u-boot/nand_spl/nand_boot_fsl_nfc.c
Heiko Schocher f1d2b313c9 ARM: add relocation support
!! This breaks support for all arm boards !!

To compile in old style, you must define
CONFIG_SYS_ARM_WITHOUT_RELOC or you can compile
with "CONFIG_SYS_ARM_WITHOUT_RELOC=1 ./MAKEALL board"

!! This define will be removed soon, so convert your
board to use relocation support

Portions of this work were supported by funding from
the CE Linux Forum.

Signed-off-by: Heiko Schocher <hs@denx.de>

Fix boot from NAND for non-ARM systems
Signed-off-by: Wolfgang Denk <wd@denx.de>
2010-09-19 19:29:53 +02:00

304 lines
7.4 KiB
C

/*
* (C) Copyright 2009
* Magnus Lilja <lilja.magnus@gmail.com>
*
* (C) Copyright 2008
* Maxim Artamonov, <scn1874 at yandex.ru>
*
* (C) Copyright 2006-2008
* Stefan Roese, DENX Software Engineering, sr at denx.de.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <nand.h>
#ifdef CONFIG_MX31
#include <asm/arch/mx31-regs.h>
#else
#include <asm/arch/imx-regs.h>
#endif
#include <asm/io.h>
#include <fsl_nfc.h>
static struct fsl_nfc_regs *const nfc = (void *)NFC_BASE_ADDR;
static void nfc_wait_ready(void)
{
uint32_t tmp;
while (!(readw(&nfc->nand_flash_config2) & NFC_INT))
;
/* Reset interrupt flag */
tmp = readw(&nfc->nand_flash_config2);
tmp &= ~NFC_INT;
writew(tmp, &nfc->nand_flash_config2);
}
void nfc_nand_init(void)
{
#if defined(MXC_NFC_V1_1)
int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
int config1;
writew(CONFIG_SYS_NAND_SPARE_SIZE / 2, &nfc->spare_area_size);
/* unlocking RAM Buff */
writew(0x2, &nfc->configuration);
/* hardware ECC checking and correct */
config1 = readw(&nfc->nand_flash_config1) | NFC_ECC_EN | 0x800;
/*
* if spare size is larger that 16 bytes per 512 byte hunk
* then use 8 symbol correction instead of 4
*/
if ((CONFIG_SYS_NAND_SPARE_SIZE / ecc_per_page) > 16)
config1 &= ~NFC_4_8N_ECC;
else
config1 |= NFC_4_8N_ECC;
writew(config1, &nfc->nand_flash_config1);
#elif defined(MXC_NFC_V1)
/* unlocking RAM Buff */
writew(0x2, &nfc->configuration);
/* hardware ECC checking and correct */
writew(NFC_ECC_EN, &nfc->nand_flash_config1);
#endif
}
static void nfc_nand_command(unsigned short command)
{
writew(command, &nfc->flash_cmd);
writew(NFC_CMD, &nfc->nand_flash_config2);
nfc_wait_ready();
}
static void nfc_nand_page_address(unsigned int page_address)
{
unsigned int page_count;
writew(0x00, &nfc->flash_add);
writew(NFC_ADDR, &nfc->nand_flash_config2);
nfc_wait_ready();
/* code only for large page flash */
if (CONFIG_SYS_NAND_PAGE_SIZE > 512) {
writew(0x00, &nfc->flash_add);
writew(NFC_ADDR, &nfc->nand_flash_config2);
nfc_wait_ready();
}
page_count = CONFIG_SYS_NAND_SIZE / CONFIG_SYS_NAND_PAGE_SIZE;
if (page_address <= page_count) {
page_count--; /* transform 0x01000000 to 0x00ffffff */
do {
writew(page_address & 0xff, &nfc->flash_add);
writew(NFC_ADDR, &nfc->nand_flash_config2);
nfc_wait_ready();
page_address = page_address >> 8;
page_count = page_count >> 8;
} while (page_count);
}
writew(0x00, &nfc->flash_add);
writew(NFC_ADDR, &nfc->nand_flash_config2);
nfc_wait_ready();
}
static void nfc_nand_data_output(void)
{
int config1 = readw(&nfc->nand_flash_config1);
#ifdef NAND_MXC_2K_MULTI_CYCLE
int i;
#endif
config1 |= NFC_ECC_EN | NFC_INT_MSK;
writew(config1, &nfc->nand_flash_config1);
writew(0, &nfc->buffer_address);
writew(NFC_OUTPUT, &nfc->nand_flash_config2);
nfc_wait_ready();
#ifdef NAND_MXC_2K_MULTI_CYCLE
/*
* This NAND controller requires multiple input commands
* for pages larger than 512 bytes.
*/
for (i = 1; i < (CONFIG_SYS_NAND_PAGE_SIZE / 512); i++) {
config1 = readw(&nfc->nand_flash_config1);
config1 |= NFC_ECC_EN | NFC_INT_MSK;
writew(config1, &nfc->nand_flash_config1);
writew(i, &nfc->buffer_address);
writew(NFC_OUTPUT, &nfc->nand_flash_config2);
nfc_wait_ready();
}
#endif
}
static int nfc_nand_check_ecc(void)
{
return readw(&nfc->ecc_status_result);
}
static int nfc_read_page(unsigned int page_address, unsigned char *buf)
{
int i;
u32 *src;
u32 *dst;
writew(0, &nfc->buffer_address); /* read in first 0 buffer */
nfc_nand_command(NAND_CMD_READ0);
nfc_nand_page_address(page_address);
if (CONFIG_SYS_NAND_PAGE_SIZE > 512)
nfc_nand_command(NAND_CMD_READSTART);
nfc_nand_data_output(); /* fill the main buffer 0 */
if (nfc_nand_check_ecc())
return -1;
src = &nfc->main_area[0][0];
dst = (u32 *)buf;
/* main copy loop from NAND-buffer to SDRAM memory */
for (i = 0; i < (CONFIG_SYS_NAND_PAGE_SIZE / 4); i++) {
writel(readl(src), dst);
src++;
dst++;
}
return 0;
}
static int is_badblock(int pagenumber)
{
int page = pagenumber;
u32 badblock;
u32 *src;
/* Check the first two pages for bad block markers */
for (page = pagenumber; page < pagenumber + 2; page++) {
writew(0, &nfc->buffer_address); /* read in first 0 buffer */
nfc_nand_command(NAND_CMD_READ0);
nfc_nand_page_address(page);
if (CONFIG_SYS_NAND_PAGE_SIZE > 512)
nfc_nand_command(NAND_CMD_READSTART);
nfc_nand_data_output(); /* fill the main buffer 0 */
src = &nfc->spare_area[0][0];
/*
* IMPORTANT NOTE: The nand flash controller uses a non-
* standard layout for large page devices. This can
* affect the position of the bad block marker.
*/
/* Get the bad block marker */
badblock = readl(&src[CONFIG_SYS_NAND_BAD_BLOCK_POS / 4]);
badblock >>= 8 * (CONFIG_SYS_NAND_BAD_BLOCK_POS % 4);
badblock &= 0xff;
/* bad block marker verify */
if (badblock != 0xff)
return 1; /* potential bad block */
}
return 0;
}
static int nand_load(unsigned int from, unsigned int size, unsigned char *buf)
{
int i;
unsigned int page;
unsigned int maxpages = CONFIG_SYS_NAND_SIZE /
CONFIG_SYS_NAND_PAGE_SIZE;
nfc_nand_init();
/* Convert to page number */
page = from / CONFIG_SYS_NAND_PAGE_SIZE;
i = 0;
while (i < (size / CONFIG_SYS_NAND_PAGE_SIZE)) {
if (nfc_read_page(page, buf) < 0)
return -1;
page++;
i++;
buf = buf + CONFIG_SYS_NAND_PAGE_SIZE;
/*
* Check if we have crossed a block boundary, and if so
* check for bad block.
*/
if (!(page % CONFIG_SYS_NAND_PAGE_COUNT)) {
/*
* Yes, new block. See if this block is good. If not,
* loop until we find a good block.
*/
while (is_badblock(page)) {
page = page + CONFIG_SYS_NAND_PAGE_COUNT;
/* Check i we've reached the end of flash. */
if (page >= maxpages)
return -1;
}
}
}
return 0;
}
#if defined(CONFIG_ARM) && !defined(CONFIG_SYS_ARM_WITHOUT_RELOC)
void board_init_f (ulong bootflag)
{
relocate_code (TEXT_BASE - TOTAL_MALLOC_LEN, NULL, TEXT_BASE);
}
#endif
/*
* The main entry for NAND booting. It's necessary that SDRAM is already
* configured and available since this code loads the main U-Boot image
* from NAND into SDRAM and starts it from there.
*/
void nand_boot(void)
{
__attribute__((noreturn)) void (*uboot)(void);
/*
* CONFIG_SYS_NAND_U_BOOT_OFFS and CONFIG_SYS_NAND_U_BOOT_SIZE must
* be aligned to full pages
*/
if (!nand_load(CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
(uchar *)CONFIG_SYS_NAND_U_BOOT_DST)) {
/* Copy from NAND successful, start U-boot */
uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
uboot();
} else {
/* Unrecoverable error when copying from NAND */
hang();
}
}
/*
* Called in case of an exception.
*/
void hang(void)
{
/* Loop forever */
while (1) ;
}