u-boot/include/dm/read.h
Simon Glass f69d3d6d10 pci: serial: Support reading PCI-register size with base
The PCI helpers read only the base address for a PCI region. In some cases
the size is needed as well, e.g. to pass along to a driver which needs to
know the size of its register area.

Update the functions to allow the size to be returned. For serial, record
the information and provided it with the serial_info() call.

A limitation still exists in that the size is not available when OF_LIVE
is enabled, so take account of that in the tests.

Signed-off-by: Simon Glass <sjg@chromium.org>
2023-10-06 14:38:13 -04:00

1263 lines
38 KiB
C

/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Function to read values from the device tree node attached to a udevice.
*
* Copyright (c) 2017 Google, Inc
* Written by Simon Glass <sjg@chromium.org>
*/
#ifndef _DM_READ_H
#define _DM_READ_H
#include <linux/errno.h>
#include <dm/device.h>
#include <dm/fdtaddr.h>
#include <dm/ofnode.h>
#include <dm/uclass.h>
struct resource;
#if CONFIG_IS_ENABLED(OF_LIVE)
static inline const struct device_node *dev_np(const struct udevice *dev)
{
return ofnode_to_np(dev_ofnode(dev));
}
#else
static inline const struct device_node *dev_np(const struct udevice *dev)
{
return NULL;
}
#endif
#if !defined(CONFIG_DM_DEV_READ_INLINE) || CONFIG_IS_ENABLED(OF_PLATDATA)
/**
* dev_read_u8() - read a 8-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @outp: place to put value (if found)
* Return: 0 if OK, -ve on error
*/
int dev_read_u8(const struct udevice *dev, const char *propname, u8 *outp);
/**
* dev_read_u8_default() - read a 8-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @def: default value to return if the property has no value
* Return: property value, or @def if not found
*/
u8 dev_read_u8_default(const struct udevice *dev, const char *propname, u8 def);
/**
* dev_read_u16() - read a 16-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @outp: place to put value (if found)
* Return: 0 if OK, -ve on error
*/
int dev_read_u16(const struct udevice *dev, const char *propname, u16 *outp);
/**
* dev_read_u16_default() - read a 16-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @def: default value to return if the property has no value
* Return: property value, or @def if not found
*/
u16 dev_read_u16_default(const struct udevice *dev, const char *propname,
u16 def);
/**
* dev_read_u32() - read a 32-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @outp: place to put value (if found)
* Return: 0 if OK, -ve on error
*/
int dev_read_u32(const struct udevice *dev, const char *propname, u32 *outp);
/**
* dev_read_u32_default() - read a 32-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @def: default value to return if the property has no value
* Return: property value, or @def if not found
*/
int dev_read_u32_default(const struct udevice *dev, const char *propname,
int def);
/**
* dev_read_u32_index() - read an indexed 32-bit integer from a device's DT
* property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @index: index of the integer to return
* @outp: place to put value (if found)
* Return: 0 if OK, -ve on error
*/
int dev_read_u32_index(struct udevice *dev, const char *propname, int index,
u32 *outp);
/**
* dev_read_u32_index_default() - read an indexed 32-bit integer from a device's
* DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @index: index of the integer to return
* @def: default value to return if the property has no value
* Return: property value, or @def if not found
*/
u32 dev_read_u32_index_default(struct udevice *dev, const char *propname,
int index, u32 def);
/**
* dev_read_s32() - read a signed 32-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @outp: place to put value (if found)
* Return: 0 if OK, -ve on error
*/
int dev_read_s32(const struct udevice *dev, const char *propname, s32 *outp);
/**
* dev_read_s32_default() - read a signed 32-bit int from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @def: default value to return if the property has no value
* Return: property value, or @def if not found
*/
int dev_read_s32_default(const struct udevice *dev, const char *propname,
int def);
/**
* dev_read_u32u() - read a 32-bit integer from a device's DT property
*
* This version uses a standard uint type.
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @outp: place to put value (if found)
* Return: 0 if OK, -ve on error
*/
int dev_read_u32u(const struct udevice *dev, const char *propname, uint *outp);
/**
* dev_read_u64() - read a 64-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @outp: place to put value (if found)
* Return: 0 if OK, -ve on error
*/
int dev_read_u64(const struct udevice *dev, const char *propname, u64 *outp);
/**
* dev_read_u64_default() - read a 64-bit integer from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read from
* @def: default value to return if the property has no value
* Return: property value, or @def if not found
*/
u64 dev_read_u64_default(const struct udevice *dev, const char *propname,
u64 def);
/**
* dev_read_string() - Read a string from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of the property to read
* Return: string from property value, or NULL if there is no such property
*/
const char *dev_read_string(const struct udevice *dev, const char *propname);
/**
* dev_read_bool() - read a boolean value from a device's DT property
*
* @dev: device to read DT property from
* @propname: name of property to read
* Return: true if property is present (meaning true), false if not present
*/
bool dev_read_bool(const struct udevice *dev, const char *propname);
/**
* dev_read_subnode() - find a named subnode of a device
*
* @dev: device whose DT node contains the subnode
* @subnode_name: name of subnode to find
* Return: reference to subnode (which can be invalid if there is no such
* subnode)
*/
ofnode dev_read_subnode(const struct udevice *dev, const char *subnode_name);
/**
* dev_read_size() - read the size of a property
*
* @dev: device to check
* @propname: property to check
* Return: size of property if present, or -EINVAL if not
*/
int dev_read_size(const struct udevice *dev, const char *propname);
/**
* dev_read_addr_index() - Get the indexed reg property of a device
*
* @dev: Device to read from
* @index: the 'reg' property can hold a list of <addr, size> pairs
* and @index is used to select which one is required
*
* Return: address or FDT_ADDR_T_NONE if not found
*/
fdt_addr_t dev_read_addr_index(const struct udevice *dev, int index);
/**
* dev_read_addr_index_ptr() - Get the indexed reg property of a device
* as a pointer
*
* @dev: Device to read from
* @index: the 'reg' property can hold a list of <addr, size> pairs
* and @index is used to select which one is required
*
* Return: pointer or NULL if not found
*/
void *dev_read_addr_index_ptr(const struct udevice *dev, int index);
/**
* dev_read_addr_size_index() - Get the indexed reg property of a device
*
* @dev: Device to read from
* @index: the 'reg' property can hold a list of <addr, size> pairs
* and @index is used to select which one is required
* @size: place to put size value (on success)
*
* Return: address or FDT_ADDR_T_NONE if not found
*/
fdt_addr_t dev_read_addr_size_index(const struct udevice *dev, int index,
fdt_size_t *size);
/**
* dev_read_addr_size_index_ptr() - Get the indexed reg property of a device
* as a pointer
*
* @dev: Device to read from
* @index: the 'reg' property can hold a list of <addr, size> pairs
* and @index is used to select which one is required
* @size: place to put size value (on success)
*
* Return: pointer or NULL if not found
*/
void *dev_read_addr_size_index_ptr(const struct udevice *dev, int index,
fdt_size_t *size);
/**
* dev_remap_addr_index() - Get the indexed reg property of a device
* as a memory-mapped I/O pointer
*
* @dev: Device to read from
* @index: the 'reg' property can hold a list of <addr, size> pairs
* and @index is used to select which one is required
*
* Return: pointer or NULL if not found
*/
void *dev_remap_addr_index(const struct udevice *dev, int index);
/**
* dev_read_addr_name() - Get the reg property of a device, indexed by name
*
* @dev: Device to read from
* @name: the 'reg' property can hold a list of <addr, size> pairs, with the
* 'reg-names' property providing named-based identification. @index
* indicates the value to search for in 'reg-names'.
*
* Return: address or FDT_ADDR_T_NONE if not found
*/
fdt_addr_t dev_read_addr_name(const struct udevice *dev, const char *name);
/**
* dev_read_addr_size_name() - Get the reg property of a device, indexed by name
*
* @dev: Device to read from
* @name: the 'reg' property can hold a list of <addr, size> pairs, with the
* 'reg-names' property providing named-based identification. @index
* indicates the value to search for in 'reg-names'.
* @size: place to put size value (on success)
*
* Return: address or FDT_ADDR_T_NONE if not found
*/
fdt_addr_t dev_read_addr_size_name(const struct udevice *dev, const char *name,
fdt_size_t *size);
/**
* dev_remap_addr_name() - Get the reg property of a device, indexed by name,
* as a memory-mapped I/O pointer
*
* @dev: Device to read from
* @name: the 'reg' property can hold a list of <addr, size> pairs, with the
* 'reg-names' property providing named-based identification. @index
* indicates the value to search for in 'reg-names'.
*
* Return: pointer or NULL if not found
*/
void *dev_remap_addr_name(const struct udevice *dev, const char *name);
/**
* dev_read_addr() - Get the reg property of a device
*
* @dev: Device to read from
*
* Return: address or FDT_ADDR_T_NONE if not found
*/
fdt_addr_t dev_read_addr(const struct udevice *dev);
/**
* dev_read_addr_ptr() - Get the reg property of a device
* as a pointer
*
* @dev: Device to read from
*
* Return: pointer or NULL if not found
*/
void *dev_read_addr_ptr(const struct udevice *dev);
/**
* dev_read_addr_pci() - Read an address and handle PCI address translation
*
* At present U-Boot does not have address translation logic for PCI in the
* livetree implementation (of_addr.c). This special function supports this for
* the flat tree implementation.
*
* This function should be removed (and code should use dev_read() instead)
* once:
*
* 1. PCI address translation is added; and either
* 2. everything uses livetree where PCI translation is used (which is feasible
* in SPL and U-Boot proper) or PCI address translation is added to
* fdtdec_get_addr() and friends.
*
* @dev: Device to read from
* @sizep: If non-NULL, returns size of address space found
* Return: address or FDT_ADDR_T_NONE if not found
*/
fdt_addr_t dev_read_addr_pci(const struct udevice *dev, fdt_size_t *sizep);
/**
* dev_remap_addr() - Get the reg property of a device as a
* memory-mapped I/O pointer
*
* @dev: Device to read from
*
* Return: pointer or NULL if not found
*/
void *dev_remap_addr(const struct udevice *dev);
/**
* dev_read_addr_size() - Get the reg property of a device
*
* @dev: Device to read from
* @sizep: place to put size value (on success)
* Return: address value, or FDT_ADDR_T_NONE on error
*/
fdt_addr_t dev_read_addr_size(const struct udevice *dev, fdt_size_t *sizep);
/**
* dev_read_name() - get the name of a device's node
*
* @dev: Device to read from
* Return: name of node
*/
const char *dev_read_name(const struct udevice *dev);
/**
* dev_read_stringlist_search() - find string in a string list and return index
*
* Note that it is possible for this function to succeed on property values
* that are not NUL-terminated. That's because the function will stop after
* finding the first occurrence of @string. This can for example happen with
* small-valued cell properties, such as #address-cells, when searching for
* the empty string.
*
* @dev: device to check
* @propname: name of the property containing the string list
* @string: string to look up in the string list
*
* Return:
* the index of the string in the list of strings
* -ENODATA if the property is not found
* -EINVAL on some other error
*/
int dev_read_stringlist_search(const struct udevice *dev, const char *propname,
const char *string);
/**
* dev_read_string_index() - obtain an indexed string from a string list
*
* @dev: device to examine
* @propname: name of the property containing the string list
* @index: index of the string to return
* @outp: return location for the string
*
* Return:
* length of string, if found or -ve error value if not found
*/
int dev_read_string_index(const struct udevice *dev, const char *propname,
int index, const char **outp);
/**
* dev_read_string_count() - find the number of strings in a string list
*
* @dev: device to examine
* @propname: name of the property containing the string list
* Return:
* number of strings in the list, or -ve error value if not found
*/
int dev_read_string_count(const struct udevice *dev, const char *propname);
/**
* dev_read_string_list() - read a list of strings
*
* This produces a list of string pointers with each one pointing to a string
* in the string list. If the property does not exist, it returns {NULL}.
*
* The data is allocated and the caller is reponsible for freeing the return
* value (the list of string pointers). The strings themselves may not be
* changed as they point directly into the devicetree property.
*
* @dev: device to examine
* @propname: name of the property containing the string list
* @listp: returns an allocated, NULL-terminated list of strings if the return
* value is > 0, else is set to NULL
* Return:
* number of strings in list, 0 if none, -ENOMEM if out of memory,
* -ENOENT if no such property
*/
int dev_read_string_list(const struct udevice *dev, const char *propname,
const char ***listp);
/**
* dev_read_phandle_with_args() - Find a node pointed by phandle in a list
*
* This function is useful to parse lists of phandles and their arguments.
* Returns 0 on success and fills out_args, on error returns appropriate
* errno value.
*
* Caller is responsible to call of_node_put() on the returned out_args->np
* pointer.
*
* Example:
*
* .. code-block::
*
* phandle1: node1 {
* #list-cells = <2>;
* };
* phandle2: node2 {
* #list-cells = <1>;
* };
* node3 {
* list = <&phandle1 1 2 &phandle2 3>;
* };
*
* To get a device_node of the `node2' node you may call this:
* dev_read_phandle_with_args(dev, "list", "#list-cells", 0, 1, &args);
*
* @dev: device whose node containing a list
* @list_name: property name that contains a list
* @cells_name: property name that specifies phandles' arguments count
* @cell_count: Cell count to use if @cells_name is NULL
* @index: index of a phandle to parse out
* @out_args: optional pointer to output arguments structure (will be filled)
* Return: 0 on success (with @out_args filled out if not NULL), -ENOENT if
* @list_name does not exist, -EINVAL if a phandle was not found,
* @cells_name could not be found, the arguments were truncated or there
* were too many arguments.
*/
int dev_read_phandle_with_args(const struct udevice *dev, const char *list_name,
const char *cells_name, int cell_count,
int index, struct ofnode_phandle_args *out_args);
/**
* dev_count_phandle_with_args() - Return phandle number in a list
*
* This function is usefull to get phandle number contained in a property list.
* For example, this allows to allocate the right amount of memory to keep
* clock's reference contained into the "clocks" property.
*
* @dev: device whose node containing a list
* @list_name: property name that contains a list
* @cells_name: property name that specifies phandles' arguments count
* @cell_count: Cell count to use if @cells_name is NULL
* Return: number of phandle found on success, on error returns appropriate
* errno value.
*/
int dev_count_phandle_with_args(const struct udevice *dev,
const char *list_name, const char *cells_name,
int cell_count);
/**
* dev_read_addr_cells() - Get the number of address cells for a device's node
*
* This walks back up the tree to find the closest #address-cells property
* which controls the given node.
*
* @dev: device to check
* Return: number of address cells this node uses
*/
int dev_read_addr_cells(const struct udevice *dev);
/**
* dev_read_size_cells() - Get the number of size cells for a device's node
*
* This walks back up the tree to find the closest #size-cells property
* which controls the given node.
*
* @dev: device to check
* Return: number of size cells this node uses
*/
int dev_read_size_cells(const struct udevice *dev);
/**
* dev_read_addr_cells() - Get the address cells property in a node
*
* This function matches fdt_address_cells().
*
* @dev: device to check
* Return: number of address cells this node uses
*/
int dev_read_simple_addr_cells(const struct udevice *dev);
/**
* dev_read_size_cells() - Get the size cells property in a node
*
* This function matches fdt_size_cells().
*
* @dev: device to check
* Return: number of size cells this node uses
*/
int dev_read_simple_size_cells(const struct udevice *dev);
/**
* dev_read_phandle() - Get the phandle from a device
*
* @dev: device to check
* Return: phandle (1 or greater), or 0 if no phandle or other error
*/
int dev_read_phandle(const struct udevice *dev);
/**
* dev_read_prop()- - read a property from a device's node
*
* @dev: device to check
* @propname: property to read
* @lenp: place to put length on success
* Return: pointer to property, or NULL if not found
*/
const void *dev_read_prop(const struct udevice *dev, const char *propname,
int *lenp);
/**
* dev_read_first_prop()- get the reference of the first property
*
* Get reference to the first property of the node, it is used to iterate
* and read all the property with dev_read_prop_by_prop().
*
* @dev: device to check
* @prop: place to put argument reference
* Return: 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
*/
int dev_read_first_prop(const struct udevice *dev, struct ofprop *prop);
/**
* ofnode_next_property() - get the reference of the next property
*
* Get reference to the next property of the node, it is used to iterate
* and read all the property with dev_read_prop_by_prop().
*
* @prop: reference of current argument and place to put reference of next one
* Return: 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
*/
int dev_read_next_prop(struct ofprop *prop);
/**
* dev_read_prop_by_prop() - get a pointer to the value of a property
*
* Get value for the property identified by the provided reference.
*
* @prop: reference on property
* @propname: If non-NULL, place to property name on success,
* @lenp: If non-NULL, place to put length on success
* Return: 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
*/
const void *dev_read_prop_by_prop(struct ofprop *prop,
const char **propname, int *lenp);
/**
* dev_read_alias_seq() - Get the alias sequence number of a node
*
* This works out whether a node is pointed to by an alias, and if so, the
* sequence number of that alias. Aliases are of the form <base><num> where
* <num> is the sequence number. For example spi2 would be sequence number 2.
*
* @dev: device to look up
* @devnump: set to the sequence number if one is found
* Return: 0 if a sequence was found, -ve if not
*/
int dev_read_alias_seq(const struct udevice *dev, int *devnump);
/**
* dev_read_u32_array() - Find and read an array of 32 bit integers
*
* Search for a property in a device node and read 32-bit value(s) from
* it.
*
* The out_values is modified only if a valid u32 value can be decoded.
*
* @dev: device to look up
* @propname: name of the property to read
* @out_values: pointer to return value, modified only if return value is 0
* @sz: number of array elements to read
* Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
* property does not have a value, and -EOVERFLOW if the property data isn't
* large enough.
*/
int dev_read_u32_array(const struct udevice *dev, const char *propname,
u32 *out_values, size_t sz);
/**
* dev_read_first_subnode() - find the first subnode of a device's node
*
* @dev: device to look up
* Return: reference to the first subnode (which can be invalid if the device's
* node has no subnodes)
*/
ofnode dev_read_first_subnode(const struct udevice *dev);
/**
* ofnode_next_subnode() - find the next sibling of a subnode
*
* @node: valid reference to previous node (sibling)
* Return: reference to the next subnode (which can be invalid if the node
* has no more siblings)
*/
ofnode dev_read_next_subnode(ofnode node);
/**
* dev_read_u8_array_ptr() - find an 8-bit array
*
* Look up a device's node property and return a pointer to its contents as a
* byte array of given length. The property must have at least enough data
* for the array (count bytes). It may have more, but this will be ignored.
* The data is not copied.
*
* @dev: device to look up
* @propname: name of property to find
* @sz: number of array elements
* Return:
* pointer to byte array if found, or NULL if the property is not found or
* there is not enough data
*/
const uint8_t *dev_read_u8_array_ptr(const struct udevice *dev,
const char *propname, size_t sz);
/**
* dev_read_enabled() - check whether a node is enabled
*
* This looks for a 'status' property. If this exists, then returns 1 if
* the status is 'ok' and 0 otherwise. If there is no status property,
* it returns 1 on the assumption that anything mentioned should be enabled
* by default.
*
* @dev: device to examine
* Return: integer value 0 (not enabled) or 1 (enabled)
*/
int dev_read_enabled(const struct udevice *dev);
/**
* dev_read_resource() - obtain an indexed resource from a device.
*
* @dev: device to examine
* @index: index of the resource to retrieve (0 = first)
* @res: returns the resource
* Return: 0 if ok, negative on error
*/
int dev_read_resource(const struct udevice *dev, uint index,
struct resource *res);
/**
* dev_read_resource_byname() - obtain a named resource from a device.
*
* @dev: device to examine
* @name: name of the resource to retrieve
* @res: returns the resource
* Return: 0 if ok, negative on error
*/
int dev_read_resource_byname(const struct udevice *dev, const char *name,
struct resource *res);
/**
* dev_translate_address() - Translate a device-tree address
*
* Translate an address from the device-tree into a CPU physical address. This
* function walks up the tree and applies the various bus mappings along the
* way.
*
* @dev: device giving the context in which to translate the address
* @in_addr: pointer to the address to translate
* Return: the translated address; OF_BAD_ADDR on error
*/
u64 dev_translate_address(const struct udevice *dev, const fdt32_t *in_addr);
/**
* dev_translate_dma_address() - Translate a device-tree DMA address
*
* Translate a DMA address from the device-tree into a CPU physical address.
* This function walks up the tree and applies the various bus mappings along
* the way.
*
* @dev: device giving the context in which to translate the DMA address
* @in_addr: pointer to the DMA address to translate
* Return: the translated DMA address; OF_BAD_ADDR on error
*/
u64 dev_translate_dma_address(const struct udevice *dev,
const fdt32_t *in_addr);
/**
* dev_get_dma_range() - Get a device's DMA constraints
*
* Provide the address bases and size of the linear mapping between the CPU and
* a device's BUS address space.
*
* @dev: device giving the context in which to translate the DMA address
* @cpu: base address for CPU's view of memory
* @bus: base address for BUS's view of memory
* @size: size of the address space
* Return: 0 if ok, negative on error
*/
int dev_get_dma_range(const struct udevice *dev, phys_addr_t *cpu,
dma_addr_t *bus, u64 *size);
/**
* dev_read_alias_highest_id - Get highest alias id for the given stem
* @stem: Alias stem to be examined
*
* The function travels the lookup table to get the highest alias id for the
* given alias stem.
* Return: alias ID, if found, else -1
*/
int dev_read_alias_highest_id(const char *stem);
/**
* dev_get_child_count() - get the child count of a device
*
* @dev: device to use for interation (`struct udevice *`)
* Return: the count of child subnode
*/
int dev_get_child_count(const struct udevice *dev);
/**
* dev_read_pci_bus_range - Read PCI bus-range resource
*
* Look at the bus range property of a device node and return the pci bus
* range for this node.
*
* @dev: device to examine
* @res: returns the resource
* Return: 0 if ok, negative on error
*/
int dev_read_pci_bus_range(const struct udevice *dev, struct resource *res);
/**
* dev_decode_display_timing() - decode display timings
*
* Decode display timings from the supplied 'display-timings' node.
* See doc/device-tree-bindings/video/display-timing.txt for binding
* information.
*
* @dev: device to read DT display timings from. The node linked to the device
* contains a child node called 'display-timings' which in turn contains
* one or more display timing nodes.
* @index: index number to read (0=first timing subnode)
* @config: place to put timings
* Return: 0 if OK, -FDT_ERR_NOTFOUND if not found
*/
int dev_decode_display_timing(const struct udevice *dev, int index,
struct display_timing *config);
/**
* dev_decode_panel_timing() - decode panel timings
*
* Decode display timings from the supplied 'panel-timings' node.
*
* @dev: device to read DT display timings from. The node linked to the device
* contains a child node called 'display-timings' which in turn contains
* one or more display timing nodes.
* @config: place to put timings
* Return: 0 if OK, -FDT_ERR_NOTFOUND if not found
*/
int dev_decode_panel_timing(const struct udevice *dev,
struct display_timing *config);
/**
* dev_get_phy_node() - Get PHY node for a MAC (if not fixed-link)
*
* This function parses PHY handle from the Ethernet controller's ofnode
* (trying all possible PHY handle property names), and returns the PHY ofnode.
*
* Before this is used, ofnode_phy_is_fixed_link() should be checked first, and
* if the result to that is true, this function should not be called.
*
* @dev: device representing the MAC
* Return: ofnode of the PHY, if it exists, otherwise an invalid ofnode
*/
ofnode dev_get_phy_node(const struct udevice *dev);
/**
* dev_read_phy_mode() - Read PHY connection type from a MAC
*
* This function parses the "phy-mode" / "phy-connection-type" property and
* returns the corresponding PHY interface type.
*
* @dev: device representing the MAC
* Return: one of PHY_INTERFACE_MODE_* constants, PHY_INTERFACE_MODE_NA on
* error
*/
phy_interface_t dev_read_phy_mode(const struct udevice *dev);
#else /* CONFIG_DM_DEV_READ_INLINE is enabled */
#include <asm/global_data.h>
static inline int dev_read_u8(const struct udevice *dev,
const char *propname, u8 *outp)
{
return ofnode_read_u8(dev_ofnode(dev), propname, outp);
}
static inline int dev_read_u8_default(const struct udevice *dev,
const char *propname, u8 def)
{
return ofnode_read_u8_default(dev_ofnode(dev), propname, def);
}
static inline int dev_read_u16(const struct udevice *dev,
const char *propname, u16 *outp)
{
return ofnode_read_u16(dev_ofnode(dev), propname, outp);
}
static inline int dev_read_u16_default(const struct udevice *dev,
const char *propname, u16 def)
{
return ofnode_read_u16_default(dev_ofnode(dev), propname, def);
}
static inline int dev_read_u32(const struct udevice *dev,
const char *propname, u32 *outp)
{
return ofnode_read_u32(dev_ofnode(dev), propname, outp);
}
static inline int dev_read_u32_default(const struct udevice *dev,
const char *propname, int def)
{
return ofnode_read_u32_default(dev_ofnode(dev), propname, def);
}
static inline int dev_read_u32_index(struct udevice *dev,
const char *propname, int index, u32 *outp)
{
return ofnode_read_u32_index(dev_ofnode(dev), propname, index, outp);
}
static inline u32 dev_read_u32_index_default(struct udevice *dev,
const char *propname, int index,
u32 def)
{
return ofnode_read_u32_index_default(dev_ofnode(dev), propname, index,
def);
}
static inline int dev_read_s32(const struct udevice *dev,
const char *propname, s32 *outp)
{
return ofnode_read_s32(dev_ofnode(dev), propname, outp);
}
static inline int dev_read_s32_default(const struct udevice *dev,
const char *propname, int def)
{
return ofnode_read_s32_default(dev_ofnode(dev), propname, def);
}
static inline int dev_read_u32u(const struct udevice *dev,
const char *propname, uint *outp)
{
u32 val;
int ret;
ret = ofnode_read_u32(dev_ofnode(dev), propname, &val);
if (ret)
return ret;
*outp = val;
return 0;
}
static inline int dev_read_u64(const struct udevice *dev,
const char *propname, u64 *outp)
{
return ofnode_read_u64(dev_ofnode(dev), propname, outp);
}
static inline u64 dev_read_u64_default(const struct udevice *dev,
const char *propname, u64 def)
{
return ofnode_read_u64_default(dev_ofnode(dev), propname, def);
}
static inline const char *dev_read_string(const struct udevice *dev,
const char *propname)
{
return ofnode_read_string(dev_ofnode(dev), propname);
}
static inline bool dev_read_bool(const struct udevice *dev,
const char *propname)
{
return ofnode_read_bool(dev_ofnode(dev), propname);
}
static inline ofnode dev_read_subnode(const struct udevice *dev,
const char *subbnode_name)
{
return ofnode_find_subnode(dev_ofnode(dev), subbnode_name);
}
static inline int dev_read_size(const struct udevice *dev, const char *propname)
{
return ofnode_read_size(dev_ofnode(dev), propname);
}
static inline fdt_addr_t dev_read_addr_index(const struct udevice *dev,
int index)
{
return devfdt_get_addr_index(dev, index);
}
static inline void *dev_read_addr_index_ptr(const struct udevice *dev,
int index)
{
return devfdt_get_addr_index_ptr(dev, index);
}
static inline fdt_addr_t dev_read_addr_size_index(const struct udevice *dev,
int index,
fdt_size_t *size)
{
return devfdt_get_addr_size_index(dev, index, size);
}
static inline void *dev_read_addr_size_index_ptr(const struct udevice *dev,
int index,
fdt_size_t *size)
{
return devfdt_get_addr_size_index_ptr(dev, index, size);
}
static inline fdt_addr_t dev_read_addr_name(const struct udevice *dev,
const char *name)
{
return devfdt_get_addr_name(dev, name);
}
static inline fdt_addr_t dev_read_addr_size_name(const struct udevice *dev,
const char *name,
fdt_size_t *size)
{
return devfdt_get_addr_size_name(dev, name, size);
}
static inline fdt_addr_t dev_read_addr(const struct udevice *dev)
{
return devfdt_get_addr(dev);
}
static inline void *dev_read_addr_ptr(const struct udevice *dev)
{
return devfdt_get_addr_ptr(dev);
}
static inline fdt_addr_t dev_read_addr_pci(const struct udevice *dev,
fdt_size_t *sizep)
{
return devfdt_get_addr_pci(dev, sizep);
}
static inline void *dev_remap_addr(const struct udevice *dev)
{
return devfdt_remap_addr(dev);
}
static inline void *dev_remap_addr_index(const struct udevice *dev, int index)
{
return devfdt_remap_addr_index(dev, index);
}
static inline void *dev_remap_addr_name(const struct udevice *dev,
const char *name)
{
return devfdt_remap_addr_name(dev, name);
}
static inline fdt_addr_t dev_read_addr_size(const struct udevice *dev,
fdt_size_t *sizep)
{
return dev_read_addr_size_index(dev, 0, sizep);
}
static inline const char *dev_read_name(const struct udevice *dev)
{
return ofnode_get_name(dev_ofnode(dev));
}
static inline int dev_read_stringlist_search(const struct udevice *dev,
const char *propname,
const char *string)
{
return ofnode_stringlist_search(dev_ofnode(dev), propname, string);
}
static inline int dev_read_string_index(const struct udevice *dev,
const char *propname, int index,
const char **outp)
{
return ofnode_read_string_index(dev_ofnode(dev), propname, index, outp);
}
static inline int dev_read_string_count(const struct udevice *dev,
const char *propname)
{
return ofnode_read_string_count(dev_ofnode(dev), propname);
}
static inline int dev_read_string_list(const struct udevice *dev,
const char *propname,
const char ***listp)
{
return ofnode_read_string_list(dev_ofnode(dev), propname, listp);
}
static inline int dev_read_phandle_with_args(const struct udevice *dev,
const char *list_name, const char *cells_name, int cell_count,
int index, struct ofnode_phandle_args *out_args)
{
return ofnode_parse_phandle_with_args(dev_ofnode(dev), list_name,
cells_name, cell_count, index,
out_args);
}
static inline int dev_count_phandle_with_args(const struct udevice *dev,
const char *list_name, const char *cells_name, int cell_count)
{
return ofnode_count_phandle_with_args(dev_ofnode(dev), list_name,
cells_name, cell_count);
}
static inline int dev_read_addr_cells(const struct udevice *dev)
{
int parent = fdt_parent_offset(gd->fdt_blob, dev_of_offset(dev));
return fdt_address_cells(gd->fdt_blob, parent);
}
static inline int dev_read_size_cells(const struct udevice *dev)
{
int parent = fdt_parent_offset(gd->fdt_blob, dev_of_offset(dev));
return fdt_size_cells(gd->fdt_blob, parent);
}
static inline int dev_read_simple_addr_cells(const struct udevice *dev)
{
return fdt_address_cells(gd->fdt_blob, dev_of_offset(dev));
}
static inline int dev_read_simple_size_cells(const struct udevice *dev)
{
return fdt_size_cells(gd->fdt_blob, dev_of_offset(dev));
}
static inline int dev_read_phandle(const struct udevice *dev)
{
return fdt_get_phandle(gd->fdt_blob, dev_of_offset(dev));
}
static inline const void *dev_read_prop(const struct udevice *dev,
const char *propname, int *lenp)
{
return ofnode_get_property(dev_ofnode(dev), propname, lenp);
}
static inline int dev_read_first_prop(const struct udevice *dev, struct ofprop *prop)
{
return ofnode_first_property(dev_ofnode(dev), prop);
}
static inline int dev_read_next_prop(struct ofprop *prop)
{
return ofnode_next_property(prop);
}
static inline const void *dev_read_prop_by_prop(struct ofprop *prop,
const char **propname,
int *lenp)
{
return ofprop_get_property(prop, propname, lenp);
}
static inline int dev_read_alias_seq(const struct udevice *dev, int *devnump)
{
#if CONFIG_IS_ENABLED(OF_CONTROL)
return fdtdec_get_alias_seq(gd->fdt_blob, dev->uclass->uc_drv->name,
dev_of_offset(dev), devnump);
#else
return -ENOTSUPP;
#endif
}
static inline int dev_read_u32_array(const struct udevice *dev,
const char *propname, u32 *out_values,
size_t sz)
{
return ofnode_read_u32_array(dev_ofnode(dev), propname, out_values, sz);
}
static inline ofnode dev_read_first_subnode(const struct udevice *dev)
{
return ofnode_first_subnode(dev_ofnode(dev));
}
static inline ofnode dev_read_next_subnode(ofnode node)
{
return ofnode_next_subnode(node);
}
static inline const uint8_t *dev_read_u8_array_ptr(const struct udevice *dev,
const char *propname,
size_t sz)
{
return ofnode_read_u8_array_ptr(dev_ofnode(dev), propname, sz);
}
static inline int dev_read_enabled(const struct udevice *dev)
{
return fdtdec_get_is_enabled(gd->fdt_blob, dev_of_offset(dev));
}
static inline int dev_read_resource(const struct udevice *dev, uint index,
struct resource *res)
{
return ofnode_read_resource(dev_ofnode(dev), index, res);
}
static inline int dev_read_resource_byname(const struct udevice *dev,
const char *name,
struct resource *res)
{
return ofnode_read_resource_byname(dev_ofnode(dev), name, res);
}
static inline u64 dev_translate_address(const struct udevice *dev,
const fdt32_t *in_addr)
{
return ofnode_translate_address(dev_ofnode(dev), in_addr);
}
static inline u64 dev_translate_dma_address(const struct udevice *dev,
const fdt32_t *in_addr)
{
return ofnode_translate_dma_address(dev_ofnode(dev), in_addr);
}
static inline int dev_get_dma_range(const struct udevice *dev, phys_addr_t *cpu,
dma_addr_t *bus, u64 *size)
{
return ofnode_get_dma_range(dev_ofnode(dev), cpu, bus, size);
}
static inline int dev_read_alias_highest_id(const char *stem)
{
if (!CONFIG_IS_ENABLED(OF_LIBFDT) || !gd->fdt_blob)
return -1;
return fdtdec_get_alias_highest_id(gd->fdt_blob, stem);
}
static inline int dev_get_child_count(const struct udevice *dev)
{
return ofnode_get_child_count(dev_ofnode(dev));
}
static inline int dev_decode_display_timing(const struct udevice *dev,
int index,
struct display_timing *config)
{
return ofnode_decode_display_timing(dev_ofnode(dev), index, config);
}
static inline int dev_decode_panel_timing(const struct udevice *dev,
struct display_timing *config)
{
return ofnode_decode_panel_timing(dev_ofnode(dev), config);
}
static inline ofnode dev_get_phy_node(const struct udevice *dev)
{
return ofnode_get_phy_node(dev_ofnode(dev));
}
static inline phy_interface_t dev_read_phy_mode(const struct udevice *dev)
{
return ofnode_read_phy_mode(dev_ofnode(dev));
}
#endif /* CONFIG_DM_DEV_READ_INLINE */
/**
* dev_for_each_subnode() - Helper function to iterate through subnodes
*
* This creates a for() loop which works through the subnodes in a device's
* device-tree node.
*
* @subnode: ofnode holding the current subnode
* @dev: device to use for interation (`struct udevice *`)
*/
#define dev_for_each_subnode(subnode, dev) \
for (subnode = dev_read_first_subnode(dev); \
ofnode_valid(subnode); \
subnode = ofnode_next_subnode(subnode))
/**
* dev_for_each_property() - Helper function to iterate through property
*
* This creates a for() loop which works through the property in a device's
* device-tree node.
*
* @prop: struct ofprop holding the current property
* @dev: device to use for interation (`struct udevice *`)
*/
#define dev_for_each_property(prop, dev) \
for (int ret_prop = dev_read_first_prop(dev, &prop); \
!ret_prop; \
ret_prop = dev_read_next_prop(&prop))
#endif