u-boot/drivers/mmc/sh_mmcif.c
Tom Rini 7208396bbf Revert "Merge tag 'dm-pull-20jul20' of git://git.denx.de/u-boot-dm"
This reverts commit 5d3a21df66, reversing
changes made to 56d37f1c56.

Unfortunately this is causing CI failures:
https://travis-ci.org/github/trini/u-boot/jobs/711313649

Signed-off-by: Tom Rini <trini@konsulko.com>
2020-07-24 08:42:06 -04:00

750 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* MMCIF driver.
*
* Copyright (C) 2011 Renesas Solutions Corp.
*/
#include <config.h>
#include <common.h>
#include <log.h>
#include <watchdog.h>
#include <command.h>
#include <mmc.h>
#include <clk.h>
#include <dm.h>
#include <malloc.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/compat.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include "sh_mmcif.h"
#define DRIVER_NAME "sh_mmcif"
static int sh_mmcif_intr(void *dev_id)
{
struct sh_mmcif_host *host = dev_id;
u32 state = 0;
state = sh_mmcif_read(&host->regs->ce_int);
state &= sh_mmcif_read(&host->regs->ce_int_mask);
if (state & INT_RBSYE) {
sh_mmcif_write(~(INT_RBSYE | INT_CRSPE), &host->regs->ce_int);
sh_mmcif_bitclr(MASK_MRBSYE, &host->regs->ce_int_mask);
goto end;
} else if (state & INT_CRSPE) {
sh_mmcif_write(~INT_CRSPE, &host->regs->ce_int);
sh_mmcif_bitclr(MASK_MCRSPE, &host->regs->ce_int_mask);
/* one more interrupt (INT_RBSYE) */
if (sh_mmcif_read(&host->regs->ce_cmd_set) & CMD_SET_RBSY)
return -EAGAIN;
goto end;
} else if (state & INT_BUFREN) {
sh_mmcif_write(~INT_BUFREN, &host->regs->ce_int);
sh_mmcif_bitclr(MASK_MBUFREN, &host->regs->ce_int_mask);
goto end;
} else if (state & INT_BUFWEN) {
sh_mmcif_write(~INT_BUFWEN, &host->regs->ce_int);
sh_mmcif_bitclr(MASK_MBUFWEN, &host->regs->ce_int_mask);
goto end;
} else if (state & INT_CMD12DRE) {
sh_mmcif_write(~(INT_CMD12DRE | INT_CMD12RBE | INT_CMD12CRE |
INT_BUFRE), &host->regs->ce_int);
sh_mmcif_bitclr(MASK_MCMD12DRE, &host->regs->ce_int_mask);
goto end;
} else if (state & INT_BUFRE) {
sh_mmcif_write(~INT_BUFRE, &host->regs->ce_int);
sh_mmcif_bitclr(MASK_MBUFRE, &host->regs->ce_int_mask);
goto end;
} else if (state & INT_DTRANE) {
sh_mmcif_write(~INT_DTRANE, &host->regs->ce_int);
sh_mmcif_bitclr(MASK_MDTRANE, &host->regs->ce_int_mask);
goto end;
} else if (state & INT_CMD12RBE) {
sh_mmcif_write(~(INT_CMD12RBE | INT_CMD12CRE),
&host->regs->ce_int);
sh_mmcif_bitclr(MASK_MCMD12RBE, &host->regs->ce_int_mask);
goto end;
} else if (state & INT_ERR_STS) {
/* err interrupts */
sh_mmcif_write(~state, &host->regs->ce_int);
sh_mmcif_bitclr(state, &host->regs->ce_int_mask);
goto err;
} else
return -EAGAIN;
err:
host->sd_error = 1;
debug("%s: int err state = %08x\n", DRIVER_NAME, state);
end:
host->wait_int = 1;
return 0;
}
static int mmcif_wait_interrupt_flag(struct sh_mmcif_host *host)
{
int timeout = 10000000;
while (1) {
timeout--;
if (timeout < 0) {
printf("timeout\n");
return 0;
}
if (!sh_mmcif_intr(host))
break;
udelay(1); /* 1 usec */
}
return 1; /* Return value: NOT 0 = complete waiting */
}
static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
{
sh_mmcif_bitclr(CLK_ENABLE, &host->regs->ce_clk_ctrl);
sh_mmcif_bitclr(CLK_CLEAR, &host->regs->ce_clk_ctrl);
if (!clk)
return;
if (clk == CLKDEV_EMMC_DATA)
sh_mmcif_bitset(CLK_PCLK, &host->regs->ce_clk_ctrl);
else
sh_mmcif_bitset((fls(DIV_ROUND_UP(host->clk,
clk) - 1) - 1) << 16,
&host->regs->ce_clk_ctrl);
sh_mmcif_bitset(CLK_ENABLE, &host->regs->ce_clk_ctrl);
}
static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
{
u32 tmp;
tmp = sh_mmcif_read(&host->regs->ce_clk_ctrl) & (CLK_ENABLE |
CLK_CLEAR);
sh_mmcif_write(SOFT_RST_ON, &host->regs->ce_version);
sh_mmcif_write(SOFT_RST_OFF, &host->regs->ce_version);
sh_mmcif_bitset(tmp | SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29,
&host->regs->ce_clk_ctrl);
/* byte swap on */
sh_mmcif_bitset(BUF_ACC_ATYP, &host->regs->ce_buf_acc);
}
static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
{
u32 state1, state2;
int ret, timeout = 10000000;
host->sd_error = 0;
host->wait_int = 0;
state1 = sh_mmcif_read(&host->regs->ce_host_sts1);
state2 = sh_mmcif_read(&host->regs->ce_host_sts2);
debug("%s: ERR HOST_STS1 = %08x\n", \
DRIVER_NAME, sh_mmcif_read(&host->regs->ce_host_sts1));
debug("%s: ERR HOST_STS2 = %08x\n", \
DRIVER_NAME, sh_mmcif_read(&host->regs->ce_host_sts2));
if (state1 & STS1_CMDSEQ) {
debug("%s: Forced end of command sequence\n", DRIVER_NAME);
sh_mmcif_bitset(CMD_CTRL_BREAK, &host->regs->ce_cmd_ctrl);
sh_mmcif_bitset(~CMD_CTRL_BREAK, &host->regs->ce_cmd_ctrl);
while (1) {
timeout--;
if (timeout < 0) {
printf(DRIVER_NAME": Forceed end of " \
"command sequence timeout err\n");
return -EILSEQ;
}
if (!(sh_mmcif_read(&host->regs->ce_host_sts1)
& STS1_CMDSEQ))
break;
}
sh_mmcif_sync_reset(host);
return -EILSEQ;
}
if (state2 & STS2_CRC_ERR)
ret = -EILSEQ;
else if (state2 & STS2_TIMEOUT_ERR)
ret = -ETIMEDOUT;
else
ret = -EILSEQ;
return ret;
}
static int sh_mmcif_single_read(struct sh_mmcif_host *host,
struct mmc_data *data)
{
long time;
u32 blocksize, i;
unsigned long *p = (unsigned long *)data->dest;
if ((unsigned long)p & 0x00000001) {
printf("%s: The data pointer is unaligned.", __func__);
return -EIO;
}
host->wait_int = 0;
/* buf read enable */
sh_mmcif_bitset(MASK_MBUFREN, &host->regs->ce_int_mask);
time = mmcif_wait_interrupt_flag(host);
if (time == 0 || host->sd_error != 0)
return sh_mmcif_error_manage(host);
host->wait_int = 0;
blocksize = (BLOCK_SIZE_MASK &
sh_mmcif_read(&host->regs->ce_block_set)) + 3;
for (i = 0; i < blocksize / 4; i++)
*p++ = sh_mmcif_read(&host->regs->ce_data);
/* buffer read end */
sh_mmcif_bitset(MASK_MBUFRE, &host->regs->ce_int_mask);
time = mmcif_wait_interrupt_flag(host);
if (time == 0 || host->sd_error != 0)
return sh_mmcif_error_manage(host);
host->wait_int = 0;
return 0;
}
static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
struct mmc_data *data)
{
long time;
u32 blocksize, i, j;
unsigned long *p = (unsigned long *)data->dest;
if ((unsigned long)p & 0x00000001) {
printf("%s: The data pointer is unaligned.", __func__);
return -EIO;
}
host->wait_int = 0;
blocksize = BLOCK_SIZE_MASK & sh_mmcif_read(&host->regs->ce_block_set);
for (j = 0; j < data->blocks; j++) {
sh_mmcif_bitset(MASK_MBUFREN, &host->regs->ce_int_mask);
time = mmcif_wait_interrupt_flag(host);
if (time == 0 || host->sd_error != 0)
return sh_mmcif_error_manage(host);
host->wait_int = 0;
for (i = 0; i < blocksize / 4; i++)
*p++ = sh_mmcif_read(&host->regs->ce_data);
WATCHDOG_RESET();
}
return 0;
}
static int sh_mmcif_single_write(struct sh_mmcif_host *host,
struct mmc_data *data)
{
long time;
u32 blocksize, i;
const unsigned long *p = (unsigned long *)data->dest;
if ((unsigned long)p & 0x00000001) {
printf("%s: The data pointer is unaligned.", __func__);
return -EIO;
}
host->wait_int = 0;
sh_mmcif_bitset(MASK_MBUFWEN, &host->regs->ce_int_mask);
time = mmcif_wait_interrupt_flag(host);
if (time == 0 || host->sd_error != 0)
return sh_mmcif_error_manage(host);
host->wait_int = 0;
blocksize = (BLOCK_SIZE_MASK &
sh_mmcif_read(&host->regs->ce_block_set)) + 3;
for (i = 0; i < blocksize / 4; i++)
sh_mmcif_write(*p++, &host->regs->ce_data);
/* buffer write end */
sh_mmcif_bitset(MASK_MDTRANE, &host->regs->ce_int_mask);
time = mmcif_wait_interrupt_flag(host);
if (time == 0 || host->sd_error != 0)
return sh_mmcif_error_manage(host);
host->wait_int = 0;
return 0;
}
static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
struct mmc_data *data)
{
long time;
u32 i, j, blocksize;
const unsigned long *p = (unsigned long *)data->dest;
if ((unsigned long)p & 0x00000001) {
printf("%s: The data pointer is unaligned.", __func__);
return -EIO;
}
host->wait_int = 0;
blocksize = BLOCK_SIZE_MASK & sh_mmcif_read(&host->regs->ce_block_set);
for (j = 0; j < data->blocks; j++) {
sh_mmcif_bitset(MASK_MBUFWEN, &host->regs->ce_int_mask);
time = mmcif_wait_interrupt_flag(host);
if (time == 0 || host->sd_error != 0)
return sh_mmcif_error_manage(host);
host->wait_int = 0;
for (i = 0; i < blocksize / 4; i++)
sh_mmcif_write(*p++, &host->regs->ce_data);
WATCHDOG_RESET();
}
return 0;
}
static void sh_mmcif_get_response(struct sh_mmcif_host *host,
struct mmc_cmd *cmd)
{
if (cmd->resp_type & MMC_RSP_136) {
cmd->response[0] = sh_mmcif_read(&host->regs->ce_resp3);
cmd->response[1] = sh_mmcif_read(&host->regs->ce_resp2);
cmd->response[2] = sh_mmcif_read(&host->regs->ce_resp1);
cmd->response[3] = sh_mmcif_read(&host->regs->ce_resp0);
debug(" RESP %08x, %08x, %08x, %08x\n", cmd->response[0],
cmd->response[1], cmd->response[2], cmd->response[3]);
} else {
cmd->response[0] = sh_mmcif_read(&host->regs->ce_resp0);
}
}
static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
struct mmc_cmd *cmd)
{
cmd->response[0] = sh_mmcif_read(&host->regs->ce_resp_cmd12);
}
static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
struct mmc_data *data, struct mmc_cmd *cmd)
{
u32 tmp = 0;
u32 opc = cmd->cmdidx;
/* Response Type check */
switch (cmd->resp_type) {
case MMC_RSP_NONE:
tmp |= CMD_SET_RTYP_NO;
break;
case MMC_RSP_R1:
case MMC_RSP_R1b:
case MMC_RSP_R3:
tmp |= CMD_SET_RTYP_6B;
break;
case MMC_RSP_R2:
tmp |= CMD_SET_RTYP_17B;
break;
default:
printf(DRIVER_NAME": Not support type response.\n");
break;
}
/* RBSY */
if (opc == MMC_CMD_SWITCH)
tmp |= CMD_SET_RBSY;
/* WDAT / DATW */
if (host->data) {
tmp |= CMD_SET_WDAT;
switch (host->bus_width) {
case MMC_BUS_WIDTH_1:
tmp |= CMD_SET_DATW_1;
break;
case MMC_BUS_WIDTH_4:
tmp |= CMD_SET_DATW_4;
break;
case MMC_BUS_WIDTH_8:
tmp |= CMD_SET_DATW_8;
break;
default:
printf(DRIVER_NAME": Not support bus width.\n");
break;
}
}
/* DWEN */
if (opc == MMC_CMD_WRITE_SINGLE_BLOCK ||
opc == MMC_CMD_WRITE_MULTIPLE_BLOCK)
tmp |= CMD_SET_DWEN;
/* CMLTE/CMD12EN */
if (opc == MMC_CMD_READ_MULTIPLE_BLOCK ||
opc == MMC_CMD_WRITE_MULTIPLE_BLOCK) {
tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
sh_mmcif_bitset(data->blocks << 16, &host->regs->ce_block_set);
}
/* RIDXC[1:0] check bits */
if (opc == MMC_CMD_SEND_OP_COND || opc == MMC_CMD_ALL_SEND_CID ||
opc == MMC_CMD_SEND_CSD || opc == MMC_CMD_SEND_CID)
tmp |= CMD_SET_RIDXC_BITS;
/* RCRC7C[1:0] check bits */
if (opc == MMC_CMD_SEND_OP_COND)
tmp |= CMD_SET_CRC7C_BITS;
/* RCRC7C[1:0] internal CRC7 */
if (opc == MMC_CMD_ALL_SEND_CID ||
opc == MMC_CMD_SEND_CSD || opc == MMC_CMD_SEND_CID)
tmp |= CMD_SET_CRC7C_INTERNAL;
return opc = ((opc << 24) | tmp);
}
static u32 sh_mmcif_data_trans(struct sh_mmcif_host *host,
struct mmc_data *data, u16 opc)
{
u32 ret;
switch (opc) {
case MMC_CMD_READ_MULTIPLE_BLOCK:
ret = sh_mmcif_multi_read(host, data);
break;
case MMC_CMD_WRITE_MULTIPLE_BLOCK:
ret = sh_mmcif_multi_write(host, data);
break;
case MMC_CMD_WRITE_SINGLE_BLOCK:
ret = sh_mmcif_single_write(host, data);
break;
case MMC_CMD_READ_SINGLE_BLOCK:
case MMC_CMD_SEND_EXT_CSD:
ret = sh_mmcif_single_read(host, data);
break;
default:
printf(DRIVER_NAME": NOT SUPPORT CMD = d'%08d\n", opc);
ret = -EINVAL;
break;
}
return ret;
}
static int sh_mmcif_start_cmd(struct sh_mmcif_host *host,
struct mmc_data *data, struct mmc_cmd *cmd)
{
long time;
int ret = 0, mask = 0;
u32 opc = cmd->cmdidx;
if (opc == MMC_CMD_STOP_TRANSMISSION) {
/* MMCIF sends the STOP command automatically */
if (host->last_cmd == MMC_CMD_READ_MULTIPLE_BLOCK)
sh_mmcif_bitset(MASK_MCMD12DRE,
&host->regs->ce_int_mask);
else
sh_mmcif_bitset(MASK_MCMD12RBE,
&host->regs->ce_int_mask);
time = mmcif_wait_interrupt_flag(host);
if (time == 0 || host->sd_error != 0)
return sh_mmcif_error_manage(host);
sh_mmcif_get_cmd12response(host, cmd);
return 0;
}
if (opc == MMC_CMD_SWITCH)
mask = MASK_MRBSYE;
else
mask = MASK_MCRSPE;
mask |= MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
if (host->data) {
sh_mmcif_write(0, &host->regs->ce_block_set);
sh_mmcif_write(data->blocksize, &host->regs->ce_block_set);
}
opc = sh_mmcif_set_cmd(host, data, cmd);
sh_mmcif_write(INT_START_MAGIC, &host->regs->ce_int);
sh_mmcif_write(mask, &host->regs->ce_int_mask);
debug("CMD%d ARG:%08x\n", cmd->cmdidx, cmd->cmdarg);
/* set arg */
sh_mmcif_write(cmd->cmdarg, &host->regs->ce_arg);
host->wait_int = 0;
/* set cmd */
sh_mmcif_write(opc, &host->regs->ce_cmd_set);
time = mmcif_wait_interrupt_flag(host);
if (time == 0)
return sh_mmcif_error_manage(host);
if (host->sd_error) {
switch (cmd->cmdidx) {
case MMC_CMD_ALL_SEND_CID:
case MMC_CMD_SELECT_CARD:
case MMC_CMD_APP_CMD:
ret = -ETIMEDOUT;
break;
default:
printf(DRIVER_NAME": Cmd(d'%d) err\n", cmd->cmdidx);
ret = sh_mmcif_error_manage(host);
break;
}
host->sd_error = 0;
host->wait_int = 0;
return ret;
}
/* if no response */
if (!(opc & 0x00C00000))
return 0;
if (host->wait_int == 1) {
sh_mmcif_get_response(host, cmd);
host->wait_int = 0;
}
if (host->data)
ret = sh_mmcif_data_trans(host, data, cmd->cmdidx);
host->last_cmd = cmd->cmdidx;
return ret;
}
static int sh_mmcif_send_cmd_common(struct sh_mmcif_host *host,
struct mmc_cmd *cmd, struct mmc_data *data)
{
int ret;
WATCHDOG_RESET();
switch (cmd->cmdidx) {
case MMC_CMD_APP_CMD:
return -ETIMEDOUT;
case MMC_CMD_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
if (data)
/* ext_csd */
break;
else
/* send_if_cond cmd (not support) */
return -ETIMEDOUT;
default:
break;
}
host->sd_error = 0;
host->data = data;
ret = sh_mmcif_start_cmd(host, data, cmd);
host->data = NULL;
return ret;
}
static int sh_mmcif_set_ios_common(struct sh_mmcif_host *host, struct mmc *mmc)
{
if (mmc->clock)
sh_mmcif_clock_control(host, mmc->clock);
if (mmc->bus_width == 8)
host->bus_width = MMC_BUS_WIDTH_8;
else if (mmc->bus_width == 4)
host->bus_width = MMC_BUS_WIDTH_4;
else
host->bus_width = MMC_BUS_WIDTH_1;
debug("clock = %d, buswidth = %d\n", mmc->clock, mmc->bus_width);
return 0;
}
static int sh_mmcif_initialize_common(struct sh_mmcif_host *host)
{
sh_mmcif_sync_reset(host);
sh_mmcif_write(MASK_ALL, &host->regs->ce_int_mask);
return 0;
}
#ifndef CONFIG_DM_MMC
static void *mmc_priv(struct mmc *mmc)
{
return (void *)mmc->priv;
}
static int sh_mmcif_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct sh_mmcif_host *host = mmc_priv(mmc);
return sh_mmcif_send_cmd_common(host, cmd, data);
}
static int sh_mmcif_set_ios(struct mmc *mmc)
{
struct sh_mmcif_host *host = mmc_priv(mmc);
return sh_mmcif_set_ios_common(host, mmc);
}
static int sh_mmcif_initialize(struct mmc *mmc)
{
struct sh_mmcif_host *host = mmc_priv(mmc);
return sh_mmcif_initialize_common(host);
}
static const struct mmc_ops sh_mmcif_ops = {
.send_cmd = sh_mmcif_send_cmd,
.set_ios = sh_mmcif_set_ios,
.init = sh_mmcif_initialize,
};
static struct mmc_config sh_mmcif_cfg = {
.name = DRIVER_NAME,
.ops = &sh_mmcif_ops,
.host_caps = MMC_MODE_HS | MMC_MODE_HS_52MHz | MMC_MODE_4BIT |
MMC_MODE_8BIT,
.voltages = MMC_VDD_32_33 | MMC_VDD_33_34,
.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT,
};
int mmcif_mmc_init(void)
{
struct mmc *mmc;
struct sh_mmcif_host *host = NULL;
host = malloc(sizeof(struct sh_mmcif_host));
if (!host)
return -ENOMEM;
memset(host, 0, sizeof(*host));
host->regs = (struct sh_mmcif_regs *)CONFIG_SH_MMCIF_ADDR;
host->clk = CONFIG_SH_MMCIF_CLK;
sh_mmcif_cfg.f_min = MMC_CLK_DIV_MIN(host->clk);
sh_mmcif_cfg.f_max = MMC_CLK_DIV_MAX(host->clk);
mmc = mmc_create(&sh_mmcif_cfg, host);
if (mmc == NULL) {
free(host);
return -ENOMEM;
}
return 0;
}
#else
struct sh_mmcif_plat {
struct mmc_config cfg;
struct mmc mmc;
};
int sh_mmcif_dm_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct sh_mmcif_host *host = dev_get_priv(dev);
return sh_mmcif_send_cmd_common(host, cmd, data);
}
int sh_mmcif_dm_set_ios(struct udevice *dev)
{
struct sh_mmcif_host *host = dev_get_priv(dev);
struct mmc *mmc = mmc_get_mmc_dev(dev);
return sh_mmcif_set_ios_common(host, mmc);
}
static const struct dm_mmc_ops sh_mmcif_dm_ops = {
.send_cmd = sh_mmcif_dm_send_cmd,
.set_ios = sh_mmcif_dm_set_ios,
};
static int sh_mmcif_dm_bind(struct udevice *dev)
{
struct sh_mmcif_plat *plat = dev_get_platdata(dev);
return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
static int sh_mmcif_dm_probe(struct udevice *dev)
{
struct sh_mmcif_plat *plat = dev_get_platdata(dev);
struct sh_mmcif_host *host = dev_get_priv(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct clk sh_mmcif_clk;
fdt_addr_t base;
int ret;
base = devfdt_get_addr(dev);
if (base == FDT_ADDR_T_NONE)
return -EINVAL;
host->regs = (struct sh_mmcif_regs *)devm_ioremap(dev, base, SZ_2K);
if (!host->regs)
return -ENOMEM;
ret = clk_get_by_index(dev, 0, &sh_mmcif_clk);
if (ret) {
debug("failed to get clock, ret=%d\n", ret);
return ret;
}
ret = clk_enable(&sh_mmcif_clk);
if (ret) {
debug("failed to enable clock, ret=%d\n", ret);
return ret;
}
host->clk = clk_set_rate(&sh_mmcif_clk, 97500000);
plat->cfg.name = dev->name;
plat->cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS;
switch (fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), "bus-width",
1)) {
case 8:
plat->cfg.host_caps |= MMC_MODE_8BIT;
break;
case 4:
plat->cfg.host_caps |= MMC_MODE_4BIT;
break;
case 1:
break;
default:
dev_err(dev, "Invalid \"bus-width\" value\n");
return -EINVAL;
}
sh_mmcif_initialize_common(host);
plat->cfg.voltages = MMC_VDD_165_195 | MMC_VDD_32_33 | MMC_VDD_33_34;
plat->cfg.f_min = MMC_CLK_DIV_MIN(host->clk);
plat->cfg.f_max = MMC_CLK_DIV_MAX(host->clk);
plat->cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
upriv->mmc = &plat->mmc;
return 0;
}
static const struct udevice_id sh_mmcif_sd_match[] = {
{ .compatible = "renesas,sh-mmcif" },
{ /* sentinel */ }
};
U_BOOT_DRIVER(sh_mmcif_mmc) = {
.name = "sh-mmcif",
.id = UCLASS_MMC,
.of_match = sh_mmcif_sd_match,
.bind = sh_mmcif_dm_bind,
.probe = sh_mmcif_dm_probe,
.priv_auto_alloc_size = sizeof(struct sh_mmcif_host),
.platdata_auto_alloc_size = sizeof(struct sh_mmcif_plat),
.ops = &sh_mmcif_dm_ops,
};
#endif