addr, 1);
|
|
}
|
|
}
|
|
|
|
int enable_lcdif_clock(u32 base_addr, bool enable)
|
|
{
|
|
u32 reg = 0;
|
|
u32 lcdif_clk_sel_mask, lcdif_ccgr3_mask;
|
|
|
|
if (is_mx6sx()) {
|
|
if ((base_addr != LCDIF1_BASE_ADDR) &&
|
|
(base_addr != LCDIF2_BASE_ADDR)) {
|
|
puts("Wrong LCD interface!\n");
|
|
return -EINVAL;
|
|
}
|
|
/* Set to pre-mux clock at default */
|
|
lcdif_clk_sel_mask = (base_addr == LCDIF2_BASE_ADDR) ?
|
|
MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK :
|
|
MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
|
|
lcdif_ccgr3_mask = (base_addr == LCDIF2_BASE_ADDR) ?
|
|
(MXC_CCM_CCGR3_LCDIF2_PIX_MASK |
|
|
MXC_CCM_CCGR3_DISP_AXI_MASK) :
|
|
(MXC_CCM_CCGR3_LCDIF1_PIX_MASK |
|
|
MXC_CCM_CCGR3_DISP_AXI_MASK);
|
|
} else if (is_mx6ul() || is_mx6ull() || is_mx6sll()) {
|
|
if (base_addr != LCDIF1_BASE_ADDR) {
|
|
puts("Wrong LCD interface!\n");
|
|
return -EINVAL;
|
|
}
|
|
/* Set to pre-mux clock at default */
|
|
lcdif_clk_sel_mask = MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
|
|
lcdif_ccgr3_mask = MXC_CCM_CCGR3_LCDIF1_PIX_MASK;
|
|
} else if (is_mx6sl()) {
|
|
if (base_addr != LCDIF1_BASE_ADDR) {
|
|
puts("Wrong LCD interface!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
reg = readl(&imx_ccm->CCGR3);
|
|
reg &= ~(MXC_CCM_CCGR3_LCDIF_AXI_MASK |
|
|
MXC_CCM_CCGR3_LCDIF_PIX_MASK);
|
|
writel(reg, &imx_ccm->CCGR3);
|
|
|
|
if (enable) {
|
|
reg = readl(&imx_ccm->cscdr3);
|
|
reg &= ~MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_MASK;
|
|
reg |= 1 << MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_OFFSET;
|
|
writel(reg, &imx_ccm->cscdr3);
|
|
|
|
reg = readl(&imx_ccm->CCGR3);
|
|
reg |= MXC_CCM_CCGR3_LCDIF_AXI_MASK |
|
|
MXC_CCM_CCGR3_LCDIF_PIX_MASK;
|
|
writel(reg, &imx_ccm->CCGR3);
|
|
}
|
|
|
|
return 0;
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
/* Gate LCDIF clock first */
|
|
reg = readl(&imx_ccm->CCGR3);
|
|
reg &= ~lcdif_ccgr3_mask;
|
|
writel(reg, &imx_ccm->CCGR3);
|
|
|
|
reg = readl(&imx_ccm->CCGR2);
|
|
reg &= ~MXC_CCM_CCGR2_LCD_MASK;
|
|
writel(reg, &imx_ccm->CCGR2);
|
|
|
|
if (enable) {
|
|
/* Select pre-mux */
|
|
reg = readl(&imx_ccm->cscdr2);
|
|
reg &= ~lcdif_clk_sel_mask;
|
|
writel(reg, &imx_ccm->cscdr2);
|
|
|
|
/* Enable the LCDIF pix clock */
|
|
reg = readl(&imx_ccm->CCGR3);
|
|
reg |= lcdif_ccgr3_mask;
|
|
writel(reg, &imx_ccm->CCGR3);
|
|
|
|
reg = readl(&imx_ccm->CCGR2);
|
|
reg |= MXC_CCM_CCGR2_LCD_MASK;
|
|
writel(reg, &imx_ccm->CCGR2);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_FSL_QSPI
|
|
/* qspi_num can be from 0 - 1 */
|
|
void enable_qspi_clk(int qspi_num)
|
|
{
|
|
u32 reg = 0;
|
|
/* Enable QuadSPI clock */
|
|
switch (qspi_num) {
|
|
case 0:
|
|
/* disable the clock gate */
|
|
clrbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
|
|
|
|
/* set 50M : (50 = 396 / 2 / 4) */
|
|
reg = readl(&imx_ccm->cscmr1);
|
|
reg &= ~(MXC_CCM_CSCMR1_QSPI1_PODF_MASK |
|
|
MXC_CCM_CSCMR1_QSPI1_CLK_SEL_MASK);
|
|
reg |= ((1 << MXC_CCM_CSCMR1_QSPI1_PODF_OFFSET) |
|
|
(2 << MXC_CCM_CSCMR1_QSPI1_CLK_SEL_OFFSET));
|
|
writel(reg, &imx_ccm->cscmr1);
|
|
|
|
/* enable the clock gate */
|
|
setbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
|
|
break;
|
|
case 1:
|
|
/*
|
|
* disable the clock gate
|
|
* QSPI2 and GPMI_BCH_INPUT_GPMI_IO share the same clock gate,
|
|
* disable both of them.
|
|
*/
|
|
clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
|
|
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
|
|
|
|
/* set 50M : (50 = 396 / 2 / 4) */
|
|
reg = readl(&imx_ccm->cs2cdr);
|
|
reg &= ~(MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
|
|
MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
|
|
MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK);
|
|
reg |= (MXC_CCM_CS2CDR_QSPI2_CLK_PRED(0x1) |
|
|
MXC_CCM_CS2CDR_QSPI2_CLK_SEL(0x3));
|
|
writel(reg, &imx_ccm->cs2cdr);
|
|
|
|
/*enable the clock gate*/
|
|
setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
|
|
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_FEC_MXC
|
|
int enable_fec_anatop_clock(int fec_id, enum enet_freq freq)
|
|
{
|
|
u32 reg = 0;
|
|
s32 timeout = 100000;
|
|
|
|
struct anatop_regs __iomem *anatop =
|
|
(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
|
|
|
|
if (freq < ENET_25MHZ || freq > ENET_125MHZ)
|
|
return -EINVAL;
|
|
|
|
reg = readl(&anatop->pll_enet);
|
|
|
|
if (fec_id == 0) {
|
|
reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT;
|
|
reg |= BF_ANADIG_PLL_ENET_DIV_SELECT(freq);
|
|
} else if (fec_id == 1) {
|
|
/* Only i.MX6SX/UL support ENET2 */
|
|
if (!(is_mx6sx() || is_mx6ul() || is_mx6ull()))
|
|
return -EINVAL;
|
|
reg &= ~BM_ANADIG_PLL_ENET2_DIV_SELECT;
|
|
reg |= BF_ANADIG_PLL_ENET2_DIV_SELECT(freq);
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
|
|
(!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
|
|
reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
|
|
writel(reg, &anatop->pll_enet);
|
|
while (timeout--) {
|
|
if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
|
|
break;
|
|
}
|
|
if (timeout < 0)
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Enable FEC clock */
|
|
if (fec_id == 0)
|
|
reg |= BM_ANADIG_PLL_ENET_ENABLE;
|
|
else
|
|
reg |= BM_ANADIG_PLL_ENET2_ENABLE;
|
|
reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
|
|
writel(reg, &anatop->pll_enet);
|
|
|
|
#ifdef CONFIG_MX6SX
|
|
/* Disable enet system clcok before switching clock parent */
|
|
reg = readl(&imx_ccm->CCGR3);
|
|
reg &= ~MXC_CCM_CCGR3_ENET_MASK;
|
|
writel(reg, &imx_ccm->CCGR3);
|
|
|
|
/*
|
|
* Set enet ahb clock to 200MHz
|
|
* pll2_pfd2_396m-> ENET_PODF-> ENET_AHB
|
|
*/
|
|
reg = readl(&imx_ccm->chsccdr);
|
|
reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK
|
|
| MXC_CCM_CHSCCDR_ENET_PODF_MASK
|
|
| MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK);
|
|
/* PLL2 PFD2 */
|
|
reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET);
|
|
/* Div = 2*/
|
|
reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET);
|
|
reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET);
|
|
writel(reg, &imx_ccm->chsccdr);
|
|
|
|
/* Enable enet system clock */
|
|
reg = readl(&imx_ccm->CCGR3);
|
|
reg |= MXC_CCM_CCGR3_ENET_MASK;
|
|
writel(reg, &imx_ccm->CCGR3);
|
|
#endif
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static u32 get_usdhc_clk(u32 port)
|
|
{
|
|
u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
|
|
u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
|
|
u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
|
|
|
|
if (is_mx6ul() || is_mx6ull()) {
|
|
if (port > 1)
|
|
return 0;
|
|
}
|
|
|
|
if (is_mx6sll()) {
|
|
if (port > 2)
|
|
return 0;
|
|
}
|
|
|
|
switch (port) {
|
|
case 0:
|
|
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
|
|
MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
|
|
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
|
|
|
|
break;
|
|
case 1:
|
|
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
|
|
MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
|
|
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
|
|
|
|
break;
|
|
case 2:
|
|
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
|
|
MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
|
|
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
|
|
|
|
break;
|
|
case 3:
|
|
usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
|
|
MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
|
|
clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (clk_sel)
|
|
root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
|
|
else
|
|
root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
|
|
|
|
return root_freq / (usdhc_podf + 1);
|
|
}
|
|
|
|
u32 imx_get_uartclk(void)
|
|
{
|
|
return get_uart_clk();
|
|
}
|
|
|
|
u32 imx_get_fecclk(void)
|
|
{
|
|
return mxc_get_clock(MXC_IPG_CLK);
|
|
}
|
|
|
|
#if defined(CONFIG_SATA) || defined(CONFIG_PCIE_IMX)
|
|
static int enable_enet_pll(uint32_t en)
|
|
{
|
|
struct mxc_ccm_reg *const imx_ccm
|
|
= (struct mxc_ccm_reg *) CCM_BASE_ADDR;
|
|
s32 timeout = 100000;
|
|
u32 reg = 0;
|
|
|
|
/* Enable PLLs */
|
|
reg = readl(&imx_ccm->analog_pll_enet);
|
|
reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
|
|
writel(reg, &imx_ccm->analog_pll_enet);
|
|
reg |= BM_ANADIG_PLL_SYS_ENABLE;
|
|
while (timeout--) {
|
|
if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
|
|
break;
|
|
}
|
|
if (timeout <= 0)
|
|
return -EIO;
|
|
reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
|
|
writel(reg, &imx_ccm->analog_pll_enet);
|
|
reg |= en;
|
|
writel(reg, &imx_ccm->analog_pll_enet);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SATA
|
|
static void ungate_sata_clock(void)
|
|
{
|
|
struct mxc_ccm_reg *const imx_ccm =
|
|
(struct mxc_ccm_reg *)CCM_BASE_ADDR;
|
|
|
|
/* Enable SATA clock. */
|
|
setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
|
|
}
|
|
|
|
int enable_sata_clock(void)
|
|
{
|
|
ungate_sata_clock();
|
|
return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA);
|
|
}
|
|
|
|
void disable_sata_clock(void)
|
|
{
|
|
struct mxc_ccm_reg *const imx_ccm =
|
|
(struct mxc_ccm_reg *)CCM_BASE_ADDR;
|
|
|
|
clrbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PCIE_IMX
|
|
static void ungate_pcie_clock(void)
|
|
{
|
|
struct mxc_ccm_reg *const imx_ccm =
|
|
(struct mxc_ccm_reg *)CCM_BASE_ADDR;
|
|
|
|
/* Enable PCIe clock. */
|
|
setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK);
|
|
}
|
|
|
|
int enable_pcie_clock(void)
|
|
{
|
|
struct anatop_regs *anatop_regs =
|
|
(struct anatop_regs *)ANATOP_BASE_ADDR;
|
|
struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
|
|
u32 lvds1_clk_sel;
|
|
|
|
/*
|
|
* Here be dragons!
|
|
*
|
|
* The register ANATOP_MISC1 is not documented in the Freescale
|
|
* MX6RM. The register that is mapped in the ANATOP space and
|
|
* marked as ANATOP_MISC1 is actually documented in the PMU section
|
|
* of the datasheet as PMU_MISC1.
|
|
*
|
|
* Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on
|
|
* mx6sx, disable clock INPUT and enable clock OUTPUT. This is important
|
|
* for PCI express link that is clocked from the i.MX6.
|
|
*/
|
|
#define ANADIG_ANA_MISC1_LVDSCLK1_IBEN (1 << 12)
|
|
#define ANADIG_ANA_MISC1_LVDSCLK1_OBEN (1 << 10)
|
|
#define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK 0x0000001F
|
|
#define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF 0xa
|
|
#define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF 0xb
|
|
|
|
if (is_mx6sx())
|
|
lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF;
|
|
else
|
|
lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF;
|
|
|
|
clrsetbits_le32(&anatop_regs->ana_misc1,
|
|
ANADIG_ANA_MISC1_LVDSCLK1_IBEN |
|
|
ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK,
|
|
ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel);
|
|
|
|
/* PCIe reference clock sourced from AXI. */
|
|
clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL);
|
|
|
|
/* Party time! Ungate the clock to the PCIe. */
|
|
#ifdef CONFIG_SATA
|
|
ungate_sata_clock();
|
|
#endif
|
|
ungate_pcie_clock();
|
|
|
|
return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA |
|
|
BM_ANADIG_PLL_ENET_ENABLE_PCIE);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_IMX_HAB
|
|
void hab_caam_clock_enable(unsigned char enable)
|
|
{
|
|
u32 reg;
|
|
|
|
if (is_mx6ull() || is_mx6sll()) {
|
|
/* CG5, DCP clock */
|
|
reg = __raw_readl(&imx_ccm->CCGR0);
|
|
if (enable)
|
|
reg |= MXC_CCM_CCGR0_DCP_CLK_MASK;
|
|
else
|
|
reg &= ~MXC_CCM_CCGR0_DCP_CLK_MASK;
|
|
__raw_writel(reg, &imx_ccm->CCGR0);
|
|
} else {
|
|
/* CG4 ~ CG6, CAAM clocks */
|
|
reg = __raw_readl(&imx_ccm->CCGR0);
|
|
if (enable)
|
|
reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
|
|
MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
|
|
MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
|
|
else
|
|
reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
|
|
MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
|
|
MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
|
|
__raw_writel(reg, &imx_ccm->CCGR0);
|
|
}
|
|
|
|
/* EMI slow clk */
|
|
reg = __raw_readl(&imx_ccm->CCGR6);
|
|
if (enable)
|
|
reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
|
|
else
|
|
reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
|
|
__raw_writel(reg, &imx_ccm->CCGR6);
|
|
}
|
|
#endif
|
|
|
|
static void enable_pll3(void)
|
|
{
|
|
struct anatop_regs __iomem *anatop =
|
|
(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
|
|
|
|
/* make sure pll3 is enabled */
|
|
if ((readl(&anatop->usb1_pll_480_ctrl) &
|
|
BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) {
|
|
/* enable pll's power */
|
|
writel(BM_ANADIG_USB1_PLL_480_CTRL_POWER,
|
|
&anatop->usb1_pll_480_ctrl_set);
|
|
writel(0x80, &anatop->ana_misc2_clr);
|
|
/* wait for pll lock */
|
|
while ((readl(&anatop->usb1_pll_480_ctrl) &
|
|
BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0)
|
|
;
|
|
/* disable bypass */
|
|
writel(BM_ANADIG_USB1_PLL_480_CTRL_BYPASS,
|
|
&anatop->usb1_pll_480_ctrl_clr);
|
|
/* enable pll output */
|
|
writel(BM_ANADIG_USB1_PLL_480_CTRL_ENABLE,
|
|
&anatop->usb1_pll_480_ctrl_set);
|
|
}
|
|
}
|
|
|
|
void enable_thermal_clk(void)
|
|
{
|
|
enable_pll3();
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_NOR_FLASH
|
|
void enable_eim_clk(unsigned char enable)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = __raw_readl(&imx_ccm->CCGR6);
|
|
if (enable)
|
|
reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
|
|
else
|
|
reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
|
|
__raw_writel(reg, &imx_ccm->CCGR6);
|
|
}
|
|
#endif
|
|
|
|
unsigned int mxc_get_clock(enum mxc_clock clk)
|
|
{
|
|
switch (clk) {
|
|
case MXC_ARM_CLK:
|
|
return get_mcu_main_clk();
|
|
case MXC_PER_CLK:
|
|
return get_periph_clk();
|
|
case MXC_AHB_CLK:
|
|
return get_ahb_clk();
|
|
case MXC_IPG_CLK:
|
|
return get_ipg_clk();
|
|
case MXC_IPG_PERCLK:
|
|
case MXC_I2C_CLK:
|
|
return get_ipg_per_clk();
|
|
case MXC_UART_CLK:
|
|
return get_uart_clk();
|
|
case MXC_CSPI_CLK:
|
|
return get_cspi_clk();
|
|
case MXC_AXI_CLK:
|
|
return get_axi_clk();
|
|
case MXC_EMI_SLOW_CLK:
|
|
return get_emi_slow_clk();
|
|
case MXC_DDR_CLK:
|
|
return get_mmdc_ch0_clk();
|
|
case MXC_ESDHC_CLK:
|
|
return get_usdhc_clk(0);
|
|
case MXC_ESDHC2_CLK:
|
|
return get_usdhc_clk(1);
|
|
case MXC_ESDHC3_CLK:
|
|
return get_usdhc_clk(2);
|
|
case MXC_ESDHC4_CLK:
|
|
return get_usdhc_clk(3);
|
|
case MXC_SATA_CLK:
|
|
return get_ahb_clk();
|
|
default:
|
|
printf("Unsupported MXC CLK: %d\n", clk);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifndef CONFIG_MX6SX
|
|
void enable_ipu_clock(void)
|
|
{
|
|
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
|
|
|
|
setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU1_IPU_MASK);
|
|
|
|
if (is_mx6dqp()) {
|
|
setbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
|
|
setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
|
|
}
|
|
}
|
|
|
|
void disable_ipu_clock(void)
|
|
{
|
|
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
|
|
|
|
clrbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU1_IPU_MASK);
|
|
|
|
if (is_mx6dqp()) {
|
|
clrbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
|
|
clrbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_SPL_BUILD
|
|
/*
|
|
* Dump some core clockes.
|
|
*/
|
|
int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
|
|
{
|
|
u32 freq;
|
|
freq = decode_pll(PLL_SYS, MXC_HCLK);
|
|
printf("PLL_SYS %8d MHz\n", freq / 1000000);
|
|
freq = decode_pll(PLL_BUS, MXC_HCLK);
|
|
printf("PLL_BUS %8d MHz\n", freq / 1000000);
|
|
freq = decode_pll(PLL_USBOTG, MXC_HCLK);
|
|
printf("PLL_OTG %8d MHz\n", freq / 1000000);
|
|
freq = decode_pll(PLL_ENET, MXC_HCLK);
|
|
printf("PLL_NET %8d MHz\n", freq / 1000000);
|
|
|
|
printf("\n");
|
|
printf("ARM %8d kHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000);
|
|
printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
|
|
printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
|
|
#ifdef CONFIG_MXC_SPI
|
|
printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
|
|
#endif
|
|
printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
|
|
printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
|
|
printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
|
|
printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
|
|
printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
|
|
printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
|
|
printf("USDHC4 %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
|
|
printf("EMI SLOW %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
|
|
printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_MX6Q) || defined(CONFIG_MX6D) || defined(CONFIG_MX6DL) || \
|
|
defined(CONFIG_MX6S)
|
|
static void disable_ldb_di_clock_sources(void)
|
|
{
|
|
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
|
|
int reg;
|
|
|
|
/* Make sure PFDs are disabled at boot. */
|
|
reg = readl(&mxc_ccm->analog_pfd_528);
|
|
/* Cannot disable pll2_pfd2_396M, as it is the MMDC clock in iMX6DL */
|
|
if (is_mx6sdl())
|
|
reg |= 0x80008080;
|
|
else
|
|
reg |= 0x80808080;
|
|
writel(reg, &mxc_ccm->analog_pfd_528);
|
|
|
|
/* Disable PLL3 PFDs */
|
|
reg = readl(&mxc_ccm->analog_pfd_480);
|
|
reg |= 0x80808080;
|
|
writel(reg, &mxc_ccm->analog_pfd_480);
|
|
|
|
/* Disable PLL5 */
|
|
reg = readl(&mxc_ccm->analog_pll_video);
|
|
reg &= ~(1 << 13);
|
|
writel(reg, &mxc_ccm->analog_pll_video);
|
|
}
|
|
|
|
static void enable_ldb_di_clock_sources(void)
|
|
{
|
|
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
|
|
int reg;
|
|
|
|
reg = readl(&mxc_ccm->analog_pfd_528);
|
|
if (is_mx6sdl())
|
|
reg &= ~(0x80008080);
|
|
else
|
|
reg &= ~(0x80808080);
|
|
writel(reg, &mxc_ccm->analog_pfd_528);
|
|
|
|
reg = readl(&mxc_ccm->analog_pfd_480);
|
|
reg &= ~(0x80808080);
|
|
writel(reg, &mxc_ccm->analog_pfd_480);
|
|
}
|
|
|
|
/*
|
|
* Try call this function as early in the boot process as possible since the
|
|
* function temporarily disables PLL2 PFD's, PLL3 PFD's and PLL5.
|
|
*/
|
|
void select_ldb_di_clock_source(enum ldb_di_clock clk)
|
|
{
|
|
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
|
|
int reg;
|
|
|
|
/*
|
|
* Need to follow a strict procedure when changing the LDB
|
|
* clock, else we can introduce a glitch. Things to keep in
|
|
* mind:
|
|
* 1. The current and new parent clocks must be disabled.
|
|
* 2. The default clock for ldb_dio_clk is mmdc_ch1 which has
|
|
* no CG bit.
|
|
* 3. In the RTL implementation of the LDB_DI_CLK_SEL mux
|
|
* the top four options are in one mux and the PLL3 option along
|
|
* with another option is in the second mux. There is third mux
|
|
* used to decide between the first and second mux.
|
|
* The code below switches the parent to the bottom mux first
|
|
* and then manipulates the top mux. This ensures that no glitch
|
|
* will enter the divider.
|
|
*
|
|
* Need to disable MMDC_CH1 clock manually as there is no CG bit
|
|
* for this clock. The only way to disable this clock is to move
|
|
* it to pll3_sw_clk and then to disable pll3_sw_clk
|
|
* Make sure periph2_clk2_sel is set to pll3_sw_clk
|
|
*/
|
|
|
|
/* Disable all ldb_di clock parents */
|
|
disable_ldb_di_clock_sources();
|
|
|
|
/* Set MMDC_CH1 mask bit */
|
|
reg = readl(&mxc_ccm->ccdr);
|
|
reg |= MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
|
|
writel(reg, &mxc_ccm->ccdr);
|
|
|
|
/* Set periph2_clk2_sel to be sourced from PLL3_sw_clk */
|
|
reg = readl(&mxc_ccm->cbcmr);
|
|
reg &= ~MXC_CCM_CBCMR_PERIPH2_CLK2_SEL;
|
|
writel(reg, &mxc_ccm->cbcmr);
|
|
|
|
/*
|
|
* Set the periph2_clk_sel to the top mux so that
|
|
* mmdc_ch1 is from pll3_sw_clk.
|
|
*/
|
|
reg = readl(&mxc_ccm->cbcdr);
|
|
reg |= MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
|
|
writel(reg, &mxc_ccm->cbcdr);
|
|
|
|
/* Wait for the clock switch */
|
|
while (readl(&mxc_ccm->cdhipr))
|
|
;
|
|
/* Disable pll3_sw_clk by selecting bypass clock source */
|
|
reg = readl(&mxc_ccm->ccsr);
|
|
reg |= MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
|
|
writel(reg, &mxc_ccm->ccsr);
|
|
|
|
/* Set the ldb_di0_clk and ldb_di1_clk to 111b */
|
|
reg = readl(&mxc_ccm->cs2cdr);
|
|
reg |= ((7 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
|
|
| (7 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
|
|
writel(reg, &mxc_ccm->cs2cdr);
|
|
|
|
/* Set the ldb_di0_clk and ldb_di1_clk to 100b */
|
|
reg = readl(&mxc_ccm->cs2cdr);
|
|
reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
|
|
| MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
|
|
reg |= ((4 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
|
|
| (4 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
|
|
writel(reg, &mxc_ccm->cs2cdr);
|
|
|
|
/* Set the ldb_di0_clk and ldb_di1_clk to desired source */
|
|
reg = readl(&mxc_ccm->cs2cdr);
|
|
reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
|
|
| MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
|
|
reg |= ((clk << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
|
|
| (clk << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
|
|
writel(reg, &mxc_ccm->cs2cdr);
|
|
|
|
/* Unbypass pll3_sw_clk */
|
|
reg = readl(&mxc_ccm->ccsr);
|
|
reg &= ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
|
|
writel(reg, &mxc_ccm->ccsr);
|
|
|
|
/*
|
|
* Set the periph2_clk_sel back to the bottom mux so that
|
|
* mmdc_ch1 is from its original parent.
|
|
*/
|
|
reg = readl(&mxc_ccm->cbcdr);
|
|
reg &= ~MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
|
|
writel(reg, &mxc_ccm->cbcdr);
|
|
|
|
/* Wait for the clock switch */
|
|
while (readl(&mxc_ccm->cdhipr))
|
|
;
|
|
/* Clear MMDC_CH1 mask bit */
|
|
reg = readl(&mxc_ccm->ccdr);
|
|
reg &= ~MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
|
|
writel(reg, &mxc_ccm->ccdr);
|
|
|
|
enable_ldb_di_clock_sources();
|
|
}
|
|
#endif
|
|
|
|
/***************************************************/
|
|
|
|
U_BOOT_CMD(
|
|
clocks, CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
|
|
"display clocks",
|
|
""
|
|
);
|
|
#endif
|