mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-25 03:15:17 +00:00
1772771ac0
H6 and H616 SPL code has a few writes to unknown PRCM registers. Now that we know what they are, let's replace magic offsets with proper register names. Signed-off-by: Jernej Skrabec <jernej.skrabec@gmail.com> Reviewed-by: Samuel Holland <samuel@sholland.org> Signed-off-by: Andre Przywara <andre.przywara@arm.com>
701 lines
21 KiB
C
701 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* sun50i H6 platform dram controller init
|
|
*
|
|
* (C) Copyright 2017 Icenowy Zheng <icenowy@aosc.io>
|
|
*
|
|
*/
|
|
#include <common.h>
|
|
#include <init.h>
|
|
#include <log.h>
|
|
#include <asm/io.h>
|
|
#include <asm/arch/clock.h>
|
|
#include <asm/arch/dram.h>
|
|
#include <asm/arch/cpu.h>
|
|
#include <asm/arch/prcm.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kconfig.h>
|
|
|
|
/*
|
|
* The DRAM controller structure on H6 is similar to the ones on A23/A80:
|
|
* they all contains 3 parts, COM, CTL and PHY. (As a note on A33/A83T/H3/A64
|
|
* /H5/R40 CTL and PHY is composed).
|
|
*
|
|
* COM is allwinner-specific. On H6, the address mapping function is moved
|
|
* from COM to CTL (with the standard ADDRMAP registers on DesignWare memory
|
|
* controller).
|
|
*
|
|
* CTL (controller) and PHY is from DesignWare.
|
|
*
|
|
* The CTL part is a bit similar to the one on A23/A80 (because they all
|
|
* originate from DesignWare), but gets more registers added.
|
|
*
|
|
* The PHY part is quite new, not seen in any previous Allwinner SoCs, and
|
|
* not seen on other SoCs in U-Boot. The only SoC that is also known to have
|
|
* similar PHY is ZynqMP.
|
|
*/
|
|
|
|
static void mctl_sys_init(struct dram_para *para);
|
|
static void mctl_com_init(struct dram_para *para);
|
|
static bool mctl_channel_init(struct dram_para *para);
|
|
|
|
static bool mctl_core_init(struct dram_para *para)
|
|
{
|
|
mctl_sys_init(para);
|
|
mctl_com_init(para);
|
|
switch (para->type) {
|
|
case SUNXI_DRAM_TYPE_LPDDR3:
|
|
case SUNXI_DRAM_TYPE_DDR3:
|
|
mctl_set_timing_params(para);
|
|
break;
|
|
default:
|
|
panic("Unsupported DRAM type!");
|
|
};
|
|
return mctl_channel_init(para);
|
|
}
|
|
|
|
/* PHY initialisation */
|
|
static void mctl_phy_pir_init(u32 val)
|
|
{
|
|
struct sunxi_mctl_phy_reg * const mctl_phy =
|
|
(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
|
|
|
|
writel(val, &mctl_phy->pir);
|
|
writel(val | BIT(0), &mctl_phy->pir); /* Start initialisation. */
|
|
mctl_await_completion(&mctl_phy->pgsr[0], BIT(0), BIT(0));
|
|
}
|
|
|
|
enum {
|
|
MBUS_PORT_CPU = 0,
|
|
MBUS_PORT_GPU = 1,
|
|
MBUS_PORT_MAHB = 2,
|
|
MBUS_PORT_DMA = 3,
|
|
MBUS_PORT_VE = 4,
|
|
MBUS_PORT_CE = 5,
|
|
MBUS_PORT_TSC0 = 6,
|
|
MBUS_PORT_NDFC0 = 8,
|
|
MBUS_PORT_CSI0 = 11,
|
|
MBUS_PORT_DI0 = 14,
|
|
MBUS_PORT_DI1 = 15,
|
|
MBUS_PORT_DE300 = 16,
|
|
MBUS_PORT_IOMMU = 25,
|
|
MBUS_PORT_VE2 = 26,
|
|
MBUS_PORT_USB3 = 37,
|
|
MBUS_PORT_PCIE = 38,
|
|
MBUS_PORT_VP9 = 39,
|
|
MBUS_PORT_HDCP2 = 40,
|
|
};
|
|
|
|
enum {
|
|
MBUS_QOS_LOWEST = 0,
|
|
MBUS_QOS_LOW,
|
|
MBUS_QOS_HIGH,
|
|
MBUS_QOS_HIGHEST
|
|
};
|
|
inline void mbus_configure_port(u8 port,
|
|
bool bwlimit,
|
|
bool priority,
|
|
u8 qos,
|
|
u8 waittime,
|
|
u8 acs,
|
|
u16 bwl0,
|
|
u16 bwl1,
|
|
u16 bwl2)
|
|
{
|
|
struct sunxi_mctl_com_reg * const mctl_com =
|
|
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
|
|
|
|
const u32 cfg0 = ( (bwlimit ? (1 << 0) : 0)
|
|
| (priority ? (1 << 1) : 0)
|
|
| ((qos & 0x3) << 2)
|
|
| ((waittime & 0xf) << 4)
|
|
| ((acs & 0xff) << 8)
|
|
| (bwl0 << 16) );
|
|
const u32 cfg1 = ((u32)bwl2 << 16) | (bwl1 & 0xffff);
|
|
|
|
debug("MBUS port %d cfg0 %08x cfg1 %08x\n", port, cfg0, cfg1);
|
|
writel(cfg0, &mctl_com->master[port].cfg0);
|
|
writel(cfg1, &mctl_com->master[port].cfg1);
|
|
}
|
|
|
|
#define MBUS_CONF(port, bwlimit, qos, acs, bwl0, bwl1, bwl2) \
|
|
mbus_configure_port(MBUS_PORT_ ## port, bwlimit, false, \
|
|
MBUS_QOS_ ## qos, 0, acs, bwl0, bwl1, bwl2)
|
|
|
|
static void mctl_set_master_priority(void)
|
|
{
|
|
struct sunxi_mctl_com_reg * const mctl_com =
|
|
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
|
|
|
|
/* enable bandwidth limit windows and set windows size 1us */
|
|
writel(399, &mctl_com->tmr);
|
|
writel(BIT(16), &mctl_com->bwcr);
|
|
|
|
MBUS_CONF( CPU, true, HIGHEST, 0, 256, 128, 100);
|
|
MBUS_CONF( GPU, true, HIGH, 0, 1536, 1400, 256);
|
|
MBUS_CONF( MAHB, true, HIGHEST, 0, 512, 256, 96);
|
|
MBUS_CONF( DMA, true, HIGH, 0, 256, 100, 80);
|
|
MBUS_CONF( VE, true, HIGH, 2, 8192, 5500, 5000);
|
|
MBUS_CONF( CE, true, HIGH, 2, 100, 64, 32);
|
|
MBUS_CONF( TSC0, true, HIGH, 2, 100, 64, 32);
|
|
MBUS_CONF(NDFC0, true, HIGH, 0, 256, 128, 64);
|
|
MBUS_CONF( CSI0, true, HIGH, 0, 256, 128, 100);
|
|
MBUS_CONF( DI0, true, HIGH, 0, 1024, 256, 64);
|
|
MBUS_CONF(DE300, true, HIGHEST, 6, 8192, 2800, 2400);
|
|
MBUS_CONF(IOMMU, true, HIGHEST, 0, 100, 64, 32);
|
|
MBUS_CONF( VE2, true, HIGH, 2, 8192, 5500, 5000);
|
|
MBUS_CONF( USB3, true, HIGH, 0, 256, 128, 64);
|
|
MBUS_CONF( PCIE, true, HIGH, 2, 100, 64, 32);
|
|
MBUS_CONF( VP9, true, HIGH, 2, 8192, 5500, 5000);
|
|
MBUS_CONF(HDCP2, true, HIGH, 2, 100, 64, 32);
|
|
}
|
|
|
|
static void mctl_sys_init(struct dram_para *para)
|
|
{
|
|
struct sunxi_ccm_reg * const ccm =
|
|
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
|
|
struct sunxi_mctl_com_reg * const mctl_com =
|
|
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
|
|
struct sunxi_mctl_ctl_reg * const mctl_ctl =
|
|
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
|
|
|
|
/* Put all DRAM-related blocks to reset state */
|
|
clrbits_le32(&ccm->mbus_cfg, MBUS_ENABLE | MBUS_RESET);
|
|
clrbits_le32(&ccm->dram_gate_reset, BIT(0));
|
|
udelay(5);
|
|
writel(0, &ccm->dram_gate_reset);
|
|
clrbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_EN);
|
|
clrbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET);
|
|
|
|
udelay(5);
|
|
|
|
/* Set PLL5 rate to doubled DRAM clock rate */
|
|
writel(CCM_PLL5_CTRL_EN | CCM_PLL5_LOCK_EN |
|
|
CCM_PLL5_CTRL_N(para->clk * 2 / 24), &ccm->pll5_cfg);
|
|
mctl_await_completion(&ccm->pll5_cfg, CCM_PLL5_LOCK, CCM_PLL5_LOCK);
|
|
|
|
/* Configure DRAM mod clock */
|
|
writel(DRAM_CLK_SRC_PLL5, &ccm->dram_clk_cfg);
|
|
setbits_le32(&ccm->dram_clk_cfg, DRAM_CLK_UPDATE);
|
|
writel(BIT(RESET_SHIFT), &ccm->dram_gate_reset);
|
|
udelay(5);
|
|
setbits_le32(&ccm->dram_gate_reset, BIT(0));
|
|
|
|
/* Disable all channels */
|
|
writel(0, &mctl_com->maer0);
|
|
writel(0, &mctl_com->maer1);
|
|
writel(0, &mctl_com->maer2);
|
|
|
|
/* Configure MBUS and enable DRAM mod reset */
|
|
setbits_le32(&ccm->mbus_cfg, MBUS_RESET);
|
|
setbits_le32(&ccm->mbus_cfg, MBUS_ENABLE);
|
|
setbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET);
|
|
udelay(5);
|
|
|
|
/* Unknown hack from the BSP, which enables access of mctl_ctl regs */
|
|
writel(0x8000, &mctl_ctl->unk_0x00c);
|
|
}
|
|
|
|
static void mctl_set_addrmap(struct dram_para *para)
|
|
{
|
|
struct sunxi_mctl_ctl_reg * const mctl_ctl =
|
|
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
|
|
u8 cols = para->cols;
|
|
u8 rows = para->rows;
|
|
u8 ranks = para->ranks;
|
|
|
|
if (!para->bus_full_width)
|
|
cols -= 1;
|
|
|
|
/* Ranks */
|
|
if (ranks == 2)
|
|
mctl_ctl->addrmap[0] = rows + cols - 3;
|
|
else
|
|
mctl_ctl->addrmap[0] = 0x1F;
|
|
|
|
/* Banks, hardcoded to 8 banks now */
|
|
mctl_ctl->addrmap[1] = (cols - 2) | (cols - 2) << 8 | (cols - 2) << 16;
|
|
|
|
/* Columns */
|
|
mctl_ctl->addrmap[2] = 0;
|
|
switch (cols) {
|
|
case 7:
|
|
mctl_ctl->addrmap[3] = 0x1F1F1F00;
|
|
mctl_ctl->addrmap[4] = 0x1F1F;
|
|
break;
|
|
case 8:
|
|
mctl_ctl->addrmap[3] = 0x1F1F0000;
|
|
mctl_ctl->addrmap[4] = 0x1F1F;
|
|
break;
|
|
case 9:
|
|
mctl_ctl->addrmap[3] = 0x1F000000;
|
|
mctl_ctl->addrmap[4] = 0x1F1F;
|
|
break;
|
|
case 10:
|
|
mctl_ctl->addrmap[3] = 0;
|
|
mctl_ctl->addrmap[4] = 0x1F1F;
|
|
break;
|
|
case 11:
|
|
mctl_ctl->addrmap[3] = 0;
|
|
mctl_ctl->addrmap[4] = 0x1F00;
|
|
break;
|
|
case 12:
|
|
mctl_ctl->addrmap[3] = 0;
|
|
mctl_ctl->addrmap[4] = 0;
|
|
break;
|
|
default:
|
|
panic("Unsupported DRAM configuration: column number invalid\n");
|
|
}
|
|
|
|
/* Rows */
|
|
mctl_ctl->addrmap[5] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
|
|
switch (rows) {
|
|
case 13:
|
|
mctl_ctl->addrmap[6] = (cols - 3) | 0x0F0F0F00;
|
|
mctl_ctl->addrmap[7] = 0x0F0F;
|
|
break;
|
|
case 14:
|
|
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | 0x0F0F0000;
|
|
mctl_ctl->addrmap[7] = 0x0F0F;
|
|
break;
|
|
case 15:
|
|
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | 0x0F000000;
|
|
mctl_ctl->addrmap[7] = 0x0F0F;
|
|
break;
|
|
case 16:
|
|
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
|
|
mctl_ctl->addrmap[7] = 0x0F0F;
|
|
break;
|
|
case 17:
|
|
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
|
|
mctl_ctl->addrmap[7] = (cols - 3) | 0x0F00;
|
|
break;
|
|
case 18:
|
|
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
|
|
mctl_ctl->addrmap[7] = (cols - 3) | ((cols - 3) << 8);
|
|
break;
|
|
default:
|
|
panic("Unsupported DRAM configuration: row number invalid\n");
|
|
}
|
|
|
|
/* Bank groups, DDR4 only */
|
|
mctl_ctl->addrmap[8] = 0x3F3F;
|
|
}
|
|
|
|
static void mctl_com_init(struct dram_para *para)
|
|
{
|
|
struct sunxi_mctl_com_reg * const mctl_com =
|
|
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
|
|
struct sunxi_mctl_ctl_reg * const mctl_ctl =
|
|
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
|
|
struct sunxi_mctl_phy_reg * const mctl_phy =
|
|
(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
|
|
u32 reg_val, tmp;
|
|
|
|
mctl_set_addrmap(para);
|
|
|
|
setbits_le32(&mctl_com->cr, BIT(31));
|
|
|
|
/* The bonding ID seems to be always 7. */
|
|
if (readl(SUNXI_SIDC_BASE + 0x100) == 7) /* bonding ID */
|
|
clrbits_le32(&mctl_com->cr, BIT(27));
|
|
else if (readl(SUNXI_SIDC_BASE + 0x100) == 3)
|
|
setbits_le32(&mctl_com->cr, BIT(27));
|
|
|
|
if (para->clk > 408)
|
|
reg_val = 0xf00;
|
|
else if (para->clk > 246)
|
|
reg_val = 0x1f00;
|
|
else
|
|
reg_val = 0x3f00;
|
|
clrsetbits_le32(&mctl_com->unk_0x008, 0x3f00, reg_val);
|
|
|
|
/* TODO: DDR4 */
|
|
reg_val = MSTR_BURST_LENGTH(8) | MSTR_ACTIVE_RANKS(para->ranks);
|
|
if (para->type == SUNXI_DRAM_TYPE_LPDDR3)
|
|
reg_val |= MSTR_DEVICETYPE_LPDDR3;
|
|
if (para->type == SUNXI_DRAM_TYPE_DDR3)
|
|
reg_val |= MSTR_DEVICETYPE_DDR3 | MSTR_2TMODE;
|
|
if (para->bus_full_width)
|
|
reg_val |= MSTR_BUSWIDTH_FULL;
|
|
else
|
|
reg_val |= MSTR_BUSWIDTH_HALF;
|
|
writel(reg_val | BIT(31), &mctl_ctl->mstr);
|
|
|
|
if (para->type == SUNXI_DRAM_TYPE_LPDDR3)
|
|
reg_val = DCR_LPDDR3 | DCR_DDR8BANK;
|
|
if (para->type == SUNXI_DRAM_TYPE_DDR3)
|
|
reg_val = DCR_DDR3 | DCR_DDR8BANK | DCR_DDR2T;
|
|
writel(reg_val | 0x400, &mctl_phy->dcr);
|
|
|
|
if (para->ranks == 2)
|
|
writel(0x0303, &mctl_ctl->odtmap);
|
|
else
|
|
writel(0x0201, &mctl_ctl->odtmap);
|
|
|
|
/* TODO: DDR4 */
|
|
if (para->type == SUNXI_DRAM_TYPE_LPDDR3) {
|
|
tmp = para->clk * 7 / 2000;
|
|
reg_val = 0x0400;
|
|
reg_val |= (tmp + 7) << 24;
|
|
reg_val |= (((para->clk < 400) ? 3 : 4) - tmp) << 16;
|
|
} else if (para->type == SUNXI_DRAM_TYPE_DDR3) {
|
|
reg_val = 0x06000400; /* TODO?: Use CL - CWL value in [7:0] */
|
|
} else {
|
|
panic("Only (LP)DDR3 supported (type = %d)\n", para->type);
|
|
}
|
|
writel(reg_val, &mctl_ctl->odtcfg);
|
|
|
|
if (!para->bus_full_width) {
|
|
writel(0x0, &mctl_phy->dx[2].gcr[0]);
|
|
writel(0x0, &mctl_phy->dx[3].gcr[0]);
|
|
}
|
|
}
|
|
|
|
static void mctl_bit_delay_set(struct dram_para *para)
|
|
{
|
|
struct sunxi_mctl_phy_reg * const mctl_phy =
|
|
(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
|
|
int i, j;
|
|
u32 val;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
val = readl(&mctl_phy->dx[i].bdlr0);
|
|
for (j = 0; j < 4; j++)
|
|
val += para->dx_write_delays[i][j] << (j * 8);
|
|
writel(val, &mctl_phy->dx[i].bdlr0);
|
|
|
|
val = readl(&mctl_phy->dx[i].bdlr1);
|
|
for (j = 0; j < 4; j++)
|
|
val += para->dx_write_delays[i][j + 4] << (j * 8);
|
|
writel(val, &mctl_phy->dx[i].bdlr1);
|
|
|
|
val = readl(&mctl_phy->dx[i].bdlr2);
|
|
for (j = 0; j < 4; j++)
|
|
val += para->dx_write_delays[i][j + 8] << (j * 8);
|
|
writel(val, &mctl_phy->dx[i].bdlr2);
|
|
}
|
|
clrbits_le32(&mctl_phy->pgcr[0], BIT(26));
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
val = readl(&mctl_phy->dx[i].bdlr3);
|
|
for (j = 0; j < 4; j++)
|
|
val += para->dx_read_delays[i][j] << (j * 8);
|
|
writel(val, &mctl_phy->dx[i].bdlr3);
|
|
|
|
val = readl(&mctl_phy->dx[i].bdlr4);
|
|
for (j = 0; j < 4; j++)
|
|
val += para->dx_read_delays[i][j + 4] << (j * 8);
|
|
writel(val, &mctl_phy->dx[i].bdlr4);
|
|
|
|
val = readl(&mctl_phy->dx[i].bdlr5);
|
|
for (j = 0; j < 4; j++)
|
|
val += para->dx_read_delays[i][j + 8] << (j * 8);
|
|
writel(val, &mctl_phy->dx[i].bdlr5);
|
|
|
|
val = readl(&mctl_phy->dx[i].bdlr6);
|
|
val += (para->dx_read_delays[i][12] << 8) |
|
|
(para->dx_read_delays[i][13] << 16);
|
|
writel(val, &mctl_phy->dx[i].bdlr6);
|
|
}
|
|
setbits_le32(&mctl_phy->pgcr[0], BIT(26));
|
|
udelay(1);
|
|
|
|
if (para->type != SUNXI_DRAM_TYPE_LPDDR3)
|
|
return;
|
|
|
|
for (i = 1; i < 14; i++) {
|
|
val = readl(&mctl_phy->acbdlr[i]);
|
|
val += 0x0a0a0a0a;
|
|
writel(val, &mctl_phy->acbdlr[i]);
|
|
}
|
|
}
|
|
|
|
static bool mctl_channel_init(struct dram_para *para)
|
|
{
|
|
struct sunxi_mctl_com_reg * const mctl_com =
|
|
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
|
|
struct sunxi_mctl_ctl_reg * const mctl_ctl =
|
|
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
|
|
struct sunxi_mctl_phy_reg * const mctl_phy =
|
|
(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
|
|
int i;
|
|
u32 val;
|
|
|
|
setbits_le32(&mctl_ctl->dfiupd[0], BIT(31) | BIT(30));
|
|
setbits_le32(&mctl_ctl->zqctl[0], BIT(31) | BIT(30));
|
|
writel(0x2f05, &mctl_ctl->sched[0]);
|
|
setbits_le32(&mctl_ctl->rfshctl3, BIT(0));
|
|
setbits_le32(&mctl_ctl->dfimisc, BIT(0));
|
|
setbits_le32(&mctl_ctl->unk_0x00c, BIT(8));
|
|
clrsetbits_le32(&mctl_phy->pgcr[1], 0x180, 0xc0);
|
|
/* TODO: non-LPDDR3 types */
|
|
clrsetbits_le32(&mctl_phy->pgcr[2], GENMASK(17, 0), ns_to_t(7800));
|
|
clrbits_le32(&mctl_phy->pgcr[6], BIT(0));
|
|
clrsetbits_le32(&mctl_phy->dxccr, 0xee0, 0x220);
|
|
/* TODO: VT compensation */
|
|
clrsetbits_le32(&mctl_phy->dsgcr, BIT(0), 0x440060);
|
|
clrbits_le32(&mctl_phy->vtcr[1], BIT(1));
|
|
|
|
for (i = 0; i < 4; i++)
|
|
clrsetbits_le32(&mctl_phy->dx[i].gcr[0], 0xe00, 0x800);
|
|
for (i = 0; i < 4; i++)
|
|
clrsetbits_le32(&mctl_phy->dx[i].gcr[2], 0xffff, 0x5555);
|
|
for (i = 0; i < 4; i++)
|
|
clrsetbits_le32(&mctl_phy->dx[i].gcr[3], 0x3030, 0x1010);
|
|
|
|
udelay(100);
|
|
|
|
if (para->ranks == 2)
|
|
setbits_le32(&mctl_phy->dtcr[1], 0x30000);
|
|
else
|
|
clrsetbits_le32(&mctl_phy->dtcr[1], 0x30000, 0x10000);
|
|
|
|
if (sunxi_dram_is_lpddr(para->type))
|
|
clrbits_le32(&mctl_phy->dtcr[1], BIT(1));
|
|
if (para->ranks == 2) {
|
|
writel(0x00010001, &mctl_phy->rankidr);
|
|
writel(0x20000, &mctl_phy->odtcr);
|
|
} else {
|
|
writel(0x0, &mctl_phy->rankidr);
|
|
writel(0x10000, &mctl_phy->odtcr);
|
|
}
|
|
|
|
/* set bits [3:0] to 1? 0 not valid in ZynqMP d/s */
|
|
if (para->type == SUNXI_DRAM_TYPE_LPDDR3)
|
|
clrsetbits_le32(&mctl_phy->dtcr[0], 0xF0000000, 0x10000040);
|
|
else
|
|
clrsetbits_le32(&mctl_phy->dtcr[0], 0xF0000000, 0x10000000);
|
|
if (para->clk <= 792) {
|
|
if (para->clk <= 672) {
|
|
if (para->clk <= 600)
|
|
val = 0x300;
|
|
else
|
|
val = 0x400;
|
|
} else {
|
|
val = 0x500;
|
|
}
|
|
} else {
|
|
val = 0x600;
|
|
}
|
|
/* FIXME: NOT REVIEWED YET */
|
|
clrsetbits_le32(&mctl_phy->zq[0].zqcr, 0x700, val);
|
|
clrsetbits_le32(&mctl_phy->zq[0].zqpr[0], 0xff,
|
|
CONFIG_DRAM_ZQ & 0xff);
|
|
clrbits_le32(&mctl_phy->zq[0].zqor[0], 0xfffff);
|
|
setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ >> 8) & 0xff);
|
|
setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ & 0xf00) - 0x100);
|
|
setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ & 0xff00) << 4);
|
|
clrbits_le32(&mctl_phy->zq[1].zqpr[0], 0xfffff);
|
|
setbits_le32(&mctl_phy->zq[1].zqpr[0], (CONFIG_DRAM_ZQ >> 16) & 0xff);
|
|
setbits_le32(&mctl_phy->zq[1].zqpr[0], ((CONFIG_DRAM_ZQ >> 8) & 0xf00) - 0x100);
|
|
setbits_le32(&mctl_phy->zq[1].zqpr[0], (CONFIG_DRAM_ZQ & 0xff0000) >> 4);
|
|
if (para->type == SUNXI_DRAM_TYPE_LPDDR3) {
|
|
for (i = 1; i < 14; i++)
|
|
writel(0x06060606, &mctl_phy->acbdlr[i]);
|
|
}
|
|
|
|
val = PIR_ZCAL | PIR_DCAL | PIR_PHYRST | PIR_DRAMINIT | PIR_QSGATE |
|
|
PIR_RDDSKW | PIR_WRDSKW | PIR_RDEYE | PIR_WREYE;
|
|
if (para->type == SUNXI_DRAM_TYPE_DDR3)
|
|
val |= PIR_DRAMRST | PIR_WL;
|
|
mctl_phy_pir_init(val);
|
|
|
|
/* TODO: DDR4 types ? */
|
|
for (i = 0; i < 4; i++)
|
|
writel(0x00000909, &mctl_phy->dx[i].gcr[5]);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (IS_ENABLED(CONFIG_DRAM_ODT_EN))
|
|
val = 0x0;
|
|
else
|
|
val = 0xaaaa;
|
|
clrsetbits_le32(&mctl_phy->dx[i].gcr[2], 0xffff, val);
|
|
|
|
if (IS_ENABLED(CONFIG_DRAM_ODT_EN))
|
|
val = 0x0;
|
|
else
|
|
val = 0x2020;
|
|
clrsetbits_le32(&mctl_phy->dx[i].gcr[3], 0x3030, val);
|
|
}
|
|
|
|
mctl_bit_delay_set(para);
|
|
udelay(1);
|
|
|
|
setbits_le32(&mctl_phy->pgcr[6], BIT(0));
|
|
clrbits_le32(&mctl_phy->pgcr[6], 0xfff8);
|
|
for (i = 0; i < 4; i++)
|
|
clrbits_le32(&mctl_phy->dx[i].gcr[3], ~0x3ffff);
|
|
udelay(10);
|
|
|
|
if (readl(&mctl_phy->pgsr[0]) & 0xff00000) {
|
|
/* Oops! There's something wrong! */
|
|
debug("PLL = %x\n", readl(0x3001010));
|
|
debug("DRAM PHY PGSR0 = %x\n", readl(&mctl_phy->pgsr[0]));
|
|
for (i = 0; i < 4; i++)
|
|
debug("DRAM PHY DX%dRSR0 = %x\n", i, readl(&mctl_phy->dx[i].rsr[0]));
|
|
debug("Error while initializing DRAM PHY!\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
if (sunxi_dram_is_lpddr(para->type))
|
|
clrsetbits_le32(&mctl_phy->dsgcr, 0xc0, 0x40);
|
|
clrbits_le32(&mctl_phy->pgcr[1], 0x40);
|
|
clrbits_le32(&mctl_ctl->dfimisc, BIT(0));
|
|
writel(1, &mctl_ctl->swctl);
|
|
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
|
|
clrbits_le32(&mctl_ctl->rfshctl3, BIT(0));
|
|
|
|
setbits_le32(&mctl_com->unk_0x014, BIT(31));
|
|
writel(0xffffffff, &mctl_com->maer0);
|
|
writel(0x7ff, &mctl_com->maer1);
|
|
writel(0xffff, &mctl_com->maer2);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void mctl_auto_detect_rank_width(struct dram_para *para)
|
|
{
|
|
/* this is minimum size that it's supported */
|
|
para->cols = 8;
|
|
para->rows = 13;
|
|
|
|
/*
|
|
* Previous versions of this driver tried to auto detect the rank
|
|
* and width by looking at controller registers. However this proved
|
|
* to be not reliable, so this approach here is the more robust
|
|
* solution. Check the git history for details.
|
|
*
|
|
* Strategy here is to test most demanding combination first and least
|
|
* demanding last, otherwise HW might not be fully utilized. For
|
|
* example, half bus width and rank = 1 combination would also work
|
|
* on HW with full bus width and rank = 2, but only 1/4 RAM would be
|
|
* visible.
|
|
*/
|
|
|
|
debug("testing 32-bit width, rank = 2\n");
|
|
para->bus_full_width = 1;
|
|
para->ranks = 2;
|
|
if (mctl_core_init(para))
|
|
return;
|
|
|
|
debug("testing 32-bit width, rank = 1\n");
|
|
para->bus_full_width = 1;
|
|
para->ranks = 1;
|
|
if (mctl_core_init(para))
|
|
return;
|
|
|
|
debug("testing 16-bit width, rank = 2\n");
|
|
para->bus_full_width = 0;
|
|
para->ranks = 2;
|
|
if (mctl_core_init(para))
|
|
return;
|
|
|
|
debug("testing 16-bit width, rank = 1\n");
|
|
para->bus_full_width = 0;
|
|
para->ranks = 1;
|
|
if (mctl_core_init(para))
|
|
return;
|
|
|
|
panic("This DRAM setup is currently not supported.\n");
|
|
}
|
|
|
|
static void mctl_auto_detect_dram_size(struct dram_para *para)
|
|
{
|
|
/* TODO: non-(LP)DDR3 */
|
|
|
|
/* detect row address bits */
|
|
para->cols = 8;
|
|
para->rows = 18;
|
|
mctl_core_init(para);
|
|
|
|
for (para->rows = 13; para->rows < 18; para->rows++) {
|
|
/* 8 banks, 8 bit per byte and 16/32 bit width */
|
|
if (mctl_mem_matches((1 << (para->rows + para->cols +
|
|
4 + para->bus_full_width))))
|
|
break;
|
|
}
|
|
|
|
/* detect column address bits */
|
|
para->cols = 11;
|
|
mctl_core_init(para);
|
|
|
|
for (para->cols = 8; para->cols < 11; para->cols++) {
|
|
/* 8 bits per byte and 16/32 bit width */
|
|
if (mctl_mem_matches(1 << (para->cols + 1 +
|
|
para->bus_full_width)))
|
|
break;
|
|
}
|
|
}
|
|
|
|
unsigned long mctl_calc_size(struct dram_para *para)
|
|
{
|
|
u8 width = para->bus_full_width ? 4 : 2;
|
|
|
|
/* TODO: non-(LP)DDR3 */
|
|
|
|
/* 8 banks */
|
|
return (1ULL << (para->cols + para->rows + 3)) * width * para->ranks;
|
|
}
|
|
|
|
#define SUN50I_H6_LPDDR3_DX_WRITE_DELAYS \
|
|
{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0 }, \
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}
|
|
#define SUN50I_H6_LPDDR3_DX_READ_DELAYS \
|
|
{{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \
|
|
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \
|
|
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \
|
|
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }}
|
|
|
|
#define SUN50I_H6_DDR3_DX_WRITE_DELAYS \
|
|
{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}
|
|
#define SUN50I_H6_DDR3_DX_READ_DELAYS \
|
|
{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
|
|
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}
|
|
|
|
unsigned long sunxi_dram_init(void)
|
|
{
|
|
struct sunxi_mctl_com_reg * const mctl_com =
|
|
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
|
|
struct sunxi_prcm_reg *const prcm =
|
|
(struct sunxi_prcm_reg *)SUNXI_PRCM_BASE;
|
|
struct dram_para para = {
|
|
.clk = CONFIG_DRAM_CLK,
|
|
#ifdef CONFIG_SUNXI_DRAM_H6_LPDDR3
|
|
.type = SUNXI_DRAM_TYPE_LPDDR3,
|
|
.dx_read_delays = SUN50I_H6_LPDDR3_DX_READ_DELAYS,
|
|
.dx_write_delays = SUN50I_H6_LPDDR3_DX_WRITE_DELAYS,
|
|
#elif defined(CONFIG_SUNXI_DRAM_H6_DDR3_1333)
|
|
.type = SUNXI_DRAM_TYPE_DDR3,
|
|
.dx_read_delays = SUN50I_H6_DDR3_DX_READ_DELAYS,
|
|
.dx_write_delays = SUN50I_H6_DDR3_DX_WRITE_DELAYS,
|
|
#endif
|
|
};
|
|
|
|
unsigned long size;
|
|
|
|
setbits_le32(&prcm->res_cal_ctrl, BIT(8));
|
|
clrbits_le32(&prcm->ohms240, 0x3f);
|
|
|
|
mctl_auto_detect_rank_width(¶);
|
|
mctl_auto_detect_dram_size(¶);
|
|
|
|
mctl_core_init(¶);
|
|
|
|
size = mctl_calc_size(¶);
|
|
|
|
clrsetbits_le32(&mctl_com->cr, 0xf0, (size >> (10 + 10 + 4)) & 0xf0);
|
|
|
|
mctl_set_master_priority();
|
|
|
|
return size;
|
|
};
|