mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-17 02:08:38 +00:00
77b351cd0f
This patch adds 4 BIT ECC support in the DaVinci NAND driver. Tested on both the DM355 and DM365. Signed-off-by: Sandeep Paulraj <s-paulraj@ti.com> Signed-off-by: Scott Wood <scottwood@freescale.com>
525 lines
15 KiB
C
525 lines
15 KiB
C
/*
|
|
* NAND driver for TI DaVinci based boards.
|
|
*
|
|
* Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
|
|
*
|
|
* Based on Linux DaVinci NAND driver by TI. Original copyright follows:
|
|
*/
|
|
|
|
/*
|
|
*
|
|
* linux/drivers/mtd/nand/nand_davinci.c
|
|
*
|
|
* NAND Flash Driver
|
|
*
|
|
* Copyright (C) 2006 Texas Instruments.
|
|
*
|
|
* ----------------------------------------------------------------------------
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
* ----------------------------------------------------------------------------
|
|
*
|
|
* Overview:
|
|
* This is a device driver for the NAND flash device found on the
|
|
* DaVinci board which utilizes the Samsung k9k2g08 part.
|
|
*
|
|
Modifications:
|
|
ver. 1.0: Feb 2005, Vinod/Sudhakar
|
|
-
|
|
*
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/io.h>
|
|
#include <nand.h>
|
|
#include <asm/arch/nand_defs.h>
|
|
#include <asm/arch/emif_defs.h>
|
|
|
|
/* Definitions for 4-bit hardware ECC */
|
|
#define NAND_TIMEOUT 10240
|
|
#define NAND_ECC_BUSY 0xC
|
|
#define NAND_4BITECC_MASK 0x03FF03FF
|
|
#define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
|
|
#define ECC_STATE_NO_ERR 0x0
|
|
#define ECC_STATE_TOO_MANY_ERRS 0x1
|
|
#define ECC_STATE_ERR_CORR_COMP_P 0x2
|
|
#define ECC_STATE_ERR_CORR_COMP_N 0x3
|
|
|
|
static emif_registers *const emif_regs = (void *) DAVINCI_ASYNC_EMIF_CNTRL_BASE;
|
|
|
|
static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
|
|
|
|
IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
|
|
|
|
if (ctrl & NAND_CTRL_CHANGE) {
|
|
if ( ctrl & NAND_CLE )
|
|
IO_ADDR_W |= MASK_CLE;
|
|
if ( ctrl & NAND_ALE )
|
|
IO_ADDR_W |= MASK_ALE;
|
|
this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
|
|
}
|
|
|
|
if (cmd != NAND_CMD_NONE)
|
|
writeb(cmd, this->IO_ADDR_W);
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_NAND_HW_ECC
|
|
|
|
static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
int dummy;
|
|
|
|
dummy = emif_regs->NANDF1ECC;
|
|
|
|
/* FIXME: only chipselect 0 is supported for now */
|
|
emif_regs->NANDFCR |= 1 << 8;
|
|
}
|
|
|
|
static u_int32_t nand_davinci_readecc(struct mtd_info *mtd, u_int32_t region)
|
|
{
|
|
u_int32_t ecc = 0;
|
|
|
|
if (region == 1)
|
|
ecc = emif_regs->NANDF1ECC;
|
|
else if (region == 2)
|
|
ecc = emif_regs->NANDF2ECC;
|
|
else if (region == 3)
|
|
ecc = emif_regs->NANDF3ECC;
|
|
else if (region == 4)
|
|
ecc = emif_regs->NANDF4ECC;
|
|
|
|
return(ecc);
|
|
}
|
|
|
|
static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
|
|
{
|
|
u_int32_t tmp;
|
|
const int region = 1;
|
|
|
|
tmp = nand_davinci_readecc(mtd, region);
|
|
|
|
/* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
|
|
* and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
|
|
tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
|
|
|
|
/* Invert so that erased block ECC is correct */
|
|
tmp = ~tmp;
|
|
|
|
*ecc_code++ = tmp;
|
|
*ecc_code++ = tmp >> 8;
|
|
*ecc_code++ = tmp >> 16;
|
|
|
|
/* NOTE: the above code matches mainline Linux:
|
|
* .PQR.stu ==> ~PQRstu
|
|
*
|
|
* MontaVista/TI kernels encode those bytes differently, use
|
|
* complicated (and allegedly sometimes-wrong) correction code,
|
|
* and usually shipped with U-Boot that uses software ECC:
|
|
* .PQR.stu ==> PsQRtu
|
|
*
|
|
* If you need MV/TI compatible NAND I/O in U-Boot, it should
|
|
* be possible to (a) change the mangling above, (b) reverse
|
|
* that mangling in nand_davinci_correct_data() below.
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
|
|
(read_ecc[2] << 16);
|
|
u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
|
|
(calc_ecc[2] << 16);
|
|
u_int32_t diff = ecc_calc ^ ecc_nand;
|
|
|
|
if (diff) {
|
|
if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
|
|
/* Correctable error */
|
|
if ((diff >> (12 + 3)) < this->ecc.size) {
|
|
uint8_t find_bit = 1 << ((diff >> 12) & 7);
|
|
uint32_t find_byte = diff >> (12 + 3);
|
|
|
|
dat[find_byte] ^= find_bit;
|
|
MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
|
|
"bit ECC error at offset: %d, bit: "
|
|
"%d\n", find_byte, find_bit);
|
|
return 1;
|
|
} else {
|
|
return -1;
|
|
}
|
|
} else if (!(diff & (diff - 1))) {
|
|
/* Single bit ECC error in the ECC itself,
|
|
nothing to fix */
|
|
MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
|
|
"ECC.\n");
|
|
return 1;
|
|
} else {
|
|
/* Uncorrectable error */
|
|
MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
|
|
return -1;
|
|
}
|
|
}
|
|
return(0);
|
|
}
|
|
#endif /* CONFIG_SYS_NAND_HW_ECC */
|
|
|
|
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
|
|
static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
|
|
/*
|
|
* TI uses a different layout for 4K page deviecs. Since the
|
|
* eccpos filed can hold only a limited number of entries, adding
|
|
* support for 4K page will result in compilation warnings
|
|
* 4K Support will be added later
|
|
*/
|
|
#ifdef CONFIG_SYS_NAND_PAGE_2K
|
|
.eccbytes = 40,
|
|
.eccpos = {
|
|
24, 25, 26, 27, 28,
|
|
29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
|
|
39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
|
|
49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
|
|
59, 60, 61, 62, 63,
|
|
},
|
|
.oobfree = {
|
|
{.offset = 2, .length = 22, },
|
|
},
|
|
#endif
|
|
};
|
|
#endif
|
|
|
|
static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
u32 val;
|
|
|
|
switch (mode) {
|
|
case NAND_ECC_WRITE:
|
|
case NAND_ECC_READ:
|
|
/*
|
|
* Start a new ECC calculation for reading or writing 512 bytes
|
|
* of data.
|
|
*/
|
|
val = (emif_regs->NANDFCR & ~(3 << 4)) | (1 << 12);
|
|
emif_regs->NANDFCR = val;
|
|
break;
|
|
case NAND_ECC_READSYN:
|
|
val = emif_regs->NAND4BITECC1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
|
|
{
|
|
ecc[0] = emif_regs->NAND4BITECC1 & NAND_4BITECC_MASK;
|
|
ecc[1] = emif_regs->NAND4BITECC2 & NAND_4BITECC_MASK;
|
|
ecc[2] = emif_regs->NAND4BITECC3 & NAND_4BITECC_MASK;
|
|
ecc[3] = emif_regs->NAND4BITECC4 & NAND_4BITECC_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
|
|
const uint8_t *dat,
|
|
uint8_t *ecc_code)
|
|
{
|
|
unsigned int hw_4ecc[4] = { 0, 0, 0, 0 };
|
|
unsigned int const1 = 0, const2 = 0;
|
|
unsigned char count1 = 0;
|
|
|
|
nand_davinci_4bit_readecc(mtd, hw_4ecc);
|
|
|
|
/*Convert 10 bit ecc value to 8 bit */
|
|
for (count1 = 0; count1 < 2; count1++) {
|
|
const2 = count1 * 5;
|
|
const1 = count1 * 2;
|
|
|
|
/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
|
|
ecc_code[const2] = hw_4ecc[const1] & 0xFF;
|
|
|
|
/*
|
|
* Take 2 bits as LSB bits from val1 (count1=0) or val5
|
|
* (count1=1) and 6 bits from val2 (count1=0) or
|
|
* val5 (count1=1)
|
|
*/
|
|
ecc_code[const2 + 1] =
|
|
((hw_4ecc[const1] >> 8) & 0x3) | ((hw_4ecc[const1] >> 14) &
|
|
0xFC);
|
|
|
|
/*
|
|
* Take 4 bits from val2 (count1=0) or val5 (count1=1) and
|
|
* 4 bits from val3 (count1=0) or val6 (count1=1)
|
|
*/
|
|
ecc_code[const2 + 2] =
|
|
((hw_4ecc[const1] >> 22) & 0xF) |
|
|
((hw_4ecc[const1 + 1] << 4) & 0xF0);
|
|
|
|
/*
|
|
* Take 6 bits from val3(count1=0) or val6 (count1=1) and
|
|
* 2 bits from val4 (count1=0) or val7 (count1=1)
|
|
*/
|
|
ecc_code[const2 + 3] =
|
|
((hw_4ecc[const1 + 1] >> 4) & 0x3F) |
|
|
((hw_4ecc[const1 + 1] >> 10) & 0xC0);
|
|
|
|
/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
|
|
ecc_code[const2 + 4] = (hw_4ecc[const1 + 1] >> 18) & 0xFF;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
|
|
uint8_t *read_ecc, uint8_t *calc_ecc)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
unsigned short ecc_10bit[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
int i;
|
|
unsigned int hw_4ecc[4] = { 0, 0, 0, 0 }, iserror = 0;
|
|
unsigned short *pspare = NULL, *pspare1 = NULL;
|
|
unsigned int numerrors, erroraddress, errorvalue;
|
|
u32 val;
|
|
|
|
/*
|
|
* Check for an ECC where all bytes are 0xFF. If this is the case, we
|
|
* will assume we are looking at an erased page and we should ignore
|
|
* the ECC.
|
|
*/
|
|
for (i = 0; i < 10; i++) {
|
|
if (read_ecc[i] != 0xFF)
|
|
break;
|
|
}
|
|
if (i == 10)
|
|
return 0;
|
|
|
|
/* Convert 8 bit in to 10 bit */
|
|
pspare = (unsigned short *)&read_ecc[2];
|
|
pspare1 = (unsigned short *)&read_ecc[0];
|
|
|
|
/* Take 10 bits from 0th and 1st bytes */
|
|
ecc_10bit[0] = (*pspare1) & 0x3FF;
|
|
|
|
/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
|
|
ecc_10bit[1] = (((*pspare1) >> 10) & 0x3F)
|
|
| (((pspare[0]) << 6) & 0x3C0);
|
|
|
|
/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
|
|
ecc_10bit[2] = ((pspare[0]) >> 4) & 0x3FF;
|
|
|
|
/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
|
|
ecc_10bit[3] = (((pspare[0]) >> 14) & 0x3)
|
|
| ((((pspare[1])) << 2) & 0x3FC);
|
|
|
|
/* Take 8 bits from 5th byte and 2 bits from 6th byte */
|
|
ecc_10bit[4] = ((pspare[1]) >> 8)
|
|
| ((((pspare[2])) << 8) & 0x300);
|
|
|
|
/* Take 6 bits from 6th byte and 4 bits from 7th byte */
|
|
ecc_10bit[5] = (pspare[2] >> 2) & 0x3FF;
|
|
|
|
/* Take 4 bits from 7th byte and 6 bits from 8th byte */
|
|
ecc_10bit[6] = (((pspare[2]) >> 12) & 0xF)
|
|
| ((((pspare[3])) << 4) & 0x3F0);
|
|
|
|
/*Take 2 bits from 8th byte and 8 bits from 9th byte */
|
|
ecc_10bit[7] = ((pspare[3]) >> 6) & 0x3FF;
|
|
|
|
/*
|
|
* Write the parity values in the NAND Flash 4-bit ECC Load register.
|
|
* Write each parity value one at a time starting from 4bit_ecc_val8
|
|
* to 4bit_ecc_val1.
|
|
*/
|
|
for (i = 7; i >= 0; i--)
|
|
emif_regs->NAND4BITECCLOAD = ecc_10bit[i];
|
|
|
|
/*
|
|
* Perform a dummy read to the EMIF Revision Code and Status register.
|
|
* This is required to ensure time for syndrome calculation after
|
|
* writing the ECC values in previous step.
|
|
*/
|
|
|
|
val = emif_regs->NANDFSR;
|
|
|
|
/*
|
|
* Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
|
|
* A syndrome value of 0 means no bit errors. If the syndrome is
|
|
* non-zero then go further otherwise return.
|
|
*/
|
|
nand_davinci_4bit_readecc(mtd, hw_4ecc);
|
|
|
|
if (hw_4ecc[0] == ECC_STATE_NO_ERR && hw_4ecc[1] == ECC_STATE_NO_ERR &&
|
|
hw_4ecc[2] == ECC_STATE_NO_ERR && hw_4ecc[3] == ECC_STATE_NO_ERR)
|
|
return 0;
|
|
|
|
/*
|
|
* Clear any previous address calculation by doing a dummy read of an
|
|
* error address register.
|
|
*/
|
|
val = emif_regs->NANDERRADD1;
|
|
|
|
/*
|
|
* Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
|
|
* register to 1.
|
|
*/
|
|
emif_regs->NANDFCR |= 1 << 13;
|
|
|
|
/*
|
|
* Wait for the corr_state field (bits 8 to 11)in the
|
|
* NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
|
|
*/
|
|
i = NAND_TIMEOUT;
|
|
do {
|
|
val = emif_regs->NANDFSR;
|
|
val &= 0xc00;
|
|
i--;
|
|
} while ((i > 0) && val);
|
|
|
|
iserror = emif_regs->NANDFSR;
|
|
iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
|
|
iserror = iserror >> 8;
|
|
|
|
/*
|
|
* ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
|
|
* corrected (five or more errors). The number of errors
|
|
* calculated (err_num field) differs from the number of errors
|
|
* searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
|
|
* correction complete (errors on bit 8 or 9).
|
|
* ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
|
|
* complete (error exists).
|
|
*/
|
|
|
|
if (iserror == ECC_STATE_NO_ERR) {
|
|
val = emif_regs->NANDERRVAL1;
|
|
return 0;
|
|
} else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
|
|
val = emif_regs->NANDERRVAL1;
|
|
return -1;
|
|
}
|
|
|
|
numerrors = ((emif_regs->NANDFSR >> 16) & 0x3) + 1;
|
|
|
|
/* Read the error address, error value and correct */
|
|
for (i = 0; i < numerrors; i++) {
|
|
if (i > 1) {
|
|
erroraddress =
|
|
((emif_regs->NANDERRADD2 >>
|
|
(16 * (i & 1))) & 0x3FF);
|
|
erroraddress = ((512 + 7) - erroraddress);
|
|
errorvalue =
|
|
((emif_regs->NANDERRVAL2 >>
|
|
(16 * (i & 1))) & 0xFF);
|
|
} else {
|
|
erroraddress =
|
|
((emif_regs->NANDERRADD1 >>
|
|
(16 * (i & 1))) & 0x3FF);
|
|
erroraddress = ((512 + 7) - erroraddress);
|
|
errorvalue =
|
|
((emif_regs->NANDERRVAL1 >>
|
|
(16 * (i & 1))) & 0xFF);
|
|
}
|
|
/* xor the corrupt data with error value */
|
|
if (erroraddress < 512)
|
|
dat[erroraddress] ^= errorvalue;
|
|
}
|
|
|
|
return numerrors;
|
|
}
|
|
|
|
static int nand_davinci_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
return emif_regs->NANDFSR & 0x1;
|
|
}
|
|
|
|
static void nand_flash_init(void)
|
|
{
|
|
/* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS!
|
|
* Instead, have your board_init() set EMIF timings, based on its
|
|
* knowledge of the clocks and what devices are hooked up ... and
|
|
* don't even do that unless no UBL handled it.
|
|
*/
|
|
#ifdef CONFIG_SOC_DM644X
|
|
u_int32_t acfg1 = 0x3ffffffc;
|
|
|
|
/*------------------------------------------------------------------*
|
|
* NAND FLASH CHIP TIMEOUT @ 459 MHz *
|
|
* *
|
|
* AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz *
|
|
* AEMIF.CLK period = 1/76.5 MHz = 13.1 ns *
|
|
* *
|
|
*------------------------------------------------------------------*/
|
|
acfg1 = 0
|
|
| (0 << 31 ) /* selectStrobe */
|
|
| (0 << 30 ) /* extWait */
|
|
| (1 << 26 ) /* writeSetup 10 ns */
|
|
| (3 << 20 ) /* writeStrobe 40 ns */
|
|
| (1 << 17 ) /* writeHold 10 ns */
|
|
| (1 << 13 ) /* readSetup 10 ns */
|
|
| (5 << 7 ) /* readStrobe 60 ns */
|
|
| (1 << 4 ) /* readHold 10 ns */
|
|
| (3 << 2 ) /* turnAround ?? ns */
|
|
| (0 << 0 ) /* asyncSize 8-bit bus */
|
|
;
|
|
|
|
emif_regs->AB1CR = acfg1; /* CS2 */
|
|
|
|
emif_regs->NANDFCR = 0x00000101; /* NAND flash on CS2 */
|
|
#endif
|
|
}
|
|
|
|
void davinci_nand_init(struct nand_chip *nand)
|
|
{
|
|
nand->chip_delay = 0;
|
|
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
|
|
nand->options |= NAND_USE_FLASH_BBT;
|
|
#endif
|
|
#ifdef CONFIG_SYS_NAND_HW_ECC
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.size = 512;
|
|
nand->ecc.bytes = 3;
|
|
nand->ecc.calculate = nand_davinci_calculate_ecc;
|
|
nand->ecc.correct = nand_davinci_correct_data;
|
|
nand->ecc.hwctl = nand_davinci_enable_hwecc;
|
|
#else
|
|
nand->ecc.mode = NAND_ECC_SOFT;
|
|
#endif /* CONFIG_SYS_NAND_HW_ECC */
|
|
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
|
|
nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
|
|
nand->ecc.size = 512;
|
|
nand->ecc.bytes = 10;
|
|
nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
|
|
nand->ecc.correct = nand_davinci_4bit_correct_data;
|
|
nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
|
|
nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
|
|
#endif
|
|
/* Set address of hardware control function */
|
|
nand->cmd_ctrl = nand_davinci_hwcontrol;
|
|
|
|
nand->dev_ready = nand_davinci_dev_ready;
|
|
|
|
nand_flash_init();
|
|
}
|
|
|
|
int board_nand_init(struct nand_chip *chip) __attribute__((weak));
|
|
|
|
int board_nand_init(struct nand_chip *chip)
|
|
{
|
|
davinci_nand_init(chip);
|
|
return 0;
|
|
}
|