u-boot/drivers/remoteproc/rproc-elf-loader.c
Fabien Dessenne 83b539cfd4 remoteproc: elf_loader: fix program header parsing
Fix an issue where some sections are never loaded : if p_type is
different from PT_LOAD the phdr pointer must be incremented.

Signed-off-by: Fabien Dessenne <fabien.dessenne@st.com>
Acked-by: Suman Anna <s-anna@ti.com>
2020-01-24 11:19:52 -05:00

546 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* Copyright (C) 2019, STMicroelectronics - All Rights Reserved
*/
#include <common.h>
#include <cpu_func.h>
#include <dm.h>
#include <elf.h>
#include <remoteproc.h>
/**
* struct resource_table - firmware resource table header
* @ver: version number
* @num: number of resource entries
* @reserved: reserved (must be zero)
* @offset: array of offsets pointing at the various resource entries
*
* A resource table is essentially a list of system resources required
* by the remote processor. It may also include configuration entries.
* If needed, the remote processor firmware should contain this table
* as a dedicated ".resource_table" ELF section.
*
* Some resources entries are mere announcements, where the host is informed
* of specific remoteproc configuration. Other entries require the host to
* do something (e.g. allocate a system resource). Sometimes a negotiation
* is expected, where the firmware requests a resource, and once allocated,
* the host should provide back its details (e.g. address of an allocated
* memory region).
*
* The header of the resource table, as expressed by this structure,
* contains a version number (should we need to change this format in the
* future), the number of available resource entries, and their offsets
* in the table.
*
* Immediately following this header are the resource entries themselves.
*/
struct resource_table {
u32 ver;
u32 num;
u32 reserved[2];
u32 offset[0];
} __packed;
/* Basic function to verify ELF32 image format */
int rproc_elf32_sanity_check(ulong addr, ulong size)
{
Elf32_Ehdr *ehdr;
char class;
if (!addr) {
pr_debug("Invalid fw address?\n");
return -EFAULT;
}
if (size < sizeof(Elf32_Ehdr)) {
pr_debug("Image is too small\n");
return -ENOSPC;
}
ehdr = (Elf32_Ehdr *)addr;
class = ehdr->e_ident[EI_CLASS];
if (!IS_ELF(*ehdr) || ehdr->e_type != ET_EXEC || class != ELFCLASS32) {
pr_debug("Not an executable ELF32 image\n");
return -EPROTONOSUPPORT;
}
/* We assume the firmware has the same endianness as the host */
# ifdef __LITTLE_ENDIAN
if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
# else /* BIG ENDIAN */
if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
# endif
pr_debug("Unsupported firmware endianness\n");
return -EILSEQ;
}
if (size < ehdr->e_shoff + sizeof(Elf32_Shdr)) {
pr_debug("Image is too small\n");
return -ENOSPC;
}
if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
pr_debug("Image is corrupted (bad magic)\n");
return -EBADF;
}
if (ehdr->e_phnum == 0) {
pr_debug("No loadable segments\n");
return -ENOEXEC;
}
if (ehdr->e_phoff > size) {
pr_debug("Firmware size is too small\n");
return -ENOSPC;
}
return 0;
}
/* Basic function to verify ELF64 image format */
int rproc_elf64_sanity_check(ulong addr, ulong size)
{
Elf64_Ehdr *ehdr = (Elf64_Ehdr *)addr;
char class;
if (!addr) {
pr_debug("Invalid fw address?\n");
return -EFAULT;
}
if (size < sizeof(Elf64_Ehdr)) {
pr_debug("Image is too small\n");
return -ENOSPC;
}
class = ehdr->e_ident[EI_CLASS];
if (!IS_ELF(*ehdr) || ehdr->e_type != ET_EXEC || class != ELFCLASS64) {
pr_debug("Not an executable ELF64 image\n");
return -EPROTONOSUPPORT;
}
/* We assume the firmware has the same endianness as the host */
# ifdef __LITTLE_ENDIAN
if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
# else /* BIG ENDIAN */
if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
# endif
pr_debug("Unsupported firmware endianness\n");
return -EILSEQ;
}
if (size < ehdr->e_shoff + sizeof(Elf64_Shdr)) {
pr_debug("Image is too small\n");
return -ENOSPC;
}
if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
pr_debug("Image is corrupted (bad magic)\n");
return -EBADF;
}
if (ehdr->e_phnum == 0) {
pr_debug("No loadable segments\n");
return -ENOEXEC;
}
if (ehdr->e_phoff > size) {
pr_debug("Firmware size is too small\n");
return -ENOSPC;
}
return 0;
}
/* Basic function to verify ELF image format */
int rproc_elf_sanity_check(ulong addr, ulong size)
{
Elf32_Ehdr *ehdr = (Elf32_Ehdr *)addr;
if (!addr) {
dev_err(dev, "Invalid firmware address\n");
return -EFAULT;
}
if (ehdr->e_ident[EI_CLASS] == ELFCLASS64)
return rproc_elf64_sanity_check(addr, size);
else
return rproc_elf32_sanity_check(addr, size);
}
int rproc_elf32_load_image(struct udevice *dev, unsigned long addr, ulong size)
{
Elf32_Ehdr *ehdr; /* Elf header structure pointer */
Elf32_Phdr *phdr; /* Program header structure pointer */
const struct dm_rproc_ops *ops;
unsigned int i, ret;
ret = rproc_elf32_sanity_check(addr, size);
if (ret) {
dev_err(dev, "Invalid ELF32 Image %d\n", ret);
return ret;
}
ehdr = (Elf32_Ehdr *)addr;
phdr = (Elf32_Phdr *)(addr + ehdr->e_phoff);
ops = rproc_get_ops(dev);
/* Load each program header */
for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
void *dst = (void *)(uintptr_t)phdr->p_paddr;
void *src = (void *)addr + phdr->p_offset;
if (phdr->p_type != PT_LOAD)
continue;
if (ops->device_to_virt)
dst = ops->device_to_virt(dev, (ulong)dst,
phdr->p_memsz);
dev_dbg(dev, "Loading phdr %i to 0x%p (%i bytes)\n",
i, dst, phdr->p_filesz);
if (phdr->p_filesz)
memcpy(dst, src, phdr->p_filesz);
if (phdr->p_filesz != phdr->p_memsz)
memset(dst + phdr->p_filesz, 0x00,
phdr->p_memsz - phdr->p_filesz);
flush_cache(rounddown((unsigned long)dst, ARCH_DMA_MINALIGN),
roundup((unsigned long)dst + phdr->p_filesz,
ARCH_DMA_MINALIGN) -
rounddown((unsigned long)dst, ARCH_DMA_MINALIGN));
}
return 0;
}
int rproc_elf64_load_image(struct udevice *dev, ulong addr, ulong size)
{
const struct dm_rproc_ops *ops = rproc_get_ops(dev);
u64 da, memsz, filesz, offset;
Elf64_Ehdr *ehdr;
Elf64_Phdr *phdr;
int i, ret = 0;
void *ptr;
dev_dbg(dev, "%s: addr = 0x%lx size = 0x%lx\n", __func__, addr, size);
if (rproc_elf64_sanity_check(addr, size))
return -EINVAL;
ehdr = (Elf64_Ehdr *)addr;
phdr = (Elf64_Phdr *)(addr + (ulong)ehdr->e_phoff);
/* go through the available ELF segments */
for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
da = phdr->p_paddr;
memsz = phdr->p_memsz;
filesz = phdr->p_filesz;
offset = phdr->p_offset;
if (phdr->p_type != PT_LOAD)
continue;
dev_dbg(dev, "%s:phdr: type %d da 0x%llx memsz 0x%llx filesz 0x%llx\n",
__func__, phdr->p_type, da, memsz, filesz);
ptr = (void *)(uintptr_t)da;
if (ops->device_to_virt) {
ptr = ops->device_to_virt(dev, da, phdr->p_memsz);
if (!ptr) {
dev_err(dev, "bad da 0x%llx mem 0x%llx\n", da,
memsz);
ret = -EINVAL;
break;
}
}
if (filesz)
memcpy(ptr, (void *)addr + offset, filesz);
if (filesz != memsz)
memset(ptr + filesz, 0x00, memsz - filesz);
flush_cache(rounddown((ulong)ptr, ARCH_DMA_MINALIGN),
roundup((ulong)ptr + filesz, ARCH_DMA_MINALIGN) -
rounddown((ulong)ptr, ARCH_DMA_MINALIGN));
}
return ret;
}
int rproc_elf_load_image(struct udevice *dev, ulong addr, ulong size)
{
Elf32_Ehdr *ehdr = (Elf32_Ehdr *)addr;
if (!addr) {
dev_err(dev, "Invalid firmware address\n");
return -EFAULT;
}
if (ehdr->e_ident[EI_CLASS] == ELFCLASS64)
return rproc_elf64_load_image(dev, addr, size);
else
return rproc_elf32_load_image(dev, addr, size);
}
static ulong rproc_elf32_get_boot_addr(ulong addr)
{
Elf32_Ehdr *ehdr = (Elf32_Ehdr *)addr;
return ehdr->e_entry;
}
static ulong rproc_elf64_get_boot_addr(ulong addr)
{
Elf64_Ehdr *ehdr = (Elf64_Ehdr *)addr;
return ehdr->e_entry;
}
ulong rproc_elf_get_boot_addr(struct udevice *dev, ulong addr)
{
Elf32_Ehdr *ehdr = (Elf32_Ehdr *)addr;
if (ehdr->e_ident[EI_CLASS] == ELFCLASS64)
return rproc_elf64_get_boot_addr(addr);
else
return rproc_elf32_get_boot_addr(addr);
}
/*
* Search for the resource table in an ELF32 image.
* Returns the address of the resource table section if found, NULL if there is
* no resource table section, or error pointer.
*/
static Elf32_Shdr *rproc_elf32_find_rsc_table(struct udevice *dev,
ulong fw_addr, ulong fw_size)
{
int ret;
unsigned int i;
const char *name_table;
struct resource_table *table;
const u8 *elf_data = (void *)fw_addr;
Elf32_Ehdr *ehdr = (Elf32_Ehdr *)fw_addr;
Elf32_Shdr *shdr;
ret = rproc_elf32_sanity_check(fw_addr, fw_size);
if (ret) {
pr_debug("Invalid ELF32 Image %d\n", ret);
return ERR_PTR(ret);
}
/* look for the resource table and handle it */
shdr = (Elf32_Shdr *)(elf_data + ehdr->e_shoff);
name_table = (const char *)(elf_data +
shdr[ehdr->e_shstrndx].sh_offset);
for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
u32 size = shdr->sh_size;
u32 offset = shdr->sh_offset;
if (strcmp(name_table + shdr->sh_name, ".resource_table"))
continue;
table = (struct resource_table *)(elf_data + offset);
/* make sure we have the entire table */
if (offset + size > fw_size) {
pr_debug("resource table truncated\n");
return ERR_PTR(-ENOSPC);
}
/* make sure table has at least the header */
if (sizeof(*table) > size) {
pr_debug("header-less resource table\n");
return ERR_PTR(-ENOSPC);
}
/* we don't support any version beyond the first */
if (table->ver != 1) {
pr_debug("unsupported fw ver: %d\n", table->ver);
return ERR_PTR(-EPROTONOSUPPORT);
}
/* make sure reserved bytes are zeroes */
if (table->reserved[0] || table->reserved[1]) {
pr_debug("non zero reserved bytes\n");
return ERR_PTR(-EBADF);
}
/* make sure the offsets array isn't truncated */
if (table->num * sizeof(table->offset[0]) +
sizeof(*table) > size) {
pr_debug("resource table incomplete\n");
return ERR_PTR(-ENOSPC);
}
return shdr;
}
return NULL;
}
/* Load the resource table from an ELF32 image */
int rproc_elf32_load_rsc_table(struct udevice *dev, ulong fw_addr,
ulong fw_size, ulong *rsc_addr, ulong *rsc_size)
{
const struct dm_rproc_ops *ops;
Elf32_Shdr *shdr;
void *src, *dst;
shdr = rproc_elf32_find_rsc_table(dev, fw_addr, fw_size);
if (!shdr)
return -ENODATA;
if (IS_ERR(shdr))
return PTR_ERR(shdr);
ops = rproc_get_ops(dev);
*rsc_addr = (ulong)shdr->sh_addr;
*rsc_size = (ulong)shdr->sh_size;
src = (void *)fw_addr + shdr->sh_offset;
if (ops->device_to_virt)
dst = (void *)ops->device_to_virt(dev, *rsc_addr, *rsc_size);
else
dst = (void *)rsc_addr;
dev_dbg(dev, "Loading resource table to 0x%8lx (%ld bytes)\n",
(ulong)dst, *rsc_size);
memcpy(dst, src, *rsc_size);
flush_cache(rounddown((unsigned long)dst, ARCH_DMA_MINALIGN),
roundup((unsigned long)dst + *rsc_size,
ARCH_DMA_MINALIGN) -
rounddown((unsigned long)dst, ARCH_DMA_MINALIGN));
return 0;
}
/*
* Search for the resource table in an ELF64 image.
* Returns the address of the resource table section if found, NULL if there is
* no resource table section, or error pointer.
*/
static Elf64_Shdr *rproc_elf64_find_rsc_table(struct udevice *dev,
ulong fw_addr, ulong fw_size)
{
int ret;
unsigned int i;
const char *name_table;
struct resource_table *table;
const u8 *elf_data = (void *)fw_addr;
Elf64_Ehdr *ehdr = (Elf64_Ehdr *)fw_addr;
Elf64_Shdr *shdr;
ret = rproc_elf64_sanity_check(fw_addr, fw_size);
if (ret) {
pr_debug("Invalid ELF64 Image %d\n", ret);
return ERR_PTR(ret);
}
/* look for the resource table and handle it */
shdr = (Elf64_Shdr *)(elf_data + ehdr->e_shoff);
name_table = (const char *)(elf_data +
shdr[ehdr->e_shstrndx].sh_offset);
for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
u64 size = shdr->sh_size;
u64 offset = shdr->sh_offset;
if (strcmp(name_table + shdr->sh_name, ".resource_table"))
continue;
table = (struct resource_table *)(elf_data + offset);
/* make sure we have the entire table */
if (offset + size > fw_size) {
pr_debug("resource table truncated\n");
return ERR_PTR(-ENOSPC);
}
/* make sure table has at least the header */
if (sizeof(*table) > size) {
pr_debug("header-less resource table\n");
return ERR_PTR(-ENOSPC);
}
/* we don't support any version beyond the first */
if (table->ver != 1) {
pr_debug("unsupported fw ver: %d\n", table->ver);
return ERR_PTR(-EPROTONOSUPPORT);
}
/* make sure reserved bytes are zeroes */
if (table->reserved[0] || table->reserved[1]) {
pr_debug("non zero reserved bytes\n");
return ERR_PTR(-EBADF);
}
/* make sure the offsets array isn't truncated */
if (table->num * sizeof(table->offset[0]) +
sizeof(*table) > size) {
pr_debug("resource table incomplete\n");
return ERR_PTR(-ENOSPC);
}
return shdr;
}
return NULL;
}
/* Load the resource table from an ELF64 image */
int rproc_elf64_load_rsc_table(struct udevice *dev, ulong fw_addr,
ulong fw_size, ulong *rsc_addr, ulong *rsc_size)
{
const struct dm_rproc_ops *ops;
Elf64_Shdr *shdr;
void *src, *dst;
shdr = rproc_elf64_find_rsc_table(dev, fw_addr, fw_size);
if (!shdr)
return -ENODATA;
if (IS_ERR(shdr))
return PTR_ERR(shdr);
ops = rproc_get_ops(dev);
*rsc_addr = (ulong)shdr->sh_addr;
*rsc_size = (ulong)shdr->sh_size;
src = (void *)fw_addr + shdr->sh_offset;
if (ops->device_to_virt)
dst = (void *)ops->device_to_virt(dev, *rsc_addr, *rsc_size);
else
dst = (void *)rsc_addr;
dev_dbg(dev, "Loading resource table to 0x%8lx (%ld bytes)\n",
(ulong)dst, *rsc_size);
memcpy(dst, src, *rsc_size);
flush_cache(rounddown((unsigned long)dst, ARCH_DMA_MINALIGN),
roundup((unsigned long)dst + *rsc_size,
ARCH_DMA_MINALIGN) -
rounddown((unsigned long)dst, ARCH_DMA_MINALIGN));
return 0;
}
/* Load the resource table from an ELF32 or ELF64 image */
int rproc_elf_load_rsc_table(struct udevice *dev, ulong fw_addr,
ulong fw_size, ulong *rsc_addr, ulong *rsc_size)
{
Elf32_Ehdr *ehdr = (Elf32_Ehdr *)fw_addr;
if (!fw_addr)
return -EFAULT;
if (ehdr->e_ident[EI_CLASS] == ELFCLASS64)
return rproc_elf64_load_rsc_table(dev, fw_addr, fw_size,
rsc_addr, rsc_size);
else
return rproc_elf32_load_rsc_table(dev, fw_addr, fw_size,
rsc_addr, rsc_size);
}