u-boot/arch/arm/mach-omap2/omap5/sdram.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

749 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Timing and Organization details of the ddr device parts used in OMAP5
* EVM
*
* (C) Copyright 2010
* Texas Instruments, <www.ti.com>
*
* Aneesh V <aneesh@ti.com>
* Sricharan R <r.sricharan@ti.com>
*/
#include <asm/emif.h>
#include <asm/arch/sys_proto.h>
/*
* This file provides details of the LPDDR2 SDRAM parts used on OMAP5
* EVM. Since the parts used and geometry are identical for
* evm for a given OMAP5 revision, this information is kept
* here instead of being in board directory. However the key functions
* exported are weakly linked so that they can be over-ridden in the board
* directory if there is a OMAP5 board in the future that uses a different
* memory device or geometry.
*
* For any new board with different memory devices over-ride one or more
* of the following functions as per the CONFIG flags you intend to enable:
* - emif_get_reg_dump()
* - emif_get_dmm_regs()
* - emif_get_device_details()
* - emif_get_device_timings()
*/
#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
const struct emif_regs emif_regs_532_mhz_2cs = {
.sdram_config_init = 0x80800EBA,
.sdram_config = 0x808022BA,
.ref_ctrl = 0x0000081A,
.sdram_tim1 = 0x772F6873,
.sdram_tim2 = 0x304a129a,
.sdram_tim3 = 0x02f7e45f,
.read_idle_ctrl = 0x00050000,
.zq_config = 0x000b3215,
.temp_alert_config = 0x08000a05,
.emif_ddr_phy_ctlr_1_init = 0x0E28420d,
.emif_ddr_phy_ctlr_1 = 0x0E28420d,
.emif_ddr_ext_phy_ctrl_1 = 0x04020080,
.emif_ddr_ext_phy_ctrl_2 = 0x28C518A3,
.emif_ddr_ext_phy_ctrl_3 = 0x518A3146,
.emif_ddr_ext_phy_ctrl_4 = 0x0014628C,
.emif_ddr_ext_phy_ctrl_5 = 0x04010040
};
const struct emif_regs emif_regs_532_mhz_2cs_es2 = {
.sdram_config_init = 0x80800EBA,
.sdram_config = 0x808022BA,
.ref_ctrl = 0x0000081A,
.sdram_tim1 = 0x772F6873,
.sdram_tim2 = 0x304a129a,
.sdram_tim3 = 0x02f7e45f,
.read_idle_ctrl = 0x00050000,
.zq_config = 0x100b3215,
.temp_alert_config = 0x08000a05,
.emif_ddr_phy_ctlr_1_init = 0x0E30400d,
.emif_ddr_phy_ctlr_1 = 0x0E30400d,
.emif_ddr_ext_phy_ctrl_1 = 0x04020080,
.emif_ddr_ext_phy_ctrl_2 = 0x28C518A3,
.emif_ddr_ext_phy_ctrl_3 = 0x518A3146,
.emif_ddr_ext_phy_ctrl_4 = 0x0014628C,
.emif_ddr_ext_phy_ctrl_5 = 0xC330CC33,
};
const struct emif_regs emif_regs_266_mhz_2cs = {
.sdram_config_init = 0x80800EBA,
.sdram_config = 0x808022BA,
.ref_ctrl = 0x0000040D,
.sdram_tim1 = 0x2A86B419,
.sdram_tim2 = 0x1025094A,
.sdram_tim3 = 0x026BA22F,
.read_idle_ctrl = 0x00050000,
.zq_config = 0x000b3215,
.temp_alert_config = 0x08000a05,
.emif_ddr_phy_ctlr_1_init = 0x0E28420d,
.emif_ddr_phy_ctlr_1 = 0x0E28420d,
.emif_ddr_ext_phy_ctrl_1 = 0x04020080,
.emif_ddr_ext_phy_ctrl_2 = 0x0A414829,
.emif_ddr_ext_phy_ctrl_3 = 0x14829052,
.emif_ddr_ext_phy_ctrl_4 = 0x000520A4,
.emif_ddr_ext_phy_ctrl_5 = 0x04010040
};
const struct emif_regs emif_regs_ddr3_532_mhz_1cs = {
.sdram_config_init = 0x61851B32,
.sdram_config = 0x61851B32,
.sdram_config2 = 0x0,
.ref_ctrl = 0x00001035,
.sdram_tim1 = 0xCCCF36B3,
.sdram_tim2 = 0x308F7FDA,
.sdram_tim3 = 0x027F88A8,
.read_idle_ctrl = 0x00050000,
.zq_config = 0x0007190B,
.temp_alert_config = 0x00000000,
.emif_ddr_phy_ctlr_1_init = 0x0020420A,
.emif_ddr_phy_ctlr_1 = 0x0024420A,
.emif_ddr_ext_phy_ctrl_1 = 0x04040100,
.emif_ddr_ext_phy_ctrl_2 = 0x00000000,
.emif_ddr_ext_phy_ctrl_3 = 0x00000000,
.emif_ddr_ext_phy_ctrl_4 = 0x00000000,
.emif_ddr_ext_phy_ctrl_5 = 0x04010040,
.emif_rd_wr_lvl_rmp_win = 0x00000000,
.emif_rd_wr_lvl_rmp_ctl = 0x80000000,
.emif_rd_wr_lvl_ctl = 0x00000000,
.emif_rd_wr_exec_thresh = 0x00000305
};
const struct emif_regs emif_regs_ddr3_532_mhz_1cs_es2 = {
.sdram_config_init = 0x61851B32,
.sdram_config = 0x61851B32,
.sdram_config2 = 0x0,
.ref_ctrl = 0x00001035,
.sdram_tim1 = 0xCCCF36B3,
.sdram_tim2 = 0x308F7FDA,
.sdram_tim3 = 0x027F88A8,
.read_idle_ctrl = 0x00050000,
.zq_config = 0x1007190B,
.temp_alert_config = 0x00000000,
.emif_ddr_phy_ctlr_1_init = 0x0030400A,
.emif_ddr_phy_ctlr_1 = 0x0034400A,
.emif_ddr_ext_phy_ctrl_1 = 0x04040100,
.emif_ddr_ext_phy_ctrl_2 = 0x00000000,
.emif_ddr_ext_phy_ctrl_3 = 0x00000000,
.emif_ddr_ext_phy_ctrl_4 = 0x00000000,
.emif_ddr_ext_phy_ctrl_5 = 0x4350D435,
.emif_rd_wr_lvl_rmp_win = 0x00000000,
.emif_rd_wr_lvl_rmp_ctl = 0x80000000,
.emif_rd_wr_lvl_ctl = 0x00000000,
.emif_rd_wr_exec_thresh = 0x40000305
};
const struct dmm_lisa_map_regs lisa_map_4G_x_2_x_2 = {
.dmm_lisa_map_0 = 0x0,
.dmm_lisa_map_1 = 0x0,
.dmm_lisa_map_2 = 0x80740300,
.dmm_lisa_map_3 = 0xFF020100,
.is_ma_present = 0x1
};
static void emif_get_reg_dump_sdp(u32 emif_nr, const struct emif_regs **regs)
{
switch (omap_revision()) {
case OMAP5430_ES1_0:
*regs = &emif_regs_532_mhz_2cs;
break;
case OMAP5432_ES1_0:
*regs = &emif_regs_ddr3_532_mhz_1cs;
break;
case OMAP5430_ES2_0:
*regs = &emif_regs_532_mhz_2cs_es2;
break;
case OMAP5432_ES2_0:
default:
*regs = &emif_regs_ddr3_532_mhz_1cs_es2;
break;
}
}
void emif_get_reg_dump(u32 emif_nr, const struct emif_regs **regs)
__attribute__((weak, alias("emif_get_reg_dump_sdp")));
static void emif_get_dmm_regs_sdp(const struct dmm_lisa_map_regs
**dmm_lisa_regs)
{
switch (omap_revision()) {
case OMAP5430_ES1_0:
case OMAP5430_ES2_0:
case OMAP5432_ES1_0:
case OMAP5432_ES2_0:
default:
*dmm_lisa_regs = &lisa_map_4G_x_2_x_2;
break;
}
}
void emif_get_dmm_regs(const struct dmm_lisa_map_regs **dmm_lisa_regs)
__attribute__((weak, alias("emif_get_dmm_regs_sdp")));
#else
static const struct lpddr2_device_details dev_4G_S4_details = {
.type = LPDDR2_TYPE_S4,
.density = LPDDR2_DENSITY_4Gb,
.io_width = LPDDR2_IO_WIDTH_32,
.manufacturer = LPDDR2_MANUFACTURER_SAMSUNG
};
static void emif_get_device_details_sdp(u32 emif_nr,
struct lpddr2_device_details *cs0_device_details,
struct lpddr2_device_details *cs1_device_details)
{
/* EMIF1 & EMIF2 have identical configuration */
*cs0_device_details = dev_4G_S4_details;
*cs1_device_details = dev_4G_S4_details;
}
void emif_get_device_details(u32 emif_nr,
struct lpddr2_device_details *cs0_device_details,
struct lpddr2_device_details *cs1_device_details)
__attribute__((weak, alias("emif_get_device_details_sdp")));
#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
const u32 ext_phy_ctrl_const_base[] = {
0x01004010,
0x00001004,
0x04010040,
0x01004010,
0x00001004,
0x00000000,
0x00000000,
0x00000000,
0x80080080,
0x00800800,
0x08102040,
0x00000001,
0x540A8150,
0xA81502a0,
0x002A0540,
0x00000000,
0x00000000,
0x00000000,
0x00000077,
0x0
};
const u32 ddr3_ext_phy_ctrl_const_base_es1[] = {
0x01004010,
0x00001004,
0x04010040,
0x01004010,
0x00001004,
0x00000000,
0x00000000,
0x00000000,
0x80080080,
0x00800800,
0x08102040,
0x00000002,
0x0,
0x0,
0x0,
0x00000000,
0x00000000,
0x00000000,
0x00000057,
0x0
};
const u32 ddr3_ext_phy_ctrl_const_base_es2[] = {
0x50D4350D,
0x00000D43,
0x04010040,
0x01004010,
0x00001004,
0x00000000,
0x00000000,
0x00000000,
0x80080080,
0x00800800,
0x08102040,
0x00000002,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000057,
0x0
};
/* Ext phy ctrl 1-35 regs */
const u32
dra_ddr3_ext_phy_ctrl_const_base_es1_emif1[] = {
0x10040100,
0x00910091,
0x00950095,
0x009B009B,
0x009E009E,
0x00980098,
0x00340034,
0x00350035,
0x00340034,
0x00310031,
0x00340034,
0x007F007F,
0x007F007F,
0x007F007F,
0x007F007F,
0x007F007F,
0x00480048,
0x004A004A,
0x00520052,
0x00550055,
0x00500050,
0x00000000,
0x00600020,
0x40011080,
0x08102040,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0
};
/* Ext phy ctrl 1-35 regs */
const u32
dra_ddr3_ext_phy_ctrl_const_base_es1_emif2[] = {
0x10040100,
0x00910091,
0x00950095,
0x009B009B,
0x009E009E,
0x00980098,
0x00330033,
0x00330033,
0x002F002F,
0x00320032,
0x00310031,
0x007F007F,
0x007F007F,
0x007F007F,
0x007F007F,
0x007F007F,
0x00520052,
0x00520052,
0x00470047,
0x00490049,
0x00500050,
0x00000000,
0x00600020,
0x40011080,
0x08102040,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0
};
/* Ext phy ctrl 1-35 regs */
const u32
dra_ddr3_ext_phy_ctrl_const_base_666MHz[] = {
0x10040100,
0x00A400A4,
0x00A900A9,
0x00B000B0,
0x00B000B0,
0x00A400A4,
0x00390039,
0x00320032,
0x00320032,
0x00320032,
0x00440044,
0x00550055,
0x00550055,
0x00550055,
0x00550055,
0x007F007F,
0x004D004D,
0x00430043,
0x00560056,
0x00540054,
0x00600060,
0x0,
0x00600020,
0x40010080,
0x08102040,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0
};
const u32 dra_ddr3_ext_phy_ctrl_const_base_666MHz_es2[] = {
0x04040100,
0x006B009F,
0x006B00A2,
0x006B00A8,
0x006B00A8,
0x006B00B2,
0x002F002F,
0x002F002F,
0x002F002F,
0x002F002F,
0x002F002F,
0x00600073,
0x00600071,
0x0060007C,
0x0060007E,
0x00600084,
0x00400053,
0x00400051,
0x0040005C,
0x0040005E,
0x00400064,
0x00800080,
0x00800080,
0x40010080,
0x08102040,
0x005B008F,
0x005B0092,
0x005B0098,
0x005B0098,
0x005B00A2,
0x00300043,
0x00300041,
0x0030004C,
0x0030004E,
0x00300054,
0x00000077
};
const struct lpddr2_mr_regs mr_regs = {
.mr1 = MR1_BL_8_BT_SEQ_WRAP_EN_NWR_8,
.mr2 = 0x6,
.mr3 = 0x1,
.mr10 = MR10_ZQ_ZQINIT,
.mr16 = MR16_REF_FULL_ARRAY
};
void __weak emif_get_ext_phy_ctrl_const_regs(u32 emif_nr,
const u32 **regs,
u32 *size)
{
switch (omap_revision()) {
case OMAP5430_ES1_0:
case OMAP5430_ES2_0:
*regs = ext_phy_ctrl_const_base;
*size = ARRAY_SIZE(ext_phy_ctrl_const_base);
break;
case OMAP5432_ES1_0:
*regs = ddr3_ext_phy_ctrl_const_base_es1;
*size = ARRAY_SIZE(ddr3_ext_phy_ctrl_const_base_es1);
break;
case OMAP5432_ES2_0:
*regs = ddr3_ext_phy_ctrl_const_base_es2;
*size = ARRAY_SIZE(ddr3_ext_phy_ctrl_const_base_es2);
break;
case DRA752_ES1_0:
case DRA752_ES1_1:
case DRA752_ES2_0:
if (emif_nr == 1) {
*regs = dra_ddr3_ext_phy_ctrl_const_base_es1_emif1;
*size =
ARRAY_SIZE(dra_ddr3_ext_phy_ctrl_const_base_es1_emif1);
} else {
*regs = dra_ddr3_ext_phy_ctrl_const_base_es1_emif2;
*size =
ARRAY_SIZE(dra_ddr3_ext_phy_ctrl_const_base_es1_emif2);
}
break;
case DRA722_ES1_0:
*regs = dra_ddr3_ext_phy_ctrl_const_base_666MHz;
*size = ARRAY_SIZE(dra_ddr3_ext_phy_ctrl_const_base_666MHz);
break;
case DRA762_ES1_0:
case DRA762_ABZ_ES1_0:
case DRA762_ACD_ES1_0:
case DRA722_ES2_0:
case DRA722_ES2_1:
*regs = dra_ddr3_ext_phy_ctrl_const_base_666MHz_es2;
*size = ARRAY_SIZE(dra_ddr3_ext_phy_ctrl_const_base_666MHz_es2);
break;
default:
*regs = ddr3_ext_phy_ctrl_const_base_es2;
*size = ARRAY_SIZE(ddr3_ext_phy_ctrl_const_base_es2);
}
}
void get_lpddr2_mr_regs(const struct lpddr2_mr_regs **regs)
{
*regs = &mr_regs;
}
static void do_ext_phy_settings_omap5(u32 base, const struct emif_regs *regs)
{
u32 *ext_phy_ctrl_base = 0;
u32 *emif_ext_phy_ctrl_base = 0;
u32 emif_nr;
const u32 *ext_phy_ctrl_const_regs;
u32 i = 0;
u32 size;
emif_nr = (base == EMIF1_BASE) ? 1 : 2;
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
ext_phy_ctrl_base = (u32 *) &(regs->emif_ddr_ext_phy_ctrl_1);
emif_ext_phy_ctrl_base = (u32 *) &(emif->emif_ddr_ext_phy_ctrl_1);
/* Configure external phy control timing registers */
for (i = 0; i < EMIF_EXT_PHY_CTRL_TIMING_REG; i++) {
writel(*ext_phy_ctrl_base, emif_ext_phy_ctrl_base++);
/* Update shadow registers */
writel(*ext_phy_ctrl_base++, emif_ext_phy_ctrl_base++);
}
/*
* external phy 6-24 registers do not change with
* ddr frequency
*/
emif_get_ext_phy_ctrl_const_regs(emif_nr,
&ext_phy_ctrl_const_regs, &size);
for (i = 0; i < size; i++) {
writel(ext_phy_ctrl_const_regs[i],
emif_ext_phy_ctrl_base++);
/* Update shadow registers */
writel(ext_phy_ctrl_const_regs[i],
emif_ext_phy_ctrl_base++);
}
}
static void do_ext_phy_settings_dra7(u32 base, const struct emif_regs *regs)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
u32 *emif_ext_phy_ctrl_base = 0;
u32 emif_nr;
const u32 *ext_phy_ctrl_const_regs;
u32 i, hw_leveling, size, phy;
emif_nr = (base == EMIF1_BASE) ? 1 : 2;
hw_leveling = regs->emif_rd_wr_lvl_rmp_ctl >> EMIF_REG_RDWRLVL_EN_SHIFT;
phy = regs->emif_ddr_phy_ctlr_1_init;
emif_ext_phy_ctrl_base = (u32 *)&(emif->emif_ddr_ext_phy_ctrl_1);
emif_get_ext_phy_ctrl_const_regs(emif_nr,
&ext_phy_ctrl_const_regs, &size);
writel(ext_phy_ctrl_const_regs[0], &emif_ext_phy_ctrl_base[0]);
writel(ext_phy_ctrl_const_regs[0], &emif_ext_phy_ctrl_base[1]);
/*
* Copy the predefined PHY register values
* if leveling is disabled.
*/
if (phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK)
for (i = 1; i < 6; i++) {
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2]);
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2 + 1]);
}
if (phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK)
for (i = 6; i < 11; i++) {
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2]);
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2 + 1]);
}
if (phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK)
for (i = 11; i < 25; i++) {
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2]);
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2 + 1]);
}
if (hw_leveling) {
/*
* Write the init value for HW levling to occur
*/
for (i = 21; i < 35; i++) {
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2]);
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2 + 1]);
}
}
}
void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
{
if (is_omap54xx())
do_ext_phy_settings_omap5(base, regs);
else
do_ext_phy_settings_dra7(base, regs);
}
#ifndef CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS
static const struct lpddr2_ac_timings timings_jedec_532_mhz = {
.max_freq = 532000000,
.RL = 8,
.tRPab = 21,
.tRCD = 18,
.tWR = 15,
.tRASmin = 42,
.tRRD = 10,
.tWTRx2 = 15,
.tXSR = 140,
.tXPx2 = 15,
.tRFCab = 130,
.tRTPx2 = 15,
.tCKE = 3,
.tCKESR = 15,
.tZQCS = 90,
.tZQCL = 360,
.tZQINIT = 1000,
.tDQSCKMAXx2 = 11,
.tRASmax = 70,
.tFAW = 50
};
static const struct lpddr2_min_tck min_tck = {
.tRL = 3,
.tRP_AB = 3,
.tRCD = 3,
.tWR = 3,
.tRAS_MIN = 3,
.tRRD = 2,
.tWTR = 2,
.tXP = 2,
.tRTP = 2,
.tCKE = 3,
.tCKESR = 3,
.tFAW = 8
};
static const struct lpddr2_ac_timings *ac_timings[MAX_NUM_SPEEDBINS] = {
&timings_jedec_532_mhz
};
static const struct lpddr2_device_timings dev_4G_S4_timings = {
.ac_timings = ac_timings,
.min_tck = &min_tck,
};
/*
* List of status registers to be controlled back to control registers
* after initial leveling
* readreg, writereg
*/
const struct read_write_regs omap5_bug_00339_regs[] = {
{ 8, 5 },
{ 9, 6 },
{ 10, 7 },
{ 14, 8 },
{ 15, 9 },
{ 16, 10 },
{ 11, 2 },
{ 12, 3 },
{ 13, 4 },
{ 17, 11 },
{ 18, 12 },
{ 19, 13 },
};
const struct read_write_regs dra_bug_00339_regs[] = {
{ 7, 7 },
{ 8, 8 },
{ 9, 9 },
{ 10, 10 },
{ 11, 11 },
{ 12, 2 },
{ 13, 3 },
{ 14, 4 },
{ 15, 5 },
{ 16, 6 },
{ 17, 12 },
{ 18, 13 },
{ 19, 14 },
{ 20, 15 },
{ 21, 16 },
{ 22, 17 },
{ 23, 18 },
{ 24, 19 },
{ 25, 20 },
{ 26, 21}
};
const struct read_write_regs *get_bug_regs(u32 *iterations)
{
const struct read_write_regs *bug_00339_regs_ptr = NULL;
switch (omap_revision()) {
case OMAP5430_ES1_0:
case OMAP5430_ES2_0:
case OMAP5432_ES1_0:
case OMAP5432_ES2_0:
bug_00339_regs_ptr = omap5_bug_00339_regs;
*iterations = sizeof(omap5_bug_00339_regs)/
sizeof(omap5_bug_00339_regs[0]);
break;
case DRA762_ABZ_ES1_0:
case DRA762_ACD_ES1_0:
case DRA762_ES1_0:
case DRA752_ES1_0:
case DRA752_ES1_1:
case DRA752_ES2_0:
case DRA722_ES1_0:
case DRA722_ES2_0:
case DRA722_ES2_1:
bug_00339_regs_ptr = dra_bug_00339_regs;
*iterations = sizeof(dra_bug_00339_regs)/
sizeof(dra_bug_00339_regs[0]);
break;
default:
printf("\n Error: UnKnown SOC");
}
return bug_00339_regs_ptr;
}
void emif_get_device_timings_sdp(u32 emif_nr,
const struct lpddr2_device_timings **cs0_device_timings,
const struct lpddr2_device_timings **cs1_device_timings)
{
/* Identical devices on EMIF1 & EMIF2 */
*cs0_device_timings = &dev_4G_S4_timings;
*cs1_device_timings = &dev_4G_S4_timings;
}
void emif_get_device_timings(u32 emif_nr,
const struct lpddr2_device_timings **cs0_device_timings,
const struct lpddr2_device_timings **cs1_device_timings)
__attribute__((weak, alias("emif_get_device_timings_sdp")));
#endif /* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS */