u-boot/drivers/usb/gadget/at91_udc.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

1544 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* from linux:
* c94e289f195e: usb: gadget: remove incorrect __init/__exit annotations
*
* at91_udc -- driver for at91-series USB peripheral controller
*
* Copyright (C) 2004 by Thomas Rathbone
* Copyright (C) 2005 by HP Labs
* Copyright (C) 2005 by David Brownell
*/
#undef VERBOSE_DEBUG
#undef PACKET_TRACE
#include <common.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <asm/hardware.h>
#include <mach/at91_matrix.h>
#include <linux/list.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/at91_udc.h>
#include <malloc.h>
#include <usb/lin_gadget_compat.h>
#include "at91_udc.h"
/*
* This controller is simple and PIO-only. It's used in many AT91-series
* full speed USB controllers, including the at91rm9200 (arm920T, with MMU),
* at91sam926x (arm926ejs, with MMU), and several no-mmu versions.
*
* This driver expects the board has been wired with two GPIOs supporting
* a VBUS sensing IRQ, and a D+ pullup. (They may be omitted, but the
* testing hasn't covered such cases.)
*
* The pullup is most important (so it's integrated on sam926x parts). It
* provides software control over whether the host enumerates the device.
*
* The VBUS sensing helps during enumeration, and allows both USB clocks
* (and the transceiver) to stay gated off until they're necessary, saving
* power. During USB suspend, the 48 MHz clock is gated off in hardware;
* it may also be gated off by software during some Linux sleep states.
*/
#define DRIVER_VERSION "3 May 2006"
static const char driver_name [] = "at91_udc";
static const char * const ep_names[] = {
"ep0",
"ep1",
"ep2",
"ep3-int",
"ep4",
"ep5",
};
#define ep0name ep_names[0]
#define at91_udp_read(udc, reg) \
__raw_readl((udc)->udp_baseaddr + (reg))
#define at91_udp_write(udc, reg, val) \
__raw_writel((val), (udc)->udp_baseaddr + (reg))
static struct at91_udc *controller;
/*-------------------------------------------------------------------------*/
static void done(struct at91_ep *ep, struct at91_request *req, int status)
{
unsigned stopped = ep->stopped;
struct at91_udc *udc = ep->udc;
list_del_init(&req->queue);
if (req->req.status == -EINPROGRESS)
req->req.status = status;
else
status = req->req.status;
if (status && status != -ESHUTDOWN)
VDBG("%s done %p, status %d\n", ep->ep.name, req, status);
ep->stopped = 1;
spin_unlock(&udc->lock);
req->req.complete(&ep->ep, &req->req);
spin_lock(&udc->lock);
ep->stopped = stopped;
/* ep0 is always ready; other endpoints need a non-empty queue */
if (list_empty(&ep->queue) && ep->int_mask != (1 << 0))
at91_udp_write(udc, AT91_UDP_IDR, ep->int_mask);
}
/*-------------------------------------------------------------------------*/
/* bits indicating OUT fifo has data ready */
#define RX_DATA_READY (AT91_UDP_RX_DATA_BK0 | AT91_UDP_RX_DATA_BK1)
/*
* Endpoint FIFO CSR bits have a mix of bits, making it unsafe to just write
* back most of the value you just read (because of side effects, including
* bits that may change after reading and before writing).
*
* Except when changing a specific bit, always write values which:
* - clear SET_FX bits (setting them could change something)
* - set CLR_FX bits (clearing them could change something)
*
* There are also state bits like FORCESTALL, EPEDS, DIR, and EPTYPE
* that shouldn't normally be changed.
*
* NOTE at91sam9260 docs mention synch between UDPCK and MCK clock domains,
* implying a need to wait for one write to complete (test relevant bits)
* before starting the next write. This shouldn't be an issue given how
* infrequently we write, except maybe for write-then-read idioms.
*/
#define SET_FX (AT91_UDP_TXPKTRDY)
#define CLR_FX (RX_DATA_READY | AT91_UDP_RXSETUP \
| AT91_UDP_STALLSENT | AT91_UDP_TXCOMP)
/* pull OUT packet data from the endpoint's fifo */
static int read_fifo (struct at91_ep *ep, struct at91_request *req)
{
u32 __iomem *creg = ep->creg;
u8 __iomem *dreg = ep->creg + (AT91_UDP_FDR(0) - AT91_UDP_CSR(0));
u32 csr;
u8 *buf;
unsigned int count, bufferspace, is_done;
buf = req->req.buf + req->req.actual;
bufferspace = req->req.length - req->req.actual;
/*
* there might be nothing to read if ep_queue() calls us,
* or if we already emptied both pingpong buffers
*/
rescan:
csr = __raw_readl(creg);
if ((csr & RX_DATA_READY) == 0)
return 0;
count = (csr & AT91_UDP_RXBYTECNT) >> 16;
if (count > ep->ep.maxpacket)
count = ep->ep.maxpacket;
if (count > bufferspace) {
DBG("%s buffer overflow\n", ep->ep.name);
req->req.status = -EOVERFLOW;
count = bufferspace;
}
__raw_readsb((unsigned long)dreg, buf, count);
/* release and swap pingpong mem bank */
csr |= CLR_FX;
if (ep->is_pingpong) {
if (ep->fifo_bank == 0) {
csr &= ~(SET_FX | AT91_UDP_RX_DATA_BK0);
ep->fifo_bank = 1;
} else {
csr &= ~(SET_FX | AT91_UDP_RX_DATA_BK1);
ep->fifo_bank = 0;
}
} else
csr &= ~(SET_FX | AT91_UDP_RX_DATA_BK0);
__raw_writel(csr, creg);
req->req.actual += count;
is_done = (count < ep->ep.maxpacket);
if (count == bufferspace)
is_done = 1;
PACKET("%s %p out/%d%s\n", ep->ep.name, &req->req, count,
is_done ? " (done)" : "");
/*
* avoid extra trips through IRQ logic for packets already in
* the fifo ... maybe preventing an extra (expensive) OUT-NAK
*/
if (is_done)
done(ep, req, 0);
else if (ep->is_pingpong) {
/*
* One dummy read to delay the code because of a HW glitch:
* CSR returns bad RXCOUNT when read too soon after updating
* RX_DATA_BK flags.
*/
csr = __raw_readl(creg);
bufferspace -= count;
buf += count;
goto rescan;
}
return is_done;
}
/* load fifo for an IN packet */
static int write_fifo(struct at91_ep *ep, struct at91_request *req)
{
u32 __iomem *creg = ep->creg;
u32 csr = __raw_readl(creg);
u8 __iomem *dreg = ep->creg + (AT91_UDP_FDR(0) - AT91_UDP_CSR(0));
unsigned total, count, is_last;
u8 *buf;
/*
* TODO: allow for writing two packets to the fifo ... that'll
* reduce the amount of IN-NAKing, but probably won't affect
* throughput much. (Unlike preventing OUT-NAKing!)
*/
/*
* If ep_queue() calls us, the queue is empty and possibly in
* odd states like TXCOMP not yet cleared (we do it, saving at
* least one IRQ) or the fifo not yet being free. Those aren't
* issues normally (IRQ handler fast path).
*/
if (unlikely(csr & (AT91_UDP_TXCOMP | AT91_UDP_TXPKTRDY))) {
if (csr & AT91_UDP_TXCOMP) {
csr |= CLR_FX;
csr &= ~(SET_FX | AT91_UDP_TXCOMP);
__raw_writel(csr, creg);
csr = __raw_readl(creg);
}
if (csr & AT91_UDP_TXPKTRDY)
return 0;
}
buf = req->req.buf + req->req.actual;
prefetch(buf);
total = req->req.length - req->req.actual;
if (ep->ep.maxpacket < total) {
count = ep->ep.maxpacket;
is_last = 0;
} else {
count = total;
is_last = (count < ep->ep.maxpacket) || !req->req.zero;
}
/*
* Write the packet, maybe it's a ZLP.
*
* NOTE: incrementing req->actual before we receive the ACK means
* gadget driver IN bytecounts can be wrong in fault cases. That's
* fixable with PIO drivers like this one (save "count" here, and
* do the increment later on TX irq), but not for most DMA hardware.
*
* So all gadget drivers must accept that potential error. Some
* hardware supports precise fifo status reporting, letting them
* recover when the actual bytecount matters (e.g. for USB Test
* and Measurement Class devices).
*/
__raw_writesb((unsigned long)dreg, buf, count);
csr &= ~SET_FX;
csr |= CLR_FX | AT91_UDP_TXPKTRDY;
__raw_writel(csr, creg);
req->req.actual += count;
PACKET("%s %p in/%d%s\n", ep->ep.name, &req->req, count,
is_last ? " (done)" : "");
if (is_last)
done(ep, req, 0);
return is_last;
}
static void nuke(struct at91_ep *ep, int status)
{
struct at91_request *req;
/* terminate any request in the queue */
ep->stopped = 1;
if (list_empty(&ep->queue))
return;
VDBG("%s %s\n", __func__, ep->ep.name);
while (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next, struct at91_request, queue);
done(ep, req, status);
}
}
/*-------------------------------------------------------------------------*/
static int at91_ep_enable(struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct at91_ep *ep = container_of(_ep, struct at91_ep, ep);
struct at91_udc *udc;
u16 maxpacket;
u32 tmp;
unsigned long flags;
if (!_ep || !ep
|| !desc || _ep->name == ep0name
|| desc->bDescriptorType != USB_DT_ENDPOINT
|| (maxpacket = usb_endpoint_maxp(desc)) == 0
|| maxpacket > ep->maxpacket) {
DBG("bad ep or descriptor\n");
return -EINVAL;
}
udc = ep->udc;
if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
DBG("bogus device state\n");
return -ESHUTDOWN;
}
tmp = usb_endpoint_type(desc);
switch (tmp) {
case USB_ENDPOINT_XFER_CONTROL:
DBG("only one control endpoint\n");
return -EINVAL;
case USB_ENDPOINT_XFER_INT:
if (maxpacket > 64)
goto bogus_max;
break;
case USB_ENDPOINT_XFER_BULK:
switch (maxpacket) {
case 8:
case 16:
case 32:
case 64:
goto ok;
}
bogus_max:
DBG("bogus maxpacket %d\n", maxpacket);
return -EINVAL;
case USB_ENDPOINT_XFER_ISOC:
if (!ep->is_pingpong) {
DBG("iso requires double buffering\n");
return -EINVAL;
}
break;
}
ok:
spin_lock_irqsave(&udc->lock, flags);
/* initialize endpoint to match this descriptor */
ep->is_in = usb_endpoint_dir_in(desc);
ep->is_iso = (tmp == USB_ENDPOINT_XFER_ISOC);
ep->stopped = 0;
if (ep->is_in)
tmp |= 0x04;
tmp <<= 8;
tmp |= AT91_UDP_EPEDS;
__raw_writel(tmp, ep->creg);
ep->ep.maxpacket = maxpacket;
/*
* reset/init endpoint fifo. NOTE: leaves fifo_bank alone,
* since endpoint resets don't reset hw pingpong state.
*/
at91_udp_write(udc, AT91_UDP_RST_EP, ep->int_mask);
at91_udp_write(udc, AT91_UDP_RST_EP, 0);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int at91_ep_disable (struct usb_ep * _ep)
{
struct at91_ep *ep = container_of(_ep, struct at91_ep, ep);
struct at91_udc *udc = ep->udc;
unsigned long flags;
if (ep == &ep->udc->ep[0])
return -EINVAL;
spin_lock_irqsave(&udc->lock, flags);
nuke(ep, -ESHUTDOWN);
/* restore the endpoint's pristine config */
ep->ep.desc = NULL;
ep->ep.maxpacket = ep->maxpacket;
/* reset fifos and endpoint */
if (ep->udc->clocked) {
at91_udp_write(udc, AT91_UDP_RST_EP, ep->int_mask);
at91_udp_write(udc, AT91_UDP_RST_EP, 0);
__raw_writel(0, ep->creg);
}
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
/*
* this is a PIO-only driver, so there's nothing
* interesting for request or buffer allocation.
*/
static struct usb_request *
at91_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
{
struct at91_request *req;
req = kzalloc(sizeof (struct at91_request), gfp_flags);
if (!req)
return NULL;
INIT_LIST_HEAD(&req->queue);
return &req->req;
}
static void at91_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
{
struct at91_request *req;
req = container_of(_req, struct at91_request, req);
BUG_ON(!list_empty(&req->queue));
kfree(req);
}
static int at91_ep_queue(struct usb_ep *_ep,
struct usb_request *_req, gfp_t gfp_flags)
{
struct at91_request *req;
struct at91_ep *ep;
struct at91_udc *udc;
int status;
unsigned long flags;
req = container_of(_req, struct at91_request, req);
ep = container_of(_ep, struct at91_ep, ep);
if (!_req || !_req->complete
|| !_req->buf || !list_empty(&req->queue)) {
DBG("invalid request\n");
return -EINVAL;
}
if (!_ep || (!ep->ep.desc && ep->ep.name != ep0name)) {
DBG("invalid ep\n");
return -EINVAL;
}
udc = ep->udc;
if (!udc || !udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
DBG("invalid device\n");
return -EINVAL;
}
_req->status = -EINPROGRESS;
_req->actual = 0;
spin_lock_irqsave(&udc->lock, flags);
/* try to kickstart any empty and idle queue */
if (list_empty(&ep->queue) && !ep->stopped) {
int is_ep0;
/*
* If this control request has a non-empty DATA stage, this
* will start that stage. It works just like a non-control
* request (until the status stage starts, maybe early).
*
* If the data stage is empty, then this starts a successful
* IN/STATUS stage. (Unsuccessful ones use set_halt.)
*/
is_ep0 = (ep->ep.name == ep0name);
if (is_ep0) {
u32 tmp;
if (!udc->req_pending) {
status = -EINVAL;
goto done;
}
/*
* defer changing CONFG until after the gadget driver
* reconfigures the endpoints.
*/
if (udc->wait_for_config_ack) {
tmp = at91_udp_read(udc, AT91_UDP_GLB_STAT);
tmp ^= AT91_UDP_CONFG;
VDBG("toggle config\n");
at91_udp_write(udc, AT91_UDP_GLB_STAT, tmp);
}
if (req->req.length == 0) {
ep0_in_status:
PACKET("ep0 in/status\n");
status = 0;
tmp = __raw_readl(ep->creg);
tmp &= ~SET_FX;
tmp |= CLR_FX | AT91_UDP_TXPKTRDY;
__raw_writel(tmp, ep->creg);
udc->req_pending = 0;
goto done;
}
}
if (ep->is_in)
status = write_fifo(ep, req);
else {
status = read_fifo(ep, req);
/* IN/STATUS stage is otherwise triggered by irq */
if (status && is_ep0)
goto ep0_in_status;
}
} else
status = 0;
if (req && !status) {
list_add_tail (&req->queue, &ep->queue);
at91_udp_write(udc, AT91_UDP_IER, ep->int_mask);
}
done:
spin_unlock_irqrestore(&udc->lock, flags);
return (status < 0) ? status : 0;
}
static int at91_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct at91_ep *ep;
struct at91_request *req;
unsigned long flags;
ep = container_of(_ep, struct at91_ep, ep);
if (!_ep || ep->ep.name == ep0name)
return -EINVAL;
spin_lock_irqsave(&udc->lock, flags);
/* make sure it's actually queued on this endpoint */
list_for_each_entry (req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req) {
spin_unlock_irqrestore(&udc->lock, flags);
return -EINVAL;
}
done(ep, req, -ECONNRESET);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int at91_ep_set_halt(struct usb_ep *_ep, int value)
{
struct at91_ep *ep = container_of(_ep, struct at91_ep, ep);
struct at91_udc *udc = ep->udc;
u32 __iomem *creg;
u32 csr;
unsigned long flags;
int status = 0;
if (!_ep || ep->is_iso || !ep->udc->clocked)
return -EINVAL;
creg = ep->creg;
spin_lock_irqsave(&udc->lock, flags);
csr = __raw_readl(creg);
/*
* fail with still-busy IN endpoints, ensuring correct sequencing
* of data tx then stall. note that the fifo rx bytecount isn't
* completely accurate as a tx bytecount.
*/
if (ep->is_in && (!list_empty(&ep->queue) || (csr >> 16) != 0))
status = -EAGAIN;
else {
csr |= CLR_FX;
csr &= ~SET_FX;
if (value) {
csr |= AT91_UDP_FORCESTALL;
VDBG("halt %s\n", ep->ep.name);
} else {
at91_udp_write(udc, AT91_UDP_RST_EP, ep->int_mask);
at91_udp_write(udc, AT91_UDP_RST_EP, 0);
csr &= ~AT91_UDP_FORCESTALL;
}
__raw_writel(csr, creg);
}
spin_unlock_irqrestore(&udc->lock, flags);
return status;
}
static const struct usb_ep_ops at91_ep_ops = {
.enable = at91_ep_enable,
.disable = at91_ep_disable,
.alloc_request = at91_ep_alloc_request,
.free_request = at91_ep_free_request,
.queue = at91_ep_queue,
.dequeue = at91_ep_dequeue,
.set_halt = at91_ep_set_halt,
/* there's only imprecise fifo status reporting */
};
/*-------------------------------------------------------------------------*/
static int at91_get_frame(struct usb_gadget *gadget)
{
struct at91_udc *udc = to_udc(gadget);
if (!to_udc(gadget)->clocked)
return -EINVAL;
return at91_udp_read(udc, AT91_UDP_FRM_NUM) & AT91_UDP_NUM;
}
static int at91_wakeup(struct usb_gadget *gadget)
{
struct at91_udc *udc = to_udc(gadget);
u32 glbstate;
int status = -EINVAL;
unsigned long flags;
DBG("%s\n", __func__ );
spin_lock_irqsave(&udc->lock, flags);
if (!udc->clocked || !udc->suspended)
goto done;
/* NOTE: some "early versions" handle ESR differently ... */
glbstate = at91_udp_read(udc, AT91_UDP_GLB_STAT);
if (!(glbstate & AT91_UDP_ESR))
goto done;
glbstate |= AT91_UDP_ESR;
at91_udp_write(udc, AT91_UDP_GLB_STAT, glbstate);
done:
spin_unlock_irqrestore(&udc->lock, flags);
return status;
}
/* reinit == restore initial software state */
static void udc_reinit(struct at91_udc *udc)
{
u32 i;
INIT_LIST_HEAD(&udc->gadget.ep_list);
INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
for (i = 0; i < NUM_ENDPOINTS; i++) {
struct at91_ep *ep = &udc->ep[i];
if (i != 0)
list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
ep->ep.desc = NULL;
ep->stopped = 0;
ep->fifo_bank = 0;
usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
ep->creg = (void __iomem *) udc->udp_baseaddr + AT91_UDP_CSR(i);
/* initialize one queue per endpoint */
INIT_LIST_HEAD(&ep->queue);
}
}
static void reset_gadget(struct at91_udc *udc)
{
struct usb_gadget_driver *driver = udc->driver;
int i;
if (udc->gadget.speed == USB_SPEED_UNKNOWN)
driver = NULL;
udc->gadget.speed = USB_SPEED_UNKNOWN;
udc->suspended = 0;
for (i = 0; i < NUM_ENDPOINTS; i++) {
struct at91_ep *ep = &udc->ep[i];
ep->stopped = 1;
nuke(ep, -ESHUTDOWN);
}
if (driver) {
spin_unlock(&udc->lock);
udc->driver->disconnect(&udc->gadget);
spin_lock(&udc->lock);
}
udc_reinit(udc);
}
static void stop_activity(struct at91_udc *udc)
{
struct usb_gadget_driver *driver = udc->driver;
int i;
if (udc->gadget.speed == USB_SPEED_UNKNOWN)
driver = NULL;
udc->gadget.speed = USB_SPEED_UNKNOWN;
udc->suspended = 0;
for (i = 0; i < NUM_ENDPOINTS; i++) {
struct at91_ep *ep = &udc->ep[i];
ep->stopped = 1;
nuke(ep, -ESHUTDOWN);
}
if (driver) {
spin_unlock(&udc->lock);
driver->disconnect(&udc->gadget);
spin_lock(&udc->lock);
}
udc_reinit(udc);
}
static void clk_on(struct at91_udc *udc)
{
if (udc->clocked)
return;
udc->clocked = 1;
}
static void clk_off(struct at91_udc *udc)
{
if (!udc->clocked)
return;
udc->clocked = 0;
udc->gadget.speed = USB_SPEED_UNKNOWN;
}
/*
* activate/deactivate link with host; minimize power usage for
* inactive links by cutting clocks and transceiver power.
*/
static void pullup(struct at91_udc *udc, int is_on)
{
if (!udc->enabled || !udc->vbus)
is_on = 0;
DBG("%sactive\n", is_on ? "" : "in");
if (is_on) {
clk_on(udc);
at91_udp_write(udc, AT91_UDP_ICR, AT91_UDP_RXRSM);
at91_udp_write(udc, AT91_UDP_TXVC, 0);
} else {
stop_activity(udc);
at91_udp_write(udc, AT91_UDP_IDR, AT91_UDP_RXRSM);
at91_udp_write(udc, AT91_UDP_TXVC, AT91_UDP_TXVC_TXVDIS);
clk_off(udc);
}
if (udc->caps && udc->caps->pullup)
udc->caps->pullup(udc, is_on);
}
/* vbus is here! turn everything on that's ready */
static int at91_vbus_session(struct usb_gadget *gadget, int is_active)
{
struct at91_udc *udc = to_udc(gadget);
unsigned long flags;
/* VDBG("vbus %s\n", is_active ? "on" : "off"); */
spin_lock_irqsave(&udc->lock, flags);
udc->vbus = (is_active != 0);
if (udc->driver)
pullup(udc, is_active);
else
pullup(udc, 0);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int at91_pullup(struct usb_gadget *gadget, int is_on)
{
struct at91_udc *udc = to_udc(gadget);
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
udc->enabled = is_on = !!is_on;
pullup(udc, is_on);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int at91_set_selfpowered(struct usb_gadget *gadget, int is_on)
{
struct at91_udc *udc = to_udc(gadget);
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
udc->selfpowered = (is_on != 0);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int at91_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver);
static int at91_stop(struct usb_gadget *gadget);
static const struct usb_gadget_ops at91_udc_ops = {
.get_frame = at91_get_frame,
.wakeup = at91_wakeup,
.set_selfpowered = at91_set_selfpowered,
.vbus_session = at91_vbus_session,
.pullup = at91_pullup,
.udc_start = at91_start,
.udc_stop = at91_stop,
/*
* VBUS-powered devices may also also want to support bigger
* power budgets after an appropriate SET_CONFIGURATION.
*/
/* .vbus_power = at91_vbus_power, */
};
/*-------------------------------------------------------------------------*/
static int handle_ep(struct at91_ep *ep)
{
struct at91_request *req;
u32 __iomem *creg = ep->creg;
u32 csr = __raw_readl(creg);
if (!list_empty(&ep->queue))
req = list_entry(ep->queue.next,
struct at91_request, queue);
else
req = NULL;
if (ep->is_in) {
if (csr & (AT91_UDP_STALLSENT | AT91_UDP_TXCOMP)) {
csr |= CLR_FX;
csr &= ~(SET_FX | AT91_UDP_STALLSENT | AT91_UDP_TXCOMP);
__raw_writel(csr, creg);
}
if (req)
return write_fifo(ep, req);
} else {
if (csr & AT91_UDP_STALLSENT) {
/* STALLSENT bit == ISOERR */
if (ep->is_iso && req)
req->req.status = -EILSEQ;
csr |= CLR_FX;
csr &= ~(SET_FX | AT91_UDP_STALLSENT);
__raw_writel(csr, creg);
csr = __raw_readl(creg);
}
if (req && (csr & RX_DATA_READY))
return read_fifo(ep, req);
}
return 0;
}
union setup {
u8 raw[8];
struct usb_ctrlrequest r;
};
static void handle_setup(struct at91_udc *udc, struct at91_ep *ep, u32 csr)
{
u32 __iomem *creg = ep->creg;
u8 __iomem *dreg = ep->creg + (AT91_UDP_FDR(0) - AT91_UDP_CSR(0));
unsigned rxcount, i = 0;
u32 tmp;
union setup pkt;
int status = 0;
/* read and ack SETUP; hard-fail for bogus packets */
rxcount = (csr & AT91_UDP_RXBYTECNT) >> 16;
if (likely(rxcount == 8)) {
while (rxcount--)
pkt.raw[i++] = __raw_readb(dreg);
if (pkt.r.bRequestType & USB_DIR_IN) {
csr |= AT91_UDP_DIR;
ep->is_in = 1;
} else {
csr &= ~AT91_UDP_DIR;
ep->is_in = 0;
}
} else {
/* REVISIT this happens sometimes under load; why?? */
ERR("SETUP len %d, csr %08x\n", rxcount, csr);
status = -EINVAL;
}
csr |= CLR_FX;
csr &= ~(SET_FX | AT91_UDP_RXSETUP);
__raw_writel(csr, creg);
udc->wait_for_addr_ack = 0;
udc->wait_for_config_ack = 0;
ep->stopped = 0;
if (unlikely(status != 0))
goto stall;
#define w_index le16_to_cpu(pkt.r.wIndex)
#define w_value le16_to_cpu(pkt.r.wValue)
#define w_length le16_to_cpu(pkt.r.wLength)
VDBG("SETUP %02x.%02x v%04x i%04x l%04x\n",
pkt.r.bRequestType, pkt.r.bRequest,
w_value, w_index, w_length);
/*
* A few standard requests get handled here, ones that touch
* hardware ... notably for device and endpoint features.
*/
udc->req_pending = 1;
csr = __raw_readl(creg);
csr |= CLR_FX;
csr &= ~SET_FX;
switch ((pkt.r.bRequestType << 8) | pkt.r.bRequest) {
case ((USB_TYPE_STANDARD|USB_RECIP_DEVICE) << 8)
| USB_REQ_SET_ADDRESS:
__raw_writel(csr | AT91_UDP_TXPKTRDY, creg);
udc->addr = w_value;
udc->wait_for_addr_ack = 1;
udc->req_pending = 0;
/* FADDR is set later, when we ack host STATUS */
return;
case ((USB_TYPE_STANDARD|USB_RECIP_DEVICE) << 8)
| USB_REQ_SET_CONFIGURATION:
tmp = at91_udp_read(udc, AT91_UDP_GLB_STAT) & AT91_UDP_CONFG;
if (pkt.r.wValue)
udc->wait_for_config_ack = (tmp == 0);
else
udc->wait_for_config_ack = (tmp != 0);
if (udc->wait_for_config_ack)
VDBG("wait for config\n");
/* CONFG is toggled later, if gadget driver succeeds */
break;
/*
* Hosts may set or clear remote wakeup status, and
* devices may report they're VBUS powered.
*/
case ((USB_DIR_IN|USB_TYPE_STANDARD|USB_RECIP_DEVICE) << 8)
| USB_REQ_GET_STATUS:
tmp = (udc->selfpowered << USB_DEVICE_SELF_POWERED);
if (at91_udp_read(udc, AT91_UDP_GLB_STAT) & AT91_UDP_ESR)
tmp |= (1 << USB_DEVICE_REMOTE_WAKEUP);
PACKET("get device status\n");
__raw_writeb(tmp, dreg);
__raw_writeb(0, dreg);
goto write_in;
/* then STATUS starts later, automatically */
case ((USB_TYPE_STANDARD|USB_RECIP_DEVICE) << 8)
| USB_REQ_SET_FEATURE:
if (w_value != USB_DEVICE_REMOTE_WAKEUP)
goto stall;
tmp = at91_udp_read(udc, AT91_UDP_GLB_STAT);
tmp |= AT91_UDP_ESR;
at91_udp_write(udc, AT91_UDP_GLB_STAT, tmp);
goto succeed;
case ((USB_TYPE_STANDARD|USB_RECIP_DEVICE) << 8)
| USB_REQ_CLEAR_FEATURE:
if (w_value != USB_DEVICE_REMOTE_WAKEUP)
goto stall;
tmp = at91_udp_read(udc, AT91_UDP_GLB_STAT);
tmp &= ~AT91_UDP_ESR;
at91_udp_write(udc, AT91_UDP_GLB_STAT, tmp);
goto succeed;
/*
* Interfaces have no feature settings; this is pretty useless.
* we won't even insist the interface exists...
*/
case ((USB_DIR_IN|USB_TYPE_STANDARD|USB_RECIP_INTERFACE) << 8)
| USB_REQ_GET_STATUS:
PACKET("get interface status\n");
__raw_writeb(0, dreg);
__raw_writeb(0, dreg);
goto write_in;
/* then STATUS starts later, automatically */
case ((USB_TYPE_STANDARD|USB_RECIP_INTERFACE) << 8)
| USB_REQ_SET_FEATURE:
case ((USB_TYPE_STANDARD|USB_RECIP_INTERFACE) << 8)
| USB_REQ_CLEAR_FEATURE:
goto stall;
/*
* Hosts may clear bulk/intr endpoint halt after the gadget
* driver sets it (not widely used); or set it (for testing)
*/
case ((USB_DIR_IN|USB_TYPE_STANDARD|USB_RECIP_ENDPOINT) << 8)
| USB_REQ_GET_STATUS:
tmp = w_index & USB_ENDPOINT_NUMBER_MASK;
ep = &udc->ep[tmp];
if (tmp >= NUM_ENDPOINTS || (tmp && !ep->ep.desc))
goto stall;
if (tmp) {
if ((w_index & USB_DIR_IN)) {
if (!ep->is_in)
goto stall;
} else if (ep->is_in)
goto stall;
}
PACKET("get %s status\n", ep->ep.name);
if (__raw_readl(ep->creg) & AT91_UDP_FORCESTALL)
tmp = (1 << USB_ENDPOINT_HALT);
else
tmp = 0;
__raw_writeb(tmp, dreg);
__raw_writeb(0, dreg);
goto write_in;
/* then STATUS starts later, automatically */
case ((USB_TYPE_STANDARD|USB_RECIP_ENDPOINT) << 8)
| USB_REQ_SET_FEATURE:
tmp = w_index & USB_ENDPOINT_NUMBER_MASK;
ep = &udc->ep[tmp];
if (w_value != USB_ENDPOINT_HALT || tmp >= NUM_ENDPOINTS)
goto stall;
if (!ep->ep.desc || ep->is_iso)
goto stall;
if ((w_index & USB_DIR_IN)) {
if (!ep->is_in)
goto stall;
} else if (ep->is_in)
goto stall;
tmp = __raw_readl(ep->creg);
tmp &= ~SET_FX;
tmp |= CLR_FX | AT91_UDP_FORCESTALL;
__raw_writel(tmp, ep->creg);
goto succeed;
case ((USB_TYPE_STANDARD|USB_RECIP_ENDPOINT) << 8)
| USB_REQ_CLEAR_FEATURE:
tmp = w_index & USB_ENDPOINT_NUMBER_MASK;
ep = &udc->ep[tmp];
if (w_value != USB_ENDPOINT_HALT || tmp >= NUM_ENDPOINTS)
goto stall;
if (tmp == 0)
goto succeed;
if (!ep->ep.desc || ep->is_iso)
goto stall;
if ((w_index & USB_DIR_IN)) {
if (!ep->is_in)
goto stall;
} else if (ep->is_in)
goto stall;
at91_udp_write(udc, AT91_UDP_RST_EP, ep->int_mask);
at91_udp_write(udc, AT91_UDP_RST_EP, 0);
tmp = __raw_readl(ep->creg);
tmp |= CLR_FX;
tmp &= ~(SET_FX | AT91_UDP_FORCESTALL);
__raw_writel(tmp, ep->creg);
if (!list_empty(&ep->queue))
handle_ep(ep);
goto succeed;
}
#undef w_value
#undef w_index
#undef w_length
/* pass request up to the gadget driver */
if (udc->driver) {
spin_unlock(&udc->lock);
status = udc->driver->setup(&udc->gadget, &pkt.r);
spin_lock(&udc->lock);
}
else
status = -ENODEV;
if (status < 0) {
stall:
VDBG("req %02x.%02x protocol STALL; stat %d\n",
pkt.r.bRequestType, pkt.r.bRequest, status);
csr |= AT91_UDP_FORCESTALL;
__raw_writel(csr, creg);
udc->req_pending = 0;
}
return;
succeed:
/* immediate successful (IN) STATUS after zero length DATA */
PACKET("ep0 in/status\n");
write_in:
csr |= AT91_UDP_TXPKTRDY;
__raw_writel(csr, creg);
udc->req_pending = 0;
}
static void handle_ep0(struct at91_udc *udc)
{
struct at91_ep *ep0 = &udc->ep[0];
u32 __iomem *creg = ep0->creg;
u32 csr = __raw_readl(creg);
struct at91_request *req;
if (unlikely(csr & AT91_UDP_STALLSENT)) {
nuke(ep0, -EPROTO);
udc->req_pending = 0;
csr |= CLR_FX;
csr &= ~(SET_FX | AT91_UDP_STALLSENT | AT91_UDP_FORCESTALL);
__raw_writel(csr, creg);
VDBG("ep0 stalled\n");
csr = __raw_readl(creg);
}
if (csr & AT91_UDP_RXSETUP) {
nuke(ep0, 0);
udc->req_pending = 0;
handle_setup(udc, ep0, csr);
return;
}
if (list_empty(&ep0->queue))
req = NULL;
else
req = list_entry(ep0->queue.next, struct at91_request, queue);
/* host ACKed an IN packet that we sent */
if (csr & AT91_UDP_TXCOMP) {
csr |= CLR_FX;
csr &= ~(SET_FX | AT91_UDP_TXCOMP);
/* write more IN DATA? */
if (req && ep0->is_in) {
if (handle_ep(ep0))
udc->req_pending = 0;
/*
* Ack after:
* - last IN DATA packet (including GET_STATUS)
* - IN/STATUS for OUT DATA
* - IN/STATUS for any zero-length DATA stage
* except for the IN DATA case, the host should send
* an OUT status later, which we'll ack.
*/
} else {
udc->req_pending = 0;
__raw_writel(csr, creg);
/*
* SET_ADDRESS takes effect only after the STATUS
* (to the original address) gets acked.
*/
if (udc->wait_for_addr_ack) {
u32 tmp;
at91_udp_write(udc, AT91_UDP_FADDR,
AT91_UDP_FEN | udc->addr);
tmp = at91_udp_read(udc, AT91_UDP_GLB_STAT);
tmp &= ~AT91_UDP_FADDEN;
if (udc->addr)
tmp |= AT91_UDP_FADDEN;
at91_udp_write(udc, AT91_UDP_GLB_STAT, tmp);
udc->wait_for_addr_ack = 0;
VDBG("address %d\n", udc->addr);
}
}
}
/* OUT packet arrived ... */
else if (csr & AT91_UDP_RX_DATA_BK0) {
csr |= CLR_FX;
csr &= ~(SET_FX | AT91_UDP_RX_DATA_BK0);
/* OUT DATA stage */
if (!ep0->is_in) {
if (req) {
if (handle_ep(ep0)) {
/* send IN/STATUS */
PACKET("ep0 in/status\n");
csr = __raw_readl(creg);
csr &= ~SET_FX;
csr |= CLR_FX | AT91_UDP_TXPKTRDY;
__raw_writel(csr, creg);
udc->req_pending = 0;
}
} else if (udc->req_pending) {
/*
* AT91 hardware has a hard time with this
* "deferred response" mode for control-OUT
* transfers. (For control-IN it's fine.)
*
* The normal solution leaves OUT data in the
* fifo until the gadget driver is ready.
* We couldn't do that here without disabling
* the IRQ that tells about SETUP packets,
* e.g. when the host gets impatient...
*
* Working around it by copying into a buffer
* would almost be a non-deferred response,
* except that it wouldn't permit reliable
* stalling of the request. Instead, demand
* that gadget drivers not use this mode.
*/
DBG("no control-OUT deferred responses!\n");
__raw_writel(csr | AT91_UDP_FORCESTALL, creg);
udc->req_pending = 0;
}
/* STATUS stage for control-IN; ack. */
} else {
PACKET("ep0 out/status ACK\n");
__raw_writel(csr, creg);
/* "early" status stage */
if (req)
done(ep0, req, 0);
}
}
}
static irqreturn_t at91_udc_irq(struct at91_udc *udc)
{
u32 rescans = 5;
int disable_clock = 0;
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
if (!udc->clocked) {
clk_on(udc);
disable_clock = 1;
}
while (rescans--) {
u32 status;
status = at91_udp_read(udc, AT91_UDP_ISR)
& at91_udp_read(udc, AT91_UDP_IMR);
if (!status)
break;
/* USB reset irq: not maskable */
if (status & AT91_UDP_ENDBUSRES) {
at91_udp_write(udc, AT91_UDP_IDR, ~MINIMUS_INTERRUPTUS);
at91_udp_write(udc, AT91_UDP_IER, MINIMUS_INTERRUPTUS);
/* Atmel code clears this irq twice */
at91_udp_write(udc, AT91_UDP_ICR, AT91_UDP_ENDBUSRES);
at91_udp_write(udc, AT91_UDP_ICR, AT91_UDP_ENDBUSRES);
VDBG("end bus reset\n");
udc->addr = 0;
reset_gadget(udc);
/* enable ep0 */
at91_udp_write(udc, AT91_UDP_CSR(0),
AT91_UDP_EPEDS | AT91_UDP_EPTYPE_CTRL);
udc->gadget.speed = USB_SPEED_FULL;
udc->suspended = 0;
at91_udp_write(udc, AT91_UDP_IER, AT91_UDP_EP(0));
/*
* NOTE: this driver keeps clocks off unless the
* USB host is present. That saves power, but for
* boards that don't support VBUS detection, both
* clocks need to be active most of the time.
*/
/* host initiated suspend (3+ms bus idle) */
} else if (status & AT91_UDP_RXSUSP) {
at91_udp_write(udc, AT91_UDP_IDR, AT91_UDP_RXSUSP);
at91_udp_write(udc, AT91_UDP_IER, AT91_UDP_RXRSM);
at91_udp_write(udc, AT91_UDP_ICR, AT91_UDP_RXSUSP);
/* VDBG("bus suspend\n"); */
if (udc->suspended)
continue;
udc->suspended = 1;
/*
* NOTE: when suspending a VBUS-powered device, the
* gadget driver should switch into slow clock mode
* and then into standby to avoid drawing more than
* 500uA power (2500uA for some high-power configs).
*/
if (udc->driver && udc->driver->suspend) {
spin_unlock(&udc->lock);
udc->driver->suspend(&udc->gadget);
spin_lock(&udc->lock);
}
/* host initiated resume */
} else if (status & AT91_UDP_RXRSM) {
at91_udp_write(udc, AT91_UDP_IDR, AT91_UDP_RXRSM);
at91_udp_write(udc, AT91_UDP_IER, AT91_UDP_RXSUSP);
at91_udp_write(udc, AT91_UDP_ICR, AT91_UDP_RXRSM);
/* VDBG("bus resume\n"); */
if (!udc->suspended)
continue;
udc->suspended = 0;
/*
* NOTE: for a VBUS-powered device, the gadget driver
* would normally want to switch out of slow clock
* mode into normal mode.
*/
if (udc->driver && udc->driver->resume) {
spin_unlock(&udc->lock);
udc->driver->resume(&udc->gadget);
spin_lock(&udc->lock);
}
/* endpoint IRQs are cleared by handling them */
} else {
int i;
unsigned mask = 1;
struct at91_ep *ep = &udc->ep[1];
if (status & mask)
handle_ep0(udc);
for (i = 1; i < NUM_ENDPOINTS; i++) {
mask <<= 1;
if (status & mask)
handle_ep(ep);
ep++;
}
}
}
if (disable_clock)
clk_off(udc);
spin_unlock_irqrestore(&udc->lock, flags);
return IRQ_HANDLED;
}
/*-------------------------------------------------------------------------*/
static int at91_start(struct usb_gadget *gadget,
struct usb_gadget_driver *driver)
{
struct at91_udc *udc = controller;
udc->driver = driver;
udc->enabled = 1;
udc->selfpowered = 1;
return 0;
}
static int at91_stop(struct usb_gadget *gadget)
{
struct at91_udc *udc = controller;
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
udc->enabled = 0;
at91_udp_write(udc, AT91_UDP_IDR, ~0);
spin_unlock_irqrestore(&udc->lock, flags);
udc->driver = NULL;
return 0;
}
/*-------------------------------------------------------------------------*/
#if defined(CONFIG_AT91SAM9260) || defined(CONFIG_AT91SAM9G20)
static int at91sam9260_udc_init(struct at91_udc *udc)
{
struct at91_ep *ep;
int i;
for (i = 0; i < NUM_ENDPOINTS; i++) {
ep = &udc->ep[i];
switch (i) {
case 0 ... 3:
ep->maxpacket = 64;
break;
case 4 ... 5:
ep->maxpacket = 512;
break;
}
}
return 0;
}
static void at91sam9260_udc_pullup(struct at91_udc *udc, int is_on)
{
u32 txvc = at91_udp_read(udc, AT91_UDP_TXVC);
if (is_on)
txvc |= AT91_UDP_TXVC_PUON;
else
txvc &= ~AT91_UDP_TXVC_PUON;
at91_udp_write(udc, AT91_UDP_TXVC, txvc);
}
static const struct at91_udc_caps at91sam9260_udc_caps = {
.init = at91sam9260_udc_init,
.pullup = at91sam9260_udc_pullup,
};
#endif
#if defined(CONFIG_AT91SAM9261)
static int at91sam9261_udc_init(struct at91_udc *udc)
{
struct at91_ep *ep;
int i;
for (i = 0; i < NUM_ENDPOINTS; i++) {
ep = &udc->ep[i];
switch (i) {
case 0:
ep->maxpacket = 8;
break;
case 1 ... 3:
ep->maxpacket = 64;
break;
case 4 ... 5:
ep->maxpacket = 256;
break;
}
}
udc->matrix = (struct at91_matrix *)ATMEL_BASE_MATRIX;
if (IS_ERR(udc->matrix))
return PTR_ERR(udc->matrix);
return 0;
}
static void at91sam9261_udc_pullup(struct at91_udc *udc, int is_on)
{
u32 usbpucr = 0;
usbpucr = readl(&udc->matrix->pucr);
if (is_on)
usbpucr |= AT91_MATRIX_USBPUCR_PUON;
writel(usbpucr, &udc->matrix->pucr);
}
static const struct at91_udc_caps at91sam9261_udc_caps = {
.init = at91sam9261_udc_init,
.pullup = at91sam9261_udc_pullup,
};
#endif
int usb_gadget_handle_interrupts(int index)
{
struct at91_udc *udc = controller;
return at91_udc_irq(udc);
}
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
struct at91_udc *udc = controller;
int ret;
if (!driver || !driver->bind || !driver->setup) {
printf("bad paramter\n");
return -EINVAL;
}
if (udc->driver) {
printf("UDC already has a gadget driver\n");
return -EBUSY;
}
at91_start(&udc->gadget, driver);
udc->driver = driver;
ret = driver->bind(&udc->gadget);
if (ret) {
pr_err("driver->bind() returned %d\n", ret);
udc->driver = NULL;
}
return ret;
}
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
struct at91_udc *udc = controller;
if (!driver || !driver->unbind || !driver->disconnect) {
pr_err("bad paramter\n");
return -EINVAL;
}
driver->disconnect(&udc->gadget);
driver->unbind(&udc->gadget);
udc->driver = NULL;
at91_stop(&udc->gadget);
return 0;
}
int at91_udc_probe(struct at91_udc_data *pdata)
{
struct at91_udc *udc;
int retval;
struct at91_ep *ep;
int i;
udc = kzalloc(sizeof(*udc), GFP_KERNEL);
if (!udc)
return -ENOMEM;
controller = udc;
memcpy(&udc->board, pdata, sizeof(struct at91_udc_data));
if (udc->board.vbus_pin) {
printf("%s: gpio vbus pin not supported yet.\n", __func__);
return -ENXIO;
} else {
DBG("no VBUS detection, assuming always-on\n");
udc->vbus = 1;
}
#if defined(CONFIG_AT91SAM9260) || defined(CONFIG_AT91SAM9G20)
udc->caps = &at91sam9260_udc_caps;
#endif
udc->enabled = 0;
spin_lock_init(&udc->lock);
udc->gadget.ops = &at91_udc_ops;
udc->gadget.ep0 = &udc->ep[0].ep;
udc->gadget.name = driver_name;
for (i = 0; i < NUM_ENDPOINTS; i++) {
ep = &udc->ep[i];
ep->ep.name = ep_names[i];
ep->ep.ops = &at91_ep_ops;
ep->udc = udc;
ep->int_mask = (1 << i);
if (i != 0 && i != 3)
ep->is_pingpong = 1;
}
udc->udp_baseaddr = (void *)udc->board.baseaddr;
if (IS_ERR(udc->udp_baseaddr))
return PTR_ERR(udc->udp_baseaddr);
if (udc->caps && udc->caps->init) {
retval = udc->caps->init(udc);
if (retval)
return retval;
}
udc_reinit(udc);
at91_udp_write(udc, AT91_UDP_TXVC, AT91_UDP_TXVC_TXVDIS);
at91_udp_write(udc, AT91_UDP_IDR, 0xffffffff);
/* Clear all pending interrupts - UDP may be used by bootloader. */
at91_udp_write(udc, AT91_UDP_ICR, 0xffffffff);
INFO("%s version %s\n", driver_name, DRIVER_VERSION);
return 0;
}