u-boot/drivers/ddr/imx/imx9/ddr_init.c
Jacky Bai 212a4e1961 ddr: imx9: update the rank setting for multi fsp support
The rank setting flow should be updated to support multi
fsp config.

Signed-off-by: Jacky Bai <ping.bai@nxp.com>
Reviewed-by: Ye Li <ye.li@nxp.com>
Signed-off-by: Peng Fan <peng.fan@nxp.com>
2023-05-21 16:54:41 +02:00

772 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2022 NXP
*/
#include <common.h>
#include <errno.h>
#include <log.h>
#include <asm/io.h>
#include <asm/arch/ddr.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <linux/delay.h>
static unsigned int g_cdd_rr_max[4];
static unsigned int g_cdd_rw_max[4];
static unsigned int g_cdd_wr_max[4];
static unsigned int g_cdd_ww_max[4];
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
void ddrphy_coldreset(void)
{
/* dramphy_apb_n default 1 , assert -> 0, de_assert -> 1 */
/* dramphy_reset_n default 0 , assert -> 0, de_assert -> 1 */
/* dramphy_PwrOKIn default 0 , assert -> 1, de_assert -> 0 */
/* src_gen_dphy_apb_sw_rst_de_assert */
clrbits_le32(REG_SRC_DPHY_SW_CTRL, BIT(0));
/* src_gen_dphy_sw_rst_de_assert */
clrbits_le32(REG_SRC_DPHY_SINGLE_RESET_SW_CTRL, BIT(2));
/* src_gen_dphy_PwrOKIn_sw_rst_de_assert() */
setbits_le32(REG_SRC_DPHY_SINGLE_RESET_SW_CTRL, BIT(0));
mdelay(10);
/* src_gen_dphy_apb_sw_rst_assert */
setbits_le32(REG_SRC_DPHY_SW_CTRL, BIT(0));
/* src_gen_dphy_sw_rst_assert */
setbits_le32(REG_SRC_DPHY_SINGLE_RESET_SW_CTRL, BIT(2));
mdelay(10);
/* src_gen_dphy_PwrOKIn_sw_rst_assert */
clrbits_le32(REG_SRC_DPHY_SINGLE_RESET_SW_CTRL, BIT(0));
mdelay(10);
/* src_gen_dphy_apb_sw_rst_de_assert */
clrbits_le32(REG_SRC_DPHY_SW_CTRL, BIT(0));
/* src_gen_dphy_sw_rst_de_assert() */
clrbits_le32(REG_SRC_DPHY_SINGLE_RESET_SW_CTRL, BIT(2));
}
void check_ddrc_idle(void)
{
u32 regval;
do {
regval = readl(REG_DDRDSR_2);
if (regval & BIT(31))
break;
} while (1);
}
void check_dfi_init_complete(void)
{
u32 regval;
do {
regval = readl(REG_DDRDSR_2);
if (regval & BIT(2))
break;
} while (1);
setbits_le32(REG_DDRDSR_2, BIT(2));
}
void ddrc_config(struct dram_timing_info *dram_timing)
{
u32 num = dram_timing->ddrc_cfg_num;
struct dram_cfg_param *ddrc_config;
int i = 0;
ddrc_config = dram_timing->ddrc_cfg;
for (i = 0; i < num; i++) {
writel(ddrc_config->val, (ulong)ddrc_config->reg);
ddrc_config++;
}
if (dram_timing->fsp_cfg) {
ddrc_config = dram_timing->fsp_cfg[0].ddrc_cfg;
while (ddrc_config->reg != 0) {
writel(ddrc_config->val, (ulong)ddrc_config->reg);
ddrc_config++;
}
}
}
static unsigned int look_for_max(unsigned int data[], unsigned int addr_start,
unsigned int addr_end)
{
unsigned int i, imax = 0;
for (i = addr_start; i <= addr_end; i++) {
if (((data[i] >> 7) == 0) && data[i] > imax)
imax = data[i];
}
return imax;
}
void get_trained_CDD(u32 fsp)
{
unsigned int i, tmp;
unsigned int cdd_cha[12], cdd_chb[12];
unsigned int cdd_cha_rr_max, cdd_cha_rw_max, cdd_cha_wr_max, cdd_cha_ww_max;
unsigned int cdd_chb_rr_max, cdd_chb_rw_max, cdd_chb_wr_max, cdd_chb_ww_max;
for (i = 0; i < 6; i++) {
tmp = dwc_ddrphy_apb_rd(0x54013 + i);
cdd_cha[i * 2] = tmp & 0xff;
cdd_cha[i * 2 + 1] = (tmp >> 8) & 0xff;
}
for (i = 0; i < 7; i++) {
tmp = dwc_ddrphy_apb_rd(0x5402c + i);
if (i == 0) {
cdd_chb[0] = (tmp >> 8) & 0xff;
} else if (i == 6) {
cdd_chb[11] = tmp & 0xff;
} else {
cdd_chb[i * 2 - 1] = tmp & 0xff;
cdd_chb[i * 2] = (tmp >> 8) & 0xff;
}
}
cdd_cha_rr_max = look_for_max(cdd_cha, 0, 1);
cdd_cha_rw_max = look_for_max(cdd_cha, 2, 5);
cdd_cha_wr_max = look_for_max(cdd_cha, 6, 9);
cdd_cha_ww_max = look_for_max(cdd_cha, 10, 11);
cdd_chb_rr_max = look_for_max(cdd_chb, 0, 1);
cdd_chb_rw_max = look_for_max(cdd_chb, 2, 5);
cdd_chb_wr_max = look_for_max(cdd_chb, 6, 9);
cdd_chb_ww_max = look_for_max(cdd_chb, 10, 11);
g_cdd_rr_max[fsp] = cdd_cha_rr_max > cdd_chb_rr_max ? cdd_cha_rr_max : cdd_chb_rr_max;
g_cdd_rw_max[fsp] = cdd_cha_rw_max > cdd_chb_rw_max ? cdd_cha_rw_max : cdd_chb_rw_max;
g_cdd_wr_max[fsp] = cdd_cha_wr_max > cdd_chb_wr_max ? cdd_cha_wr_max : cdd_chb_wr_max;
g_cdd_ww_max[fsp] = cdd_cha_ww_max > cdd_chb_ww_max ? cdd_cha_ww_max : cdd_chb_ww_max;
}
static u32 ddrc_get_fsp_reg_setting(struct dram_cfg_param *ddrc_cfg, unsigned int cfg_num, u32 reg)
{
unsigned int i;
for (i = 0; i < cfg_num; i++) {
if (reg == ddrc_cfg[i].reg)
return ddrc_cfg[i].val;
}
return 0;
}
static void ddrc_update_fsp_reg_setting(struct dram_cfg_param *ddrc_cfg, int cfg_num,
u32 reg, u32 val)
{
unsigned int i;
for (i = 0; i < cfg_num; i++) {
if (reg == ddrc_cfg[i].reg) {
ddrc_cfg[i].val = val;
return;
}
}
}
void update_umctl2_rank_space_setting(struct dram_timing_info *dram_timing, unsigned int pstat_num)
{
u32 tmp, tmp_t;
u32 wwt, rrt, wrt, rwt;
u32 ext_wwt, ext_rrt, ext_wrt, ext_rwt;
u32 max_wwt, max_rrt, max_wrt, max_rwt;
u32 i;
for (i = 0; i < pstat_num; i++) {
/* read wwt, rrt, wrt, rwt fields from timing_cfg_0 */
if (!dram_timing->fsp_cfg_num) {
tmp = ddrc_get_fsp_reg_setting(dram_timing->ddrc_cfg,
dram_timing->ddrc_cfg_num,
REG_DDR_TIMING_CFG_0);
} else {
tmp = ddrc_get_fsp_reg_setting(dram_timing->fsp_cfg[i].ddrc_cfg,
ARRAY_SIZE(dram_timing->fsp_cfg[i].ddrc_cfg),
REG_DDR_TIMING_CFG_0);
}
wwt = (tmp >> 24) & 0x3;
rrt = (tmp >> 26) & 0x3;
wrt = (tmp >> 28) & 0x3;
rwt = (tmp >> 30) & 0x3;
/* read rxt_wwt, ext_rrt, ext_wrt, ext_rwt fields from timing_cfg_4 */
if (!dram_timing->fsp_cfg_num) {
tmp_t = ddrc_get_fsp_reg_setting(dram_timing->ddrc_cfg,
dram_timing->ddrc_cfg_num,
REG_DDR_TIMING_CFG_4);
} else {
tmp_t = ddrc_get_fsp_reg_setting(dram_timing->fsp_cfg[i].ddrc_cfg,
ARRAY_SIZE(dram_timing->fsp_cfg[i].ddrc_cfg),
REG_DDR_TIMING_CFG_4);
}
ext_wwt = (tmp_t >> 8) & 0x3;
ext_rrt = (tmp_t >> 10) & 0x3;
ext_wrt = (tmp_t >> 12) & 0x3;
ext_rwt = (tmp_t >> 14) & 0x3;
wwt = (ext_wwt << 2) | wwt;
rrt = (ext_rrt << 2) | rrt;
wrt = (ext_wrt << 2) | wrt;
rwt = (ext_rwt << 2) | rwt;
max_wwt = MAX(g_cdd_ww_max[0], wwt);
max_rrt = MAX(g_cdd_rr_max[0], rrt);
max_wrt = MAX(g_cdd_wr_max[0], wrt);
max_rwt = MAX(g_cdd_rw_max[0], rwt);
/* verify values to see if are bigger then 15 (4 bits) */
if (max_wwt > 15)
max_wwt = 15;
if (max_rrt > 15)
max_rrt = 15;
if (max_wrt > 15)
max_wrt = 15;
if (max_rwt > 15)
max_rwt = 15;
/* recalculate timings for controller registers */
wwt = max_wwt & 0x3;
rrt = max_rrt & 0x3;
wrt = max_wrt & 0x3;
rwt = max_rwt & 0x3;
ext_wwt = (max_wwt & 0xC) >> 2;
ext_rrt = (max_rrt & 0xC) >> 2;
ext_wrt = (max_wrt & 0xC) >> 2;
ext_rwt = (max_rwt & 0xC) >> 2;
/* update timing_cfg_0 and timing_cfg_4 */
tmp = (tmp & 0x00ffffff) | (rwt << 30) | (wrt << 28) |
(rrt << 26) | (wwt << 24);
tmp_t = (tmp_t & 0xFFFF00FF) | (ext_rwt << 14) |
(ext_wrt << 12) | (ext_rrt << 10) | (ext_wwt << 8);
if (!dram_timing->fsp_cfg_num) {
ddrc_update_fsp_reg_setting(dram_timing->ddrc_cfg,
dram_timing->ddrc_cfg_num,
REG_DDR_TIMING_CFG_0, tmp);
ddrc_update_fsp_reg_setting(dram_timing->ddrc_cfg,
dram_timing->ddrc_cfg_num,
REG_DDR_TIMING_CFG_4, tmp_t);
} else {
ddrc_update_fsp_reg_setting(dram_timing->fsp_cfg[i].ddrc_cfg,
ARRAY_SIZE(dram_timing->fsp_cfg[i].ddrc_cfg),
REG_DDR_TIMING_CFG_0, tmp);
ddrc_update_fsp_reg_setting(dram_timing->fsp_cfg[i].ddrc_cfg,
ARRAY_SIZE(dram_timing->fsp_cfg[i].ddrc_cfg),
REG_DDR_TIMING_CFG_4, tmp_t);
}
}
}
u32 ddrc_mrr(u32 chip_select, u32 mode_reg_num, u32 *mode_reg_val)
{
u32 temp;
writel(0x80000000, REG_DDR_SDRAM_MD_CNTL_2);
temp = 0x80000000 | (chip_select << 28) | (mode_reg_num << 0);
writel(temp, REG_DDR_SDRAM_MD_CNTL);
while ((readl(REG_DDR_SDRAM_MD_CNTL) & 0x80000000) == 0x80000000)
;
while (!(readl(REG_DDR_SDRAM_MPR5)))
;
*mode_reg_val = (readl(REG_DDR_SDRAM_MPR4) & 0xFF0000) >> 16;
writel(0x0, REG_DDR_SDRAM_MPR5);
while ((readl(REG_DDR_SDRAM_MPR5)))
;
writel(0x0, REG_DDR_SDRAM_MPR4);
writel(0x0, REG_DDR_SDRAM_MD_CNTL_2);
return 0;
}
void ddrc_mrs(u32 cs_sel, u32 opcode, u32 mr)
{
u32 regval;
regval = (cs_sel << 28) | (opcode << 6) | (mr);
writel(regval, REG_DDR_SDRAM_MD_CNTL);
setbits_le32(REG_DDR_SDRAM_MD_CNTL, BIT(31));
check_ddrc_idle();
}
u32 lpddr4_mr_read(u32 mr_rank, u32 mr_addr)
{
u32 chip_select, regval;
if (mr_rank == 1)
chip_select = 0; /* CS0 */
else if (mr_rank == 2)
chip_select = 1; /* CS1 */
else
chip_select = 4; /* CS0 & CS1 */
ddrc_mrr(chip_select, mr_addr, &regval);
return regval;
}
void update_mr_fsp_op0(struct dram_cfg_param *cfg, unsigned int num)
{
int i;
ddrc_mrs(0x4, 0x88, 13); /* FSP-OP->1, FSP-WR->0, VRCG=1, DMD=0 */
for (i = 0; i < num; i++) {
if (cfg[i].reg)
ddrc_mrs(0x4, cfg[i].val, cfg[i].reg);
}
ddrc_mrs(0x4, 0xc0, 13); /* FSP-OP->1, FSP-WR->1, VRCG=0, DMD=0 */
}
void save_trained_mr12_14(struct dram_cfg_param *cfg, u32 cfg_num, u32 mr12, u32 mr14)
{
int i;
for (i = 0; i < cfg_num; i++) {
if (cfg->reg == 12)
cfg->val = mr12;
else if (cfg->reg == 14)
cfg->val = mr14;
cfg++;
}
}
int ddr_init(struct dram_timing_info *dram_timing)
{
unsigned int initial_drate;
struct dram_timing_info *saved_timing;
void *fsp;
int ret;
u32 mr12, mr14;
u32 regval;
debug("DDRINFO: start DRAM init\n");
/* reset ddrphy */
ddrphy_coldreset();
debug("DDRINFO: cfg clk\n");
initial_drate = dram_timing->fsp_msg[0].drate;
/* default to the frequency point 0 clock */
ddrphy_init_set_dfi_clk(initial_drate);
/*
* Start PHY initialization and training by
* accessing relevant PUB registers
*/
debug("DDRINFO:ddrphy config start\n");
ret = ddr_cfg_phy(dram_timing);
if (ret)
return ret;
debug("DDRINFO: ddrphy config done\n");
update_umctl2_rank_space_setting(dram_timing, dram_timing->fsp_msg_num - 1);
/* rogram the ddrc registers */
debug("DDRINFO: ddrc config start\n");
ddrc_config(dram_timing);
debug("DDRINFO: ddrc config done\n");
#ifdef CONFIG_IMX9_DRAM_PM_COUNTER
writel(0x200000, REG_DDR_DEBUG_19);
#endif
check_dfi_init_complete();
regval = readl(REG_DDR_SDRAM_CFG);
writel((regval | 0x80000000), REG_DDR_SDRAM_CFG);
check_ddrc_idle();
mr12 = lpddr4_mr_read(1, 12);
mr14 = lpddr4_mr_read(1, 14);
/* save the dram timing config into memory */
fsp = dram_config_save(dram_timing, CONFIG_SAVED_DRAM_TIMING_BASE);
saved_timing = (struct dram_timing_info *)CONFIG_SAVED_DRAM_TIMING_BASE;
saved_timing->fsp_cfg = fsp;
saved_timing->fsp_cfg_num = dram_timing->fsp_cfg_num;
if (saved_timing->fsp_cfg_num) {
memcpy(saved_timing->fsp_cfg, dram_timing->fsp_cfg,
dram_timing->fsp_cfg_num * sizeof(struct dram_fsp_cfg));
save_trained_mr12_14(saved_timing->fsp_cfg[0].mr_cfg,
ARRAY_SIZE(saved_timing->fsp_cfg[0].mr_cfg), mr12, mr14);
/*
* Configure mode registers in fsp1 to mode register 0 because DDRC
* doesn't automatically set.
*/
if (saved_timing->fsp_cfg_num > 1)
update_mr_fsp_op0(saved_timing->fsp_cfg[1].mr_cfg,
ARRAY_SIZE(saved_timing->fsp_cfg[1].mr_cfg));
}
return 0;
}
ulong ddrphy_addr_remap(u32 paddr_apb_from_ctlr)
{
u32 paddr_apb_qual;
u32 paddr_apb_unqual_dec_22_13;
u32 paddr_apb_unqual_dec_19_13;
u32 paddr_apb_unqual_dec_12_1;
u32 paddr_apb_unqual;
u32 paddr_apb_phy;
paddr_apb_qual = (paddr_apb_from_ctlr << 1);
paddr_apb_unqual_dec_22_13 = ((paddr_apb_qual & 0x7fe000) >> 13);
paddr_apb_unqual_dec_12_1 = ((paddr_apb_qual & 0x1ffe) >> 1);
switch (paddr_apb_unqual_dec_22_13) {
case 0x000:
paddr_apb_unqual_dec_19_13 = 0x00;
break;
case 0x001:
paddr_apb_unqual_dec_19_13 = 0x01;
break;
case 0x002:
paddr_apb_unqual_dec_19_13 = 0x02;
break;
case 0x003:
paddr_apb_unqual_dec_19_13 = 0x03;
break;
case 0x004:
paddr_apb_unqual_dec_19_13 = 0x04;
break;
case 0x005:
paddr_apb_unqual_dec_19_13 = 0x05;
break;
case 0x006:
paddr_apb_unqual_dec_19_13 = 0x06;
break;
case 0x007:
paddr_apb_unqual_dec_19_13 = 0x07;
break;
case 0x008:
paddr_apb_unqual_dec_19_13 = 0x08;
break;
case 0x009:
paddr_apb_unqual_dec_19_13 = 0x09;
break;
case 0x00a:
paddr_apb_unqual_dec_19_13 = 0x0a;
break;
case 0x00b:
paddr_apb_unqual_dec_19_13 = 0x0b;
break;
case 0x100:
paddr_apb_unqual_dec_19_13 = 0x0c;
break;
case 0x101:
paddr_apb_unqual_dec_19_13 = 0x0d;
break;
case 0x102:
paddr_apb_unqual_dec_19_13 = 0x0e;
break;
case 0x103:
paddr_apb_unqual_dec_19_13 = 0x0f;
break;
case 0x104:
paddr_apb_unqual_dec_19_13 = 0x10;
break;
case 0x105:
paddr_apb_unqual_dec_19_13 = 0x11;
break;
case 0x106:
paddr_apb_unqual_dec_19_13 = 0x12;
break;
case 0x107:
paddr_apb_unqual_dec_19_13 = 0x13;
break;
case 0x108:
paddr_apb_unqual_dec_19_13 = 0x14;
break;
case 0x109:
paddr_apb_unqual_dec_19_13 = 0x15;
break;
case 0x10a:
paddr_apb_unqual_dec_19_13 = 0x16;
break;
case 0x10b:
paddr_apb_unqual_dec_19_13 = 0x17;
break;
case 0x200:
paddr_apb_unqual_dec_19_13 = 0x18;
break;
case 0x201:
paddr_apb_unqual_dec_19_13 = 0x19;
break;
case 0x202:
paddr_apb_unqual_dec_19_13 = 0x1a;
break;
case 0x203:
paddr_apb_unqual_dec_19_13 = 0x1b;
break;
case 0x204:
paddr_apb_unqual_dec_19_13 = 0x1c;
break;
case 0x205:
paddr_apb_unqual_dec_19_13 = 0x1d;
break;
case 0x206:
paddr_apb_unqual_dec_19_13 = 0x1e;
break;
case 0x207:
paddr_apb_unqual_dec_19_13 = 0x1f;
break;
case 0x208:
paddr_apb_unqual_dec_19_13 = 0x20;
break;
case 0x209:
paddr_apb_unqual_dec_19_13 = 0x21;
break;
case 0x20a:
paddr_apb_unqual_dec_19_13 = 0x22;
break;
case 0x20b:
paddr_apb_unqual_dec_19_13 = 0x23;
break;
case 0x300:
paddr_apb_unqual_dec_19_13 = 0x24;
break;
case 0x301:
paddr_apb_unqual_dec_19_13 = 0x25;
break;
case 0x302:
paddr_apb_unqual_dec_19_13 = 0x26;
break;
case 0x303:
paddr_apb_unqual_dec_19_13 = 0x27;
break;
case 0x304:
paddr_apb_unqual_dec_19_13 = 0x28;
break;
case 0x305:
paddr_apb_unqual_dec_19_13 = 0x29;
break;
case 0x306:
paddr_apb_unqual_dec_19_13 = 0x2a;
break;
case 0x307:
paddr_apb_unqual_dec_19_13 = 0x2b;
break;
case 0x308:
paddr_apb_unqual_dec_19_13 = 0x2c;
break;
case 0x309:
paddr_apb_unqual_dec_19_13 = 0x2d;
break;
case 0x30a:
paddr_apb_unqual_dec_19_13 = 0x2e;
break;
case 0x30b:
paddr_apb_unqual_dec_19_13 = 0x2f;
break;
case 0x010:
paddr_apb_unqual_dec_19_13 = 0x30;
break;
case 0x011:
paddr_apb_unqual_dec_19_13 = 0x31;
break;
case 0x012:
paddr_apb_unqual_dec_19_13 = 0x32;
break;
case 0x013:
paddr_apb_unqual_dec_19_13 = 0x33;
break;
case 0x014:
paddr_apb_unqual_dec_19_13 = 0x34;
break;
case 0x015:
paddr_apb_unqual_dec_19_13 = 0x35;
break;
case 0x016:
paddr_apb_unqual_dec_19_13 = 0x36;
break;
case 0x017:
paddr_apb_unqual_dec_19_13 = 0x37;
break;
case 0x018:
paddr_apb_unqual_dec_19_13 = 0x38;
break;
case 0x019:
paddr_apb_unqual_dec_19_13 = 0x39;
break;
case 0x110:
paddr_apb_unqual_dec_19_13 = 0x3a;
break;
case 0x111:
paddr_apb_unqual_dec_19_13 = 0x3b;
break;
case 0x112:
paddr_apb_unqual_dec_19_13 = 0x3c;
break;
case 0x113:
paddr_apb_unqual_dec_19_13 = 0x3d;
break;
case 0x114:
paddr_apb_unqual_dec_19_13 = 0x3e;
break;
case 0x115:
paddr_apb_unqual_dec_19_13 = 0x3f;
break;
case 0x116:
paddr_apb_unqual_dec_19_13 = 0x40;
break;
case 0x117:
paddr_apb_unqual_dec_19_13 = 0x41;
break;
case 0x118:
paddr_apb_unqual_dec_19_13 = 0x42;
break;
case 0x119:
paddr_apb_unqual_dec_19_13 = 0x43;
break;
case 0x210:
paddr_apb_unqual_dec_19_13 = 0x44;
break;
case 0x211:
paddr_apb_unqual_dec_19_13 = 0x45;
break;
case 0x212:
paddr_apb_unqual_dec_19_13 = 0x46;
break;
case 0x213:
paddr_apb_unqual_dec_19_13 = 0x47;
break;
case 0x214:
paddr_apb_unqual_dec_19_13 = 0x48;
break;
case 0x215:
paddr_apb_unqual_dec_19_13 = 0x49;
break;
case 0x216:
paddr_apb_unqual_dec_19_13 = 0x4a;
break;
case 0x217:
paddr_apb_unqual_dec_19_13 = 0x4b;
break;
case 0x218:
paddr_apb_unqual_dec_19_13 = 0x4c;
break;
case 0x219:
paddr_apb_unqual_dec_19_13 = 0x4d;
break;
case 0x310:
paddr_apb_unqual_dec_19_13 = 0x4e;
break;
case 0x311:
paddr_apb_unqual_dec_19_13 = 0x4f;
break;
case 0x312:
paddr_apb_unqual_dec_19_13 = 0x50;
break;
case 0x313:
paddr_apb_unqual_dec_19_13 = 0x51;
break;
case 0x314:
paddr_apb_unqual_dec_19_13 = 0x52;
break;
case 0x315:
paddr_apb_unqual_dec_19_13 = 0x53;
break;
case 0x316:
paddr_apb_unqual_dec_19_13 = 0x54;
break;
case 0x317:
paddr_apb_unqual_dec_19_13 = 0x55;
break;
case 0x318:
paddr_apb_unqual_dec_19_13 = 0x56;
break;
case 0x319:
paddr_apb_unqual_dec_19_13 = 0x57;
break;
case 0x020:
paddr_apb_unqual_dec_19_13 = 0x58;
break;
case 0x120:
paddr_apb_unqual_dec_19_13 = 0x59;
break;
case 0x220:
paddr_apb_unqual_dec_19_13 = 0x5a;
break;
case 0x320:
paddr_apb_unqual_dec_19_13 = 0x5b;
break;
case 0x040:
paddr_apb_unqual_dec_19_13 = 0x5c;
break;
case 0x140:
paddr_apb_unqual_dec_19_13 = 0x5d;
break;
case 0x240:
paddr_apb_unqual_dec_19_13 = 0x5e;
break;
case 0x340:
paddr_apb_unqual_dec_19_13 = 0x5f;
break;
case 0x050:
paddr_apb_unqual_dec_19_13 = 0x60;
break;
case 0x051:
paddr_apb_unqual_dec_19_13 = 0x61;
break;
case 0x052:
paddr_apb_unqual_dec_19_13 = 0x62;
break;
case 0x053:
paddr_apb_unqual_dec_19_13 = 0x63;
break;
case 0x054:
paddr_apb_unqual_dec_19_13 = 0x64;
break;
case 0x055:
paddr_apb_unqual_dec_19_13 = 0x65;
break;
case 0x056:
paddr_apb_unqual_dec_19_13 = 0x66;
break;
case 0x057:
paddr_apb_unqual_dec_19_13 = 0x67;
break;
case 0x070:
paddr_apb_unqual_dec_19_13 = 0x68;
break;
case 0x090:
paddr_apb_unqual_dec_19_13 = 0x69;
break;
case 0x190:
paddr_apb_unqual_dec_19_13 = 0x6a;
break;
case 0x290:
paddr_apb_unqual_dec_19_13 = 0x6b;
break;
case 0x390:
paddr_apb_unqual_dec_19_13 = 0x6c;
break;
case 0x0c0:
paddr_apb_unqual_dec_19_13 = 0x6d;
break;
case 0x0d0:
paddr_apb_unqual_dec_19_13 = 0x6e;
break;
default:
paddr_apb_unqual_dec_19_13 = 0x00;
break;
}
paddr_apb_unqual = ((paddr_apb_unqual_dec_19_13 << 13) | (paddr_apb_unqual_dec_12_1 << 1));
paddr_apb_phy = (paddr_apb_unqual << 1);
return paddr_apb_phy;
}