mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-29 14:33:08 +00:00
83d290c56f
When U-Boot started using SPDX tags we were among the early adopters and there weren't a lot of other examples to borrow from. So we picked the area of the file that usually had a full license text and replaced it with an appropriate SPDX-License-Identifier: entry. Since then, the Linux Kernel has adopted SPDX tags and they place it as the very first line in a file (except where shebangs are used, then it's second line) and with slightly different comment styles than us. In part due to community overlap, in part due to better tag visibility and in part for other minor reasons, switch over to that style. This commit changes all instances where we have a single declared license in the tag as both the before and after are identical in tag contents. There's also a few places where I found we did not have a tag and have introduced one. Signed-off-by: Tom Rini <trini@konsulko.com>
291 lines
8.3 KiB
C
291 lines
8.3 KiB
C
/* SPDX-License-Identifier: GPL-2.0+ */
|
|
/*
|
|
* Copyright (C) 2014 Freescale Semiconductor
|
|
*/
|
|
|
|
/* qbman_sys_decl.h and qbman_sys.h are the two platform-specific files in the
|
|
* driver. They are only included via qbman_private.h, which is itself a
|
|
* platform-independent file and is included by all the other driver source.
|
|
*
|
|
* qbman_sys_decl.h is included prior to all other declarations and logic, and
|
|
* it exists to provide compatibility with any linux interfaces our
|
|
* single-source driver code is dependent on (eg. kmalloc). Ie. this file
|
|
* provides linux compatibility.
|
|
*
|
|
* This qbman_sys.h header, on the other hand, is included *after* any common
|
|
* and platform-neutral declarations and logic in qbman_private.h, and exists to
|
|
* implement any platform-specific logic of the qbman driver itself. Ie. it is
|
|
* *not* to provide linux compatibility.
|
|
*/
|
|
|
|
/* Trace the 3 different classes of read/write access to QBMan. #undef as
|
|
* required. */
|
|
#undef QBMAN_CCSR_TRACE
|
|
#undef QBMAN_CINH_TRACE
|
|
#undef QBMAN_CENA_TRACE
|
|
|
|
/* Temporarily define this to get around the fact that cache enabled mapping is
|
|
* not working right now. Will remove this after uboot could map the cache
|
|
* enabled portal memory.
|
|
*/
|
|
#define QBMAN_CINH_ONLY
|
|
|
|
static inline void word_copy(void *d, const void *s, unsigned int cnt)
|
|
{
|
|
uint32_t *dd = d;
|
|
const uint32_t *ss = s;
|
|
|
|
while (cnt--)
|
|
*(dd++) = *(ss++);
|
|
}
|
|
|
|
/* Currently, the CENA support code expects each 32-bit word to be written in
|
|
* host order, and these are converted to hardware (little-endian) order on
|
|
* command submission. However, 64-bit quantities are must be written (and read)
|
|
* as two 32-bit words with the least-significant word first, irrespective of
|
|
* host endianness. */
|
|
static inline void u64_to_le32_copy(void *d, const uint64_t *s,
|
|
unsigned int cnt)
|
|
{
|
|
uint32_t *dd = d;
|
|
const uint32_t *ss = (const uint32_t *)s;
|
|
|
|
while (cnt--) {
|
|
/* TBD: the toolchain was choking on the use of 64-bit types up
|
|
* until recently so this works entirely with 32-bit variables.
|
|
* When 64-bit types become usable again, investigate better
|
|
* ways of doing this. */
|
|
#if defined(__BIG_ENDIAN)
|
|
*(dd++) = ss[1];
|
|
*(dd++) = ss[0];
|
|
ss += 2;
|
|
#else
|
|
*(dd++) = *(ss++);
|
|
*(dd++) = *(ss++);
|
|
#endif
|
|
}
|
|
}
|
|
static inline void u64_from_le32_copy(uint64_t *d, const void *s,
|
|
unsigned int cnt)
|
|
{
|
|
const uint32_t *ss = s;
|
|
uint32_t *dd = (uint32_t *)d;
|
|
|
|
while (cnt--) {
|
|
#if defined(__BIG_ENDIAN)
|
|
dd[1] = *(ss++);
|
|
dd[0] = *(ss++);
|
|
dd += 2;
|
|
#else
|
|
*(dd++) = *(ss++);
|
|
*(dd++) = *(ss++);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Convert a host-native 32bit value into little endian */
|
|
#if defined(__BIG_ENDIAN)
|
|
static inline uint32_t make_le32(uint32_t val)
|
|
{
|
|
return ((val & 0xff) << 24) | ((val & 0xff00) << 8) |
|
|
((val & 0xff0000) >> 8) | ((val & 0xff000000) >> 24);
|
|
}
|
|
#else
|
|
#define make_le32(val) (val)
|
|
#endif
|
|
static inline void make_le32_n(uint32_t *val, unsigned int num)
|
|
{
|
|
while (num--) {
|
|
*val = make_le32(*val);
|
|
val++;
|
|
}
|
|
}
|
|
|
|
/******************/
|
|
/* Portal access */
|
|
/******************/
|
|
struct qbman_swp_sys {
|
|
/* On GPP, the sys support for qbman_swp is here. The CENA region isi
|
|
* not an mmap() of the real portal registers, but an allocated
|
|
* place-holder, because the actual writes/reads to/from the portal are
|
|
* marshalled from these allocated areas using QBMan's "MC access
|
|
* registers". CINH accesses are atomic so there's no need for a
|
|
* place-holder. */
|
|
void *cena;
|
|
void __iomem *addr_cena;
|
|
void __iomem *addr_cinh;
|
|
};
|
|
|
|
/* P_OFFSET is (ACCESS_CMD,0,12) - offset within the portal
|
|
* C is (ACCESS_CMD,12,1) - is inhibited? (0==CENA, 1==CINH)
|
|
* SWP_IDX is (ACCESS_CMD,16,10) - Software portal index
|
|
* P is (ACCESS_CMD,28,1) - (0==special portal, 1==any portal)
|
|
* T is (ACCESS_CMD,29,1) - Command type (0==READ, 1==WRITE)
|
|
* E is (ACCESS_CMD,31,1) - Command execute (1 to issue, poll for 0==complete)
|
|
*/
|
|
|
|
static inline void qbman_cinh_write(struct qbman_swp_sys *s, uint32_t offset,
|
|
uint32_t val)
|
|
{
|
|
__raw_writel(val, s->addr_cinh + offset);
|
|
#ifdef QBMAN_CINH_TRACE
|
|
pr_info("qbman_cinh_write(%p:0x%03x) 0x%08x\n",
|
|
s->addr_cinh, offset, val);
|
|
#endif
|
|
}
|
|
|
|
static inline uint32_t qbman_cinh_read(struct qbman_swp_sys *s, uint32_t offset)
|
|
{
|
|
uint32_t reg = __raw_readl(s->addr_cinh + offset);
|
|
|
|
#ifdef QBMAN_CINH_TRACE
|
|
pr_info("qbman_cinh_read(%p:0x%03x) 0x%08x\n",
|
|
s->addr_cinh, offset, reg);
|
|
#endif
|
|
return reg;
|
|
}
|
|
|
|
static inline void *qbman_cena_write_start(struct qbman_swp_sys *s,
|
|
uint32_t offset)
|
|
{
|
|
void *shadow = s->cena + offset;
|
|
|
|
#ifdef QBMAN_CENA_TRACE
|
|
pr_info("qbman_cena_write_start(%p:0x%03x) %p\n",
|
|
s->addr_cena, offset, shadow);
|
|
#endif
|
|
BUG_ON(offset & 63);
|
|
dcbz(shadow);
|
|
return shadow;
|
|
}
|
|
|
|
static inline void qbman_cena_write_complete(struct qbman_swp_sys *s,
|
|
uint32_t offset, void *cmd)
|
|
{
|
|
const uint32_t *shadow = cmd;
|
|
int loop;
|
|
|
|
#ifdef QBMAN_CENA_TRACE
|
|
pr_info("qbman_cena_write_complete(%p:0x%03x) %p\n",
|
|
s->addr_cena, offset, shadow);
|
|
hexdump(cmd, 64);
|
|
#endif
|
|
for (loop = 15; loop >= 0; loop--)
|
|
#ifdef QBMAN_CINH_ONLY
|
|
__raw_writel(shadow[loop], s->addr_cinh +
|
|
offset + loop * 4);
|
|
#else
|
|
__raw_writel(shadow[loop], s->addr_cena +
|
|
offset + loop * 4);
|
|
#endif
|
|
}
|
|
|
|
static inline void *qbman_cena_read(struct qbman_swp_sys *s, uint32_t offset)
|
|
{
|
|
uint32_t *shadow = s->cena + offset;
|
|
unsigned int loop;
|
|
|
|
#ifdef QBMAN_CENA_TRACE
|
|
pr_info("qbman_cena_read(%p:0x%03x) %p\n",
|
|
s->addr_cena, offset, shadow);
|
|
#endif
|
|
|
|
for (loop = 0; loop < 16; loop++)
|
|
#ifdef QBMAN_CINH_ONLY
|
|
shadow[loop] = __raw_readl(s->addr_cinh + offset
|
|
+ loop * 4);
|
|
#else
|
|
shadow[loop] = __raw_readl(s->addr_cena + offset
|
|
+ loop * 4);
|
|
#endif
|
|
#ifdef QBMAN_CENA_TRACE
|
|
hexdump(shadow, 64);
|
|
#endif
|
|
return shadow;
|
|
}
|
|
|
|
static inline void qbman_cena_invalidate_prefetch(struct qbman_swp_sys *s,
|
|
uint32_t offset)
|
|
{
|
|
}
|
|
|
|
/******************/
|
|
/* Portal support */
|
|
/******************/
|
|
|
|
/* The SWP_CFG portal register is special, in that it is used by the
|
|
* platform-specific code rather than the platform-independent code in
|
|
* qbman_portal.c. So use of it is declared locally here. */
|
|
#define QBMAN_CINH_SWP_CFG 0xd00
|
|
|
|
/* For MC portal use, we always configure with
|
|
* DQRR_MF is (SWP_CFG,20,3) - DQRR max fill (<- 0x4)
|
|
* EST is (SWP_CFG,16,3) - EQCR_CI stashing threshold (<- 0x0)
|
|
* RPM is (SWP_CFG,12,2) - RCR production notification mode (<- 0x3)
|
|
* DCM is (SWP_CFG,10,2) - DQRR consumption notification mode (<- 0x2)
|
|
* EPM is (SWP_CFG,8,2) - EQCR production notification mode (<- 0x3)
|
|
* SD is (SWP_CFG,5,1) - memory stashing drop enable (<- FALSE)
|
|
* SP is (SWP_CFG,4,1) - memory stashing priority (<- TRUE)
|
|
* SE is (SWP_CFG,3,1) - memory stashing enable (<- 0x0)
|
|
* DP is (SWP_CFG,2,1) - dequeue stashing priority (<- TRUE)
|
|
* DE is (SWP_CFG,1,1) - dequeue stashing enable (<- 0x0)
|
|
* EP is (SWP_CFG,0,1) - EQCR_CI stashing priority (<- FALSE)
|
|
*/
|
|
static inline uint32_t qbman_set_swp_cfg(uint8_t max_fill, uint8_t wn,
|
|
uint8_t est, uint8_t rpm, uint8_t dcm,
|
|
uint8_t epm, int sd, int sp, int se,
|
|
int dp, int de, int ep)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = e32_uint8_t(20, (uint32_t)(3 + (max_fill >> 3)), max_fill) |
|
|
e32_uint8_t(16, 3, est) | e32_uint8_t(12, 2, rpm) |
|
|
e32_uint8_t(10, 2, dcm) | e32_uint8_t(8, 2, epm) |
|
|
e32_int(5, 1, sd) | e32_int(4, 1, sp) | e32_int(3, 1, se) |
|
|
e32_int(2, 1, dp) | e32_int(1, 1, de) | e32_int(0, 1, ep) |
|
|
e32_uint8_t(14, 1, wn);
|
|
return reg;
|
|
}
|
|
|
|
static inline int qbman_swp_sys_init(struct qbman_swp_sys *s,
|
|
const struct qbman_swp_desc *d,
|
|
uint8_t dqrr_size)
|
|
{
|
|
uint32_t reg;
|
|
|
|
s->addr_cena = d->cena_bar;
|
|
s->addr_cinh = d->cinh_bar;
|
|
s->cena = (void *)valloc(CONFIG_SYS_PAGE_SIZE);
|
|
if (!s->cena) {
|
|
printf("Could not allocate page for cena shadow\n");
|
|
return -1;
|
|
}
|
|
memset((void *)s->cena, 0x00, CONFIG_SYS_PAGE_SIZE);
|
|
|
|
#ifdef QBMAN_CHECKING
|
|
/* We should never be asked to initialise for a portal that isn't in
|
|
* the power-on state. (Ie. don't forget to reset portals when they are
|
|
* decommissioned!)
|
|
*/
|
|
reg = qbman_cinh_read(s, QBMAN_CINH_SWP_CFG);
|
|
BUG_ON(reg);
|
|
#endif
|
|
#ifdef QBMAN_CINH_ONLY
|
|
reg = qbman_set_swp_cfg(dqrr_size, 1, 0, 3, 2, 3, 0, 1, 0, 1, 0, 0);
|
|
#else
|
|
reg = qbman_set_swp_cfg(dqrr_size, 0, 0, 3, 2, 3, 0, 1, 0, 1, 0, 0);
|
|
#endif
|
|
qbman_cinh_write(s, QBMAN_CINH_SWP_CFG, reg);
|
|
reg = qbman_cinh_read(s, QBMAN_CINH_SWP_CFG);
|
|
if (!reg) {
|
|
printf("The portal is not enabled!\n");
|
|
free(s->cena);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void qbman_swp_sys_finish(struct qbman_swp_sys *s)
|
|
{
|
|
free((void *)s->cena);
|
|
}
|