mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-25 03:15:17 +00:00
e26ece267e
When CONFIG_UART0_PORT_F is defined, we try to configure two PortF pins (usually used for the SD card) as UART0. Some SoCs use the mux value of 3 for this, while others use 4. The combination of Kconfig symbols we currently use was not quite right: we mis-configure the A31, A64, H6 and H616. Going through the list in the pinctrl driver, there are only a few older SoCs that use a value of 4, so revert the #ifdef clause, and name those explicitly, instead of the other way around. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Samuel Holland <samuel@sholland.org>
497 lines
16 KiB
C
497 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* (C) Copyright 2012 Henrik Nordstrom <henrik@henriknordstrom.net>
|
|
*
|
|
* (C) Copyright 2007-2011
|
|
* Allwinner Technology Co., Ltd. <www.allwinnertech.com>
|
|
* Tom Cubie <tangliang@allwinnertech.com>
|
|
*
|
|
* Some init for sunxi platform.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <cpu_func.h>
|
|
#include <init.h>
|
|
#include <log.h>
|
|
#include <mmc.h>
|
|
#include <i2c.h>
|
|
#include <serial.h>
|
|
#include <spl.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/gpio.h>
|
|
#include <asm/io.h>
|
|
#include <asm/arch/clock.h>
|
|
#include <asm/arch/spl.h>
|
|
#include <asm/arch/sys_proto.h>
|
|
#include <asm/arch/timer.h>
|
|
#include <asm/arch/tzpc.h>
|
|
#include <asm/arch/mmc.h>
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
struct fel_stash {
|
|
uint32_t sp;
|
|
uint32_t lr;
|
|
uint32_t cpsr;
|
|
uint32_t sctlr;
|
|
uint32_t vbar;
|
|
uint32_t cr;
|
|
};
|
|
|
|
struct fel_stash fel_stash __section(".data");
|
|
|
|
#ifdef CONFIG_ARM64
|
|
#include <asm/armv8/mmu.h>
|
|
|
|
static struct mm_region sunxi_mem_map[] = {
|
|
{
|
|
/* SRAM, MMIO regions */
|
|
.virt = 0x0UL,
|
|
.phys = 0x0UL,
|
|
.size = 0x40000000UL,
|
|
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
|
|
PTE_BLOCK_NON_SHARE
|
|
}, {
|
|
/* RAM */
|
|
.virt = 0x40000000UL,
|
|
.phys = 0x40000000UL,
|
|
.size = CONFIG_SUNXI_DRAM_MAX_SIZE,
|
|
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
|
|
PTE_BLOCK_INNER_SHARE
|
|
}, {
|
|
/* List terminator */
|
|
0,
|
|
}
|
|
};
|
|
struct mm_region *mem_map = sunxi_mem_map;
|
|
|
|
ulong board_get_usable_ram_top(ulong total_size)
|
|
{
|
|
/* Some devices (like the EMAC) have a 32-bit DMA limit. */
|
|
if (gd->ram_top > (1ULL << 32))
|
|
return 1ULL << 32;
|
|
|
|
return gd->ram_top;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPL_BUILD
|
|
static int gpio_init(void)
|
|
{
|
|
__maybe_unused uint val;
|
|
#if CONFIG_CONS_INDEX == 1 && defined(CONFIG_UART0_PORT_F)
|
|
#if defined(CONFIG_MACH_SUN4I) || \
|
|
defined(CONFIG_MACH_SUN7I) || \
|
|
defined(CONFIG_MACH_SUN8I_R40)
|
|
/* disable GPB22,23 as uart0 tx,rx to avoid conflict */
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(22), SUNXI_GPIO_INPUT);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(23), SUNXI_GPIO_INPUT);
|
|
#endif
|
|
#if defined(CONFIG_MACH_SUN4I) || defined(CONFIG_MACH_SUN5I) || \
|
|
defined(CONFIG_MACH_SUN7I) || defined(CONFIG_MACH_SUN8I_R40) || \
|
|
defined(CONFIG_MACH_SUN9I)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPF(2), SUNXI_GPF_UART0);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPF(4), SUNXI_GPF_UART0);
|
|
#else
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPF(2), SUN8I_GPF_UART0);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPF(4), SUN8I_GPF_UART0);
|
|
#endif
|
|
sunxi_gpio_set_pull(SUNXI_GPF(4), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUNIV)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPE(0), SUNIV_GPE_UART0);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPE(1), SUNIV_GPE_UART0);
|
|
sunxi_gpio_set_pull(SUNXI_GPE(1), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 1 && (defined(CONFIG_MACH_SUN4I) || \
|
|
defined(CONFIG_MACH_SUN7I) || \
|
|
defined(CONFIG_MACH_SUN8I_R40))
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(22), SUN4I_GPB_UART0);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(23), SUN4I_GPB_UART0);
|
|
sunxi_gpio_set_pull(SUNXI_GPB(23), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN5I)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(19), SUN5I_GPB_UART0);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(20), SUN5I_GPB_UART0);
|
|
sunxi_gpio_set_pull(SUNXI_GPB(20), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN6I)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPH(20), SUN6I_GPH_UART0);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPH(21), SUN6I_GPH_UART0);
|
|
sunxi_gpio_set_pull(SUNXI_GPH(21), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN8I_A33)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(0), SUN8I_A33_GPB_UART0);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(1), SUN8I_A33_GPB_UART0);
|
|
sunxi_gpio_set_pull(SUNXI_GPB(1), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUNXI_H3_H5)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPA(4), SUN8I_H3_GPA_UART0);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPA(5), SUN8I_H3_GPA_UART0);
|
|
sunxi_gpio_set_pull(SUNXI_GPA(5), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN50I)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(8), SUN50I_GPB_UART0);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(9), SUN50I_GPB_UART0);
|
|
sunxi_gpio_set_pull(SUNXI_GPB(9), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN50I_H6)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPH(0), SUN50I_H6_GPH_UART0);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPH(1), SUN50I_H6_GPH_UART0);
|
|
sunxi_gpio_set_pull(SUNXI_GPH(1), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN50I_H616)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPH(0), SUN50I_H616_GPH_UART0);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPH(1), SUN50I_H616_GPH_UART0);
|
|
sunxi_gpio_set_pull(SUNXI_GPH(1), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN8I_A83T)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(9), SUN8I_A83T_GPB_UART0);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(10), SUN8I_A83T_GPB_UART0);
|
|
sunxi_gpio_set_pull(SUNXI_GPB(10), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN8I_V3S)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(8), SUN8I_V3S_GPB_UART0);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(9), SUN8I_V3S_GPB_UART0);
|
|
sunxi_gpio_set_pull(SUNXI_GPB(9), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN9I)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPH(12), SUN9I_GPH_UART0);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPH(13), SUN9I_GPH_UART0);
|
|
sunxi_gpio_set_pull(SUNXI_GPH(13), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 2 && defined(CONFIG_MACH_SUN5I)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPG(3), SUN5I_GPG_UART1);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPG(4), SUN5I_GPG_UART1);
|
|
sunxi_gpio_set_pull(SUNXI_GPG(4), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 3 && defined(CONFIG_MACH_SUN8I_H3)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPA(0), SUN8I_H3_GPA_UART2);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPA(1), SUN8I_H3_GPA_UART2);
|
|
sunxi_gpio_set_pull(SUNXI_GPA(1), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 3 && defined(CONFIG_MACH_SUN8I)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(0), SUN8I_GPB_UART2);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPB(1), SUN8I_GPB_UART2);
|
|
sunxi_gpio_set_pull(SUNXI_GPB(1), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 5 && defined(CONFIG_MACH_SUN8I)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPL(2), SUN8I_GPL_R_UART);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPL(3), SUN8I_GPL_R_UART);
|
|
sunxi_gpio_set_pull(SUNXI_GPL(3), SUNXI_GPIO_PULL_UP);
|
|
#elif CONFIG_CONS_INDEX == 2 && defined(CONFIG_MACH_SUN8I) && \
|
|
!defined(CONFIG_MACH_SUN8I_R40)
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPG(6), SUN8I_GPG_UART1);
|
|
sunxi_gpio_set_cfgpin(SUNXI_GPG(7), SUN8I_GPG_UART1);
|
|
sunxi_gpio_set_pull(SUNXI_GPG(7), SUNXI_GPIO_PULL_UP);
|
|
#else
|
|
#error Unsupported console port number. Please fix pin mux settings in board.c
|
|
#endif
|
|
|
|
#ifdef CONFIG_SUN50I_GEN_H6
|
|
/* Update PIO power bias configuration by copy hardware detected value */
|
|
val = readl(SUNXI_PIO_BASE + SUN50I_H6_GPIO_POW_MOD_VAL);
|
|
writel(val, SUNXI_PIO_BASE + SUN50I_H6_GPIO_POW_MOD_SEL);
|
|
val = readl(SUNXI_R_PIO_BASE + SUN50I_H6_GPIO_POW_MOD_VAL);
|
|
writel(val, SUNXI_R_PIO_BASE + SUN50I_H6_GPIO_POW_MOD_SEL);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spl_board_load_image(struct spl_image_info *spl_image,
|
|
struct spl_boot_device *bootdev)
|
|
{
|
|
debug("Returning to FEL sp=%x, lr=%x\n", fel_stash.sp, fel_stash.lr);
|
|
return_to_fel(fel_stash.sp, fel_stash.lr);
|
|
|
|
return 0;
|
|
}
|
|
SPL_LOAD_IMAGE_METHOD("FEL", 0, BOOT_DEVICE_BOARD, spl_board_load_image);
|
|
#endif
|
|
|
|
#define SUNXI_INVALID_BOOT_SOURCE -1
|
|
|
|
static int suniv_get_boot_source(void)
|
|
{
|
|
/* Get the last function call from BootROM's stack. */
|
|
u32 brom_call = *(u32 *)(uintptr_t)(fel_stash.sp - 4);
|
|
|
|
/* translate SUNIV BootROM stack to standard SUNXI boot sources */
|
|
switch (brom_call) {
|
|
case SUNIV_BOOTED_FROM_MMC0:
|
|
return SUNXI_BOOTED_FROM_MMC0;
|
|
case SUNIV_BOOTED_FROM_SPI:
|
|
return SUNXI_BOOTED_FROM_SPI;
|
|
case SUNIV_BOOTED_FROM_MMC1:
|
|
return SUNXI_BOOTED_FROM_MMC2;
|
|
/* SPI NAND is not supported yet. */
|
|
case SUNIV_BOOTED_FROM_NAND:
|
|
return SUNXI_INVALID_BOOT_SOURCE;
|
|
}
|
|
/* If we get here something went wrong try to boot from FEL.*/
|
|
printf("Unknown boot source from BROM: 0x%x\n", brom_call);
|
|
return SUNXI_INVALID_BOOT_SOURCE;
|
|
}
|
|
|
|
static int sunxi_egon_valid(struct boot_file_head *egon_head)
|
|
{
|
|
return !memcmp(egon_head->magic, BOOT0_MAGIC, 8); /* eGON.BT0 */
|
|
}
|
|
|
|
static int sunxi_toc0_valid(struct toc0_main_info *toc0_info)
|
|
{
|
|
return !memcmp(toc0_info->name, TOC0_MAIN_INFO_NAME, 8); /* TOC0.GLH */
|
|
}
|
|
|
|
static int sunxi_get_boot_source(void)
|
|
{
|
|
struct boot_file_head *egon_head = (void *)SPL_ADDR;
|
|
struct toc0_main_info *toc0_info = (void *)SPL_ADDR;
|
|
|
|
/*
|
|
* On the ARMv5 SoCs, the SPL header in SRAM is overwritten by the
|
|
* exception vectors in U-Boot proper, so we won't find any
|
|
* information there. Also the FEL stash is only valid in the SPL,
|
|
* so we can't use that either. So if this is called from U-Boot
|
|
* proper, just return MMC0 as a placeholder, for now.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_MACH_SUNIV) &&
|
|
!IS_ENABLED(CONFIG_SPL_BUILD))
|
|
return SUNXI_BOOTED_FROM_MMC0;
|
|
|
|
if (IS_ENABLED(CONFIG_MACH_SUNIV))
|
|
return suniv_get_boot_source();
|
|
if (sunxi_egon_valid(egon_head))
|
|
return readb(&egon_head->boot_media);
|
|
if (sunxi_toc0_valid(toc0_info))
|
|
return readb(&toc0_info->platform[0]);
|
|
|
|
/* Not a valid image, so we must have been booted via FEL. */
|
|
return SUNXI_INVALID_BOOT_SOURCE;
|
|
}
|
|
|
|
/* The sunxi internal brom will try to loader external bootloader
|
|
* from mmc0, nand flash, mmc2.
|
|
*/
|
|
uint32_t sunxi_get_boot_device(void)
|
|
{
|
|
int boot_source = sunxi_get_boot_source();
|
|
|
|
/*
|
|
* When booting from the SD card or NAND memory, the "eGON.BT0"
|
|
* signature is expected to be found in memory at the address 0x0004
|
|
* (see the "mksunxiboot" tool, which generates this header).
|
|
*
|
|
* When booting in the FEL mode over USB, this signature is patched in
|
|
* memory and replaced with something else by the 'fel' tool. This other
|
|
* signature is selected in such a way, that it can't be present in a
|
|
* valid bootable SD card image (because the BROM would refuse to
|
|
* execute the SPL in this case).
|
|
*
|
|
* This checks for the signature and if it is not found returns to
|
|
* the FEL code in the BROM to wait and receive the main u-boot
|
|
* binary over USB. If it is found, it determines where SPL was
|
|
* read from.
|
|
*/
|
|
switch (boot_source) {
|
|
case SUNXI_INVALID_BOOT_SOURCE:
|
|
return BOOT_DEVICE_BOARD;
|
|
case SUNXI_BOOTED_FROM_MMC0:
|
|
case SUNXI_BOOTED_FROM_MMC0_HIGH:
|
|
return BOOT_DEVICE_MMC1;
|
|
case SUNXI_BOOTED_FROM_NAND:
|
|
return BOOT_DEVICE_NAND;
|
|
case SUNXI_BOOTED_FROM_MMC2:
|
|
case SUNXI_BOOTED_FROM_MMC2_HIGH:
|
|
return BOOT_DEVICE_MMC2;
|
|
case SUNXI_BOOTED_FROM_SPI:
|
|
return BOOT_DEVICE_SPI;
|
|
}
|
|
|
|
panic("Unknown boot source %d\n", boot_source);
|
|
return -1; /* Never reached */
|
|
}
|
|
|
|
#ifdef CONFIG_SPL_BUILD
|
|
uint32_t sunxi_get_spl_size(void)
|
|
{
|
|
struct boot_file_head *egon_head = (void *)SPL_ADDR;
|
|
struct toc0_main_info *toc0_info = (void *)SPL_ADDR;
|
|
|
|
if (sunxi_egon_valid(egon_head))
|
|
return readl(&egon_head->length);
|
|
if (sunxi_toc0_valid(toc0_info))
|
|
return readl(&toc0_info->length);
|
|
|
|
/* Not a valid image, so use the default U-Boot offset. */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The eGON SPL image can be located at 8KB or at 128KB into an SD card or
|
|
* an eMMC device. The boot source has bit 4 set in the latter case.
|
|
* By adding 120KB to the normal offset when booting from a "high" location
|
|
* we can support both cases.
|
|
* Also U-Boot proper is located at least 32KB after the SPL, but will
|
|
* immediately follow the SPL if that is bigger than that.
|
|
*/
|
|
unsigned long spl_mmc_get_uboot_raw_sector(struct mmc *mmc,
|
|
unsigned long raw_sect)
|
|
{
|
|
unsigned long spl_size = sunxi_get_spl_size();
|
|
unsigned long sector;
|
|
|
|
sector = max(raw_sect, spl_size / 512);
|
|
|
|
switch (sunxi_get_boot_source()) {
|
|
case SUNXI_BOOTED_FROM_MMC0_HIGH:
|
|
case SUNXI_BOOTED_FROM_MMC2_HIGH:
|
|
sector += (128 - 8) * 2;
|
|
break;
|
|
}
|
|
|
|
return sector;
|
|
}
|
|
|
|
u32 spl_boot_device(void)
|
|
{
|
|
return sunxi_get_boot_device();
|
|
}
|
|
|
|
__weak void sunxi_sram_init(void)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* When booting from an eMMC boot partition, the SPL puts the same boot
|
|
* source code into SRAM A1 as when loading the SPL from the normal
|
|
* eMMC user data partition: 0x2. So to know where we have been loaded
|
|
* from, we repeat the BROM algorithm here: checking for a valid eGON boot
|
|
* image at offset 0 of a (potentially) selected boot partition.
|
|
* If any of the conditions is not met, it must have been the eMMC user
|
|
* data partition.
|
|
*/
|
|
static bool sunxi_valid_emmc_boot(struct mmc *mmc)
|
|
{
|
|
struct blk_desc *bd = mmc_get_blk_desc(mmc);
|
|
uint32_t *buffer = (void *)(uintptr_t)CONFIG_SYS_TEXT_BASE;
|
|
struct boot_file_head *egon_head = (void *)buffer;
|
|
int bootpart = EXT_CSD_EXTRACT_BOOT_PART(mmc->part_config);
|
|
uint32_t spl_size, emmc_checksum, chksum = 0;
|
|
ulong count;
|
|
|
|
/* The BROM requires BOOT_ACK to be enabled. */
|
|
if (!EXT_CSD_EXTRACT_BOOT_ACK(mmc->part_config))
|
|
return false;
|
|
|
|
/*
|
|
* The BOOT_BUS_CONDITION register must be 4-bit SDR, with (0x09)
|
|
* or without (0x01) high speed timings.
|
|
*/
|
|
if ((mmc->ext_csd[EXT_CSD_BOOT_BUS_WIDTH] & 0x1b) != 0x01 &&
|
|
(mmc->ext_csd[EXT_CSD_BOOT_BUS_WIDTH] & 0x1b) != 0x09)
|
|
return false;
|
|
|
|
/* Partition 0 is the user data partition, bootpart must be 1 or 2. */
|
|
if (bootpart != 1 && bootpart != 2)
|
|
return false;
|
|
|
|
/* Failure to switch to the boot partition is fatal. */
|
|
if (mmc_switch_part(mmc, bootpart))
|
|
return false;
|
|
|
|
/* Read the first block to do some sanity checks on the eGON header. */
|
|
count = blk_dread(bd, 0, 1, buffer);
|
|
if (count != 1 || !sunxi_egon_valid(egon_head))
|
|
return false;
|
|
|
|
/* Read the rest of the SPL now we know it's halfway sane. */
|
|
spl_size = buffer[4];
|
|
count = blk_dread(bd, 1, DIV_ROUND_UP(spl_size, bd->blksz) - 1,
|
|
buffer + bd->blksz / 4);
|
|
|
|
/* Save the checksum and replace it with the "stamp value". */
|
|
emmc_checksum = buffer[3];
|
|
buffer[3] = 0x5f0a6c39;
|
|
|
|
/* The checksum is a simple ignore-carry addition of all words. */
|
|
for (count = 0; count < spl_size / 4; count++)
|
|
chksum += buffer[count];
|
|
|
|
debug("eMMC boot part SPL checksum: stored: 0x%08x, computed: 0x%08x\n",
|
|
emmc_checksum, chksum);
|
|
|
|
return emmc_checksum == chksum;
|
|
}
|
|
|
|
u32 spl_mmc_boot_mode(struct mmc *mmc, const u32 boot_device)
|
|
{
|
|
static u32 result = ~0;
|
|
|
|
if (result != ~0)
|
|
return result;
|
|
|
|
result = MMCSD_MODE_RAW;
|
|
if (!IS_SD(mmc) && IS_ENABLED(CONFIG_SUPPORT_EMMC_BOOT)) {
|
|
if (sunxi_valid_emmc_boot(mmc))
|
|
result = MMCSD_MODE_EMMCBOOT;
|
|
else
|
|
mmc_switch_part(mmc, 0);
|
|
}
|
|
|
|
debug("%s(): %s part\n", __func__,
|
|
result == MMCSD_MODE_RAW ? "user" : "boot");
|
|
|
|
return result;
|
|
}
|
|
|
|
void board_init_f(ulong dummy)
|
|
{
|
|
sunxi_sram_init();
|
|
|
|
#if defined CONFIG_MACH_SUN6I || defined CONFIG_MACH_SUN8I_H3
|
|
/* Enable non-secure access to some peripherals */
|
|
tzpc_init();
|
|
#endif
|
|
|
|
clock_init();
|
|
timer_init();
|
|
gpio_init();
|
|
|
|
spl_init();
|
|
preloader_console_init();
|
|
|
|
#if CONFIG_IS_ENABLED(I2C) && CONFIG_IS_ENABLED(SYS_I2C_LEGACY)
|
|
/* Needed early by sunxi_board_init if PMU is enabled */
|
|
i2c_init_board();
|
|
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
|
|
#endif
|
|
sunxi_board_init();
|
|
}
|
|
#endif
|
|
|
|
#if !CONFIG_IS_ENABLED(SYSRESET)
|
|
void reset_cpu(void)
|
|
{
|
|
#if defined(CONFIG_SUNXI_GEN_SUN4I) || defined(CONFIG_MACH_SUN8I_R40)
|
|
static const struct sunxi_wdog *wdog =
|
|
&((struct sunxi_timer_reg *)SUNXI_TIMER_BASE)->wdog;
|
|
|
|
/* Set the watchdog for its shortest interval (.5s) and wait */
|
|
writel(WDT_MODE_RESET_EN | WDT_MODE_EN, &wdog->mode);
|
|
writel(WDT_CTRL_KEY | WDT_CTRL_RESTART, &wdog->ctl);
|
|
|
|
while (1) {
|
|
/* sun5i sometimes gets stuck without this */
|
|
writel(WDT_MODE_RESET_EN | WDT_MODE_EN, &wdog->mode);
|
|
}
|
|
#elif defined(CONFIG_SUNXI_GEN_SUN6I) || defined(CONFIG_SUN50I_GEN_H6)
|
|
#if defined(CONFIG_MACH_SUN50I_H6)
|
|
/* WDOG is broken for some H6 rev. use the R_WDOG instead */
|
|
static const struct sunxi_wdog *wdog =
|
|
(struct sunxi_wdog *)SUNXI_R_WDOG_BASE;
|
|
#else
|
|
static const struct sunxi_wdog *wdog =
|
|
((struct sunxi_timer_reg *)SUNXI_TIMER_BASE)->wdog;
|
|
#endif
|
|
/* Set the watchdog for its shortest interval (.5s) and wait */
|
|
writel(WDT_CFG_RESET, &wdog->cfg);
|
|
writel(WDT_MODE_EN, &wdog->mode);
|
|
writel(WDT_CTRL_KEY | WDT_CTRL_RESTART, &wdog->ctl);
|
|
while (1) { }
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) && !defined(CONFIG_ARM64)
|
|
void enable_caches(void)
|
|
{
|
|
/* Enable D-cache. I-cache is already enabled in start.S */
|
|
dcache_enable();
|
|
}
|
|
#endif
|