mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-14 08:57:58 +00:00
cbfc2ff9da
Adjust the memory leak tests to show the amount of memory leaked. This can be a useful signal as to what is wrong. Signed-off-by: Simon Glass <sjg@chromium.org>
798 lines
21 KiB
C
798 lines
21 KiB
C
/*
|
|
* Tests for the core driver model code
|
|
*
|
|
* Copyright (c) 2013 Google, Inc
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <errno.h>
|
|
#include <dm.h>
|
|
#include <fdtdec.h>
|
|
#include <malloc.h>
|
|
#include <dm/device-internal.h>
|
|
#include <dm/root.h>
|
|
#include <dm/util.h>
|
|
#include <dm/test.h>
|
|
#include <dm/uclass-internal.h>
|
|
#include <test/ut.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
enum {
|
|
TEST_INTVAL1 = 0,
|
|
TEST_INTVAL2 = 3,
|
|
TEST_INTVAL3 = 6,
|
|
TEST_INTVAL_MANUAL = 101112,
|
|
TEST_INTVAL_PRE_RELOC = 7,
|
|
};
|
|
|
|
static const struct dm_test_pdata test_pdata[] = {
|
|
{ .ping_add = TEST_INTVAL1, },
|
|
{ .ping_add = TEST_INTVAL2, },
|
|
{ .ping_add = TEST_INTVAL3, },
|
|
};
|
|
|
|
static const struct dm_test_pdata test_pdata_manual = {
|
|
.ping_add = TEST_INTVAL_MANUAL,
|
|
};
|
|
|
|
static const struct dm_test_pdata test_pdata_pre_reloc = {
|
|
.ping_add = TEST_INTVAL_PRE_RELOC,
|
|
};
|
|
|
|
U_BOOT_DEVICE(dm_test_info1) = {
|
|
.name = "test_drv",
|
|
.platdata = &test_pdata[0],
|
|
};
|
|
|
|
U_BOOT_DEVICE(dm_test_info2) = {
|
|
.name = "test_drv",
|
|
.platdata = &test_pdata[1],
|
|
};
|
|
|
|
U_BOOT_DEVICE(dm_test_info3) = {
|
|
.name = "test_drv",
|
|
.platdata = &test_pdata[2],
|
|
};
|
|
|
|
static struct driver_info driver_info_manual = {
|
|
.name = "test_manual_drv",
|
|
.platdata = &test_pdata_manual,
|
|
};
|
|
|
|
static struct driver_info driver_info_pre_reloc = {
|
|
.name = "test_pre_reloc_drv",
|
|
.platdata = &test_pdata_manual,
|
|
};
|
|
|
|
void dm_leak_check_start(struct unit_test_state *uts)
|
|
{
|
|
uts->start = mallinfo();
|
|
if (!uts->start.uordblks)
|
|
puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
|
|
}
|
|
|
|
int dm_leak_check_end(struct unit_test_state *uts)
|
|
{
|
|
struct mallinfo end;
|
|
int id, diff;
|
|
|
|
/* Don't delete the root class, since we started with that */
|
|
for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
|
|
struct uclass *uc;
|
|
|
|
uc = uclass_find(id);
|
|
if (!uc)
|
|
continue;
|
|
ut_assertok(uclass_destroy(uc));
|
|
}
|
|
|
|
end = mallinfo();
|
|
diff = end.uordblks - uts->start.uordblks;
|
|
if (diff > 0)
|
|
printf("Leak: lost %#xd bytes\n", diff);
|
|
else if (diff < 0)
|
|
printf("Leak: gained %#xd bytes\n", -diff);
|
|
ut_asserteq(uts->start.uordblks, end.uordblks);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Test that binding with platdata occurs correctly */
|
|
static int dm_test_autobind(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_state *dms = uts->priv;
|
|
struct udevice *dev;
|
|
|
|
/*
|
|
* We should have a single class (UCLASS_ROOT) and a single root
|
|
* device with no children.
|
|
*/
|
|
ut_assert(dms->root);
|
|
ut_asserteq(1, list_count_items(&gd->uclass_root));
|
|
ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
|
|
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
|
|
|
|
ut_assertok(dm_scan_platdata(false));
|
|
|
|
/* We should have our test class now at least, plus more children */
|
|
ut_assert(1 < list_count_items(&gd->uclass_root));
|
|
ut_assert(0 < list_count_items(&gd->dm_root->child_head));
|
|
|
|
/* Our 3 dm_test_infox children should be bound to the test uclass */
|
|
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
|
|
|
|
/* No devices should be probed */
|
|
list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
|
|
ut_assert(!(dev->flags & DM_FLAG_ACTIVATED));
|
|
|
|
/* Our test driver should have been bound 3 times */
|
|
ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_autobind, 0);
|
|
|
|
/* Test that binding with uclass platdata allocation occurs correctly */
|
|
static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_perdev_uc_pdata *uc_pdata;
|
|
struct udevice *dev;
|
|
struct uclass *uc;
|
|
|
|
ut_assertok(uclass_get(UCLASS_TEST, &uc));
|
|
ut_assert(uc);
|
|
|
|
/**
|
|
* Test if test uclass driver requires allocation for the uclass
|
|
* platform data and then check the dev->uclass_platdata pointer.
|
|
*/
|
|
ut_assert(uc->uc_drv->per_device_platdata_auto_alloc_size);
|
|
|
|
for (uclass_find_first_device(UCLASS_TEST, &dev);
|
|
dev;
|
|
uclass_find_next_device(&dev)) {
|
|
ut_assert(dev);
|
|
|
|
uc_pdata = dev_get_uclass_platdata(dev);
|
|
ut_assert(uc_pdata);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_autobind_uclass_pdata_alloc, DM_TESTF_SCAN_PDATA);
|
|
|
|
/* Test that binding with uclass platdata setting occurs correctly */
|
|
static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_perdev_uc_pdata *uc_pdata;
|
|
struct udevice *dev;
|
|
|
|
/**
|
|
* In the test_postbind() method of test uclass driver, the uclass
|
|
* platform data should be set to three test int values - test it.
|
|
*/
|
|
for (uclass_find_first_device(UCLASS_TEST, &dev);
|
|
dev;
|
|
uclass_find_next_device(&dev)) {
|
|
ut_assert(dev);
|
|
|
|
uc_pdata = dev_get_uclass_platdata(dev);
|
|
ut_assert(uc_pdata);
|
|
ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
|
|
ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
|
|
ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_autobind_uclass_pdata_valid, DM_TESTF_SCAN_PDATA);
|
|
|
|
/* Test that autoprobe finds all the expected devices */
|
|
static int dm_test_autoprobe(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_state *dms = uts->priv;
|
|
int expected_base_add;
|
|
struct udevice *dev;
|
|
struct uclass *uc;
|
|
int i;
|
|
|
|
ut_assertok(uclass_get(UCLASS_TEST, &uc));
|
|
ut_assert(uc);
|
|
|
|
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
|
|
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
|
|
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
|
|
|
|
/* The root device should not be activated until needed */
|
|
ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
|
|
|
|
/*
|
|
* We should be able to find the three test devices, and they should
|
|
* all be activated as they are used (lazy activation, required by
|
|
* U-Boot)
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
|
|
ut_assert(dev);
|
|
ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
|
|
"Driver %d/%s already activated", i, dev->name);
|
|
|
|
/* This should activate it */
|
|
ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
|
|
ut_assert(dev);
|
|
ut_assert(dev->flags & DM_FLAG_ACTIVATED);
|
|
|
|
/* Activating a device should activate the root device */
|
|
if (!i)
|
|
ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
|
|
}
|
|
|
|
/*
|
|
* Our 3 dm_test_info children should be passed to pre_probe and
|
|
* post_probe
|
|
*/
|
|
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
|
|
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
|
|
|
|
/* Also we can check the per-device data */
|
|
expected_base_add = 0;
|
|
for (i = 0; i < 3; i++) {
|
|
struct dm_test_uclass_perdev_priv *priv;
|
|
struct dm_test_pdata *pdata;
|
|
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
|
|
ut_assert(dev);
|
|
|
|
priv = dev_get_uclass_priv(dev);
|
|
ut_assert(priv);
|
|
ut_asserteq(expected_base_add, priv->base_add);
|
|
|
|
pdata = dev->platdata;
|
|
expected_base_add += pdata->ping_add;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA);
|
|
|
|
/* Check that we see the correct platdata in each device */
|
|
static int dm_test_platdata(struct unit_test_state *uts)
|
|
{
|
|
const struct dm_test_pdata *pdata;
|
|
struct udevice *dev;
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
|
|
ut_assert(dev);
|
|
pdata = dev->platdata;
|
|
ut_assert(pdata->ping_add == test_pdata[i].ping_add);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA);
|
|
|
|
/* Test that we can bind, probe, remove, unbind a driver */
|
|
static int dm_test_lifecycle(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_state *dms = uts->priv;
|
|
int op_count[DM_TEST_OP_COUNT];
|
|
struct udevice *dev, *test_dev;
|
|
int pingret;
|
|
int ret;
|
|
|
|
memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
|
|
|
|
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
|
|
&dev));
|
|
ut_assert(dev);
|
|
ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
|
|
== op_count[DM_TEST_OP_BIND] + 1);
|
|
ut_assert(!dev->priv);
|
|
|
|
/* Probe the device - it should fail allocating private data */
|
|
dms->force_fail_alloc = 1;
|
|
ret = device_probe(dev);
|
|
ut_assert(ret == -ENOMEM);
|
|
ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
|
|
== op_count[DM_TEST_OP_PROBE] + 1);
|
|
ut_assert(!dev->priv);
|
|
|
|
/* Try again without the alloc failure */
|
|
dms->force_fail_alloc = 0;
|
|
ut_assertok(device_probe(dev));
|
|
ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
|
|
== op_count[DM_TEST_OP_PROBE] + 2);
|
|
ut_assert(dev->priv);
|
|
|
|
/* This should be device 3 in the uclass */
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
|
|
ut_assert(dev == test_dev);
|
|
|
|
/* Try ping */
|
|
ut_assertok(test_ping(dev, 100, &pingret));
|
|
ut_assert(pingret == 102);
|
|
|
|
/* Now remove device 3 */
|
|
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
|
|
ut_assertok(device_remove(dev));
|
|
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
|
|
|
|
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
|
|
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
|
|
ut_assertok(device_unbind(dev));
|
|
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
|
|
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
|
|
|
|
/* Test that we can bind/unbind and the lists update correctly */
|
|
static int dm_test_ordering(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_state *dms = uts->priv;
|
|
struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
|
|
int pingret;
|
|
|
|
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
|
|
&dev));
|
|
ut_assert(dev);
|
|
|
|
/* Bind two new devices (numbers 4 and 5) */
|
|
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
|
|
&dev_penultimate));
|
|
ut_assert(dev_penultimate);
|
|
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
|
|
&dev_last));
|
|
ut_assert(dev_last);
|
|
|
|
/* Now remove device 3 */
|
|
ut_assertok(device_remove(dev));
|
|
ut_assertok(device_unbind(dev));
|
|
|
|
/* The device numbering should have shifted down one */
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
|
|
ut_assert(dev_penultimate == test_dev);
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
|
|
ut_assert(dev_last == test_dev);
|
|
|
|
/* Add back the original device 3, now in position 5 */
|
|
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
|
|
&dev));
|
|
ut_assert(dev);
|
|
|
|
/* Try ping */
|
|
ut_assertok(test_ping(dev, 100, &pingret));
|
|
ut_assert(pingret == 102);
|
|
|
|
/* Remove 3 and 4 */
|
|
ut_assertok(device_remove(dev_penultimate));
|
|
ut_assertok(device_unbind(dev_penultimate));
|
|
ut_assertok(device_remove(dev_last));
|
|
ut_assertok(device_unbind(dev_last));
|
|
|
|
/* Our device should now be in position 3 */
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
|
|
ut_assert(dev == test_dev);
|
|
|
|
/* Now remove device 3 */
|
|
ut_assertok(device_remove(dev));
|
|
ut_assertok(device_unbind(dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA);
|
|
|
|
/* Check that we can perform operations on a device (do a ping) */
|
|
int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
|
|
uint32_t base, struct dm_test_priv *priv)
|
|
{
|
|
int expected;
|
|
int pingret;
|
|
|
|
/* Getting the child device should allocate platdata / priv */
|
|
ut_assertok(testfdt_ping(dev, 10, &pingret));
|
|
ut_assert(dev->priv);
|
|
ut_assert(dev->platdata);
|
|
|
|
expected = 10 + base;
|
|
ut_asserteq(expected, pingret);
|
|
|
|
/* Do another ping */
|
|
ut_assertok(testfdt_ping(dev, 20, &pingret));
|
|
expected = 20 + base;
|
|
ut_asserteq(expected, pingret);
|
|
|
|
/* Now check the ping_total */
|
|
priv = dev->priv;
|
|
ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
|
|
priv->ping_total);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check that we can perform operations on devices */
|
|
static int dm_test_operations(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
int i;
|
|
|
|
/*
|
|
* Now check that the ping adds are what we expect. This is using the
|
|
* ping-add property in each node.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
|
|
uint32_t base;
|
|
|
|
ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
|
|
|
|
/*
|
|
* Get the 'reg' property, which tells us what the ping add
|
|
* should be. We don't use the platdata because we want
|
|
* to test the code that sets that up (testfdt_drv_probe()).
|
|
*/
|
|
base = test_pdata[i].ping_add;
|
|
debug("dev=%d, base=%d\n", i, base);
|
|
|
|
ut_assert(!dm_check_operations(uts, dev, base, dev->priv));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA);
|
|
|
|
/* Remove all drivers and check that things work */
|
|
static int dm_test_remove(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
|
|
ut_assert(dev);
|
|
ut_assertf(dev->flags & DM_FLAG_ACTIVATED,
|
|
"Driver %d/%s not activated", i, dev->name);
|
|
ut_assertok(device_remove(dev));
|
|
ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
|
|
"Driver %d/%s should have deactivated", i,
|
|
dev->name);
|
|
ut_assert(!dev->priv);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
|
|
|
|
/* Remove and recreate everything, check for memory leaks */
|
|
static int dm_test_leak(struct unit_test_state *uts)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct udevice *dev;
|
|
int ret;
|
|
int id;
|
|
|
|
dm_leak_check_start(uts);
|
|
|
|
ut_assertok(dm_scan_platdata(false));
|
|
ut_assertok(dm_scan_fdt(gd->fdt_blob, false));
|
|
|
|
/* Scanning the uclass is enough to probe all the devices */
|
|
for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
|
|
for (ret = uclass_first_device(UCLASS_TEST, &dev);
|
|
dev;
|
|
ret = uclass_next_device(&dev))
|
|
;
|
|
ut_assertok(ret);
|
|
}
|
|
|
|
ut_assertok(dm_leak_check_end(uts));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_leak, 0);
|
|
|
|
/* Test uclass init/destroy methods */
|
|
static int dm_test_uclass(struct unit_test_state *uts)
|
|
{
|
|
struct uclass *uc;
|
|
|
|
ut_assertok(uclass_get(UCLASS_TEST, &uc));
|
|
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
|
|
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
|
|
ut_assert(uc->priv);
|
|
|
|
ut_assertok(uclass_destroy(uc));
|
|
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
|
|
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass, 0);
|
|
|
|
/**
|
|
* create_children() - Create children of a parent node
|
|
*
|
|
* @dms: Test system state
|
|
* @parent: Parent device
|
|
* @count: Number of children to create
|
|
* @key: Key value to put in first child. Subsequence children
|
|
* receive an incrementing value
|
|
* @child: If not NULL, then the child device pointers are written into
|
|
* this array.
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
static int create_children(struct unit_test_state *uts, struct udevice *parent,
|
|
int count, int key, struct udevice *child[])
|
|
{
|
|
struct udevice *dev;
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct dm_test_pdata *pdata;
|
|
|
|
ut_assertok(device_bind_by_name(parent, false,
|
|
&driver_info_manual, &dev));
|
|
pdata = calloc(1, sizeof(*pdata));
|
|
pdata->ping_add = key + i;
|
|
dev->platdata = pdata;
|
|
if (child)
|
|
child[i] = dev;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define NODE_COUNT 10
|
|
|
|
static int dm_test_children(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_state *dms = uts->priv;
|
|
struct udevice *top[NODE_COUNT];
|
|
struct udevice *child[NODE_COUNT];
|
|
struct udevice *grandchild[NODE_COUNT];
|
|
struct udevice *dev;
|
|
int total;
|
|
int ret;
|
|
int i;
|
|
|
|
/* We don't care about the numbering for this test */
|
|
dms->skip_post_probe = 1;
|
|
|
|
ut_assert(NODE_COUNT > 5);
|
|
|
|
/* First create 10 top-level children */
|
|
ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top));
|
|
|
|
/* Now a few have their own children */
|
|
ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
|
|
ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
|
|
|
|
/* And grandchildren */
|
|
for (i = 0; i < NODE_COUNT; i++)
|
|
ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
|
|
i == 2 ? grandchild : NULL));
|
|
|
|
/* Check total number of devices */
|
|
total = NODE_COUNT * (3 + NODE_COUNT);
|
|
ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
|
|
|
|
/* Try probing one of the grandchildren */
|
|
ut_assertok(uclass_get_device(UCLASS_TEST,
|
|
NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
|
|
ut_asserteq_ptr(grandchild[0], dev);
|
|
|
|
/*
|
|
* This should have probed the child and top node also, for a total
|
|
* of 3 nodes.
|
|
*/
|
|
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
|
|
|
|
/* Probe the other grandchildren */
|
|
for (i = 1; i < NODE_COUNT; i++)
|
|
ut_assertok(device_probe(grandchild[i]));
|
|
|
|
ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
|
|
|
|
/* Probe everything */
|
|
for (ret = uclass_first_device(UCLASS_TEST, &dev);
|
|
dev;
|
|
ret = uclass_next_device(&dev))
|
|
;
|
|
ut_assertok(ret);
|
|
|
|
ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
|
|
|
|
/* Remove a top-level child and check that the children are removed */
|
|
ut_assertok(device_remove(top[2]));
|
|
ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
|
|
dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
|
|
|
|
/* Try one with grandchildren */
|
|
ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
|
|
ut_asserteq_ptr(dev, top[5]);
|
|
ut_assertok(device_remove(dev));
|
|
ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
|
|
dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
|
|
|
|
/* Try the same with unbind */
|
|
ut_assertok(device_unbind(top[2]));
|
|
ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
|
|
dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
|
|
|
|
/* Try one with grandchildren */
|
|
ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
|
|
ut_asserteq_ptr(dev, top[6]);
|
|
ut_assertok(device_unbind(top[5]));
|
|
ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
|
|
dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_children, 0);
|
|
|
|
/* Test that pre-relocation devices work as expected */
|
|
static int dm_test_pre_reloc(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_state *dms = uts->priv;
|
|
struct udevice *dev;
|
|
|
|
/* The normal driver should refuse to bind before relocation */
|
|
ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
|
|
&driver_info_manual, &dev));
|
|
|
|
/* But this one is marked pre-reloc */
|
|
ut_assertok(device_bind_by_name(dms->root, true,
|
|
&driver_info_pre_reloc, &dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_pre_reloc, 0);
|
|
|
|
static int dm_test_uclass_before_ready(struct unit_test_state *uts)
|
|
{
|
|
struct uclass *uc;
|
|
|
|
ut_assertok(uclass_get(UCLASS_TEST, &uc));
|
|
|
|
gd->dm_root = NULL;
|
|
gd->dm_root_f = NULL;
|
|
memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
|
|
|
|
ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass_before_ready, 0);
|
|
|
|
static int dm_test_uclass_devices_find(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
int ret;
|
|
|
|
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
|
|
dev;
|
|
ret = uclass_find_next_device(&dev)) {
|
|
ut_assert(!ret);
|
|
ut_assert(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass_devices_find, DM_TESTF_SCAN_PDATA);
|
|
|
|
static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *finddev;
|
|
struct udevice *testdev;
|
|
int findret, ret;
|
|
|
|
/*
|
|
* For each test device found in fdt like: "a-test", "b-test", etc.,
|
|
* use its name and try to find it by uclass_find_device_by_name().
|
|
* Then, on success check if:
|
|
* - current 'testdev' name is equal to the returned 'finddev' name
|
|
* - current 'testdev' pointer is equal to the returned 'finddev'
|
|
*
|
|
* We assume that, each uclass's device name is unique, so if not, then
|
|
* this will fail on checking condition: testdev == finddev, since the
|
|
* uclass_find_device_by_name(), returns the first device by given name.
|
|
*/
|
|
for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
|
|
testdev;
|
|
ret = uclass_find_next_device(&testdev)) {
|
|
ut_assertok(ret);
|
|
ut_assert(testdev);
|
|
|
|
findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
|
|
testdev->name,
|
|
&finddev);
|
|
|
|
ut_assertok(findret);
|
|
ut_assert(testdev);
|
|
ut_asserteq_str(testdev->name, finddev->name);
|
|
ut_asserteq_ptr(testdev, finddev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass_devices_find_by_name, DM_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_uclass_devices_get(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
int ret;
|
|
|
|
for (ret = uclass_first_device(UCLASS_TEST, &dev);
|
|
dev;
|
|
ret = uclass_next_device(&dev)) {
|
|
ut_assert(!ret);
|
|
ut_assert(dev);
|
|
ut_assert(device_active(dev));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass_devices_get, DM_TESTF_SCAN_PDATA);
|
|
|
|
static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *finddev;
|
|
struct udevice *testdev;
|
|
int ret, findret;
|
|
|
|
/*
|
|
* For each test device found in fdt like: "a-test", "b-test", etc.,
|
|
* use its name and try to get it by uclass_get_device_by_name().
|
|
* On success check if:
|
|
* - returned finddev' is active
|
|
* - current 'testdev' name is equal to the returned 'finddev' name
|
|
* - current 'testdev' pointer is equal to the returned 'finddev'
|
|
*
|
|
* We asserts that the 'testdev' is active on each loop entry, so we
|
|
* could be sure that the 'finddev' is activated too, but for sure
|
|
* we check it again.
|
|
*
|
|
* We assume that, each uclass's device name is unique, so if not, then
|
|
* this will fail on checking condition: testdev == finddev, since the
|
|
* uclass_get_device_by_name(), returns the first device by given name.
|
|
*/
|
|
for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
|
|
testdev;
|
|
ret = uclass_next_device(&testdev)) {
|
|
ut_assertok(ret);
|
|
ut_assert(testdev);
|
|
ut_assert(device_active(testdev));
|
|
|
|
findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
|
|
testdev->name,
|
|
&finddev);
|
|
|
|
ut_assertok(findret);
|
|
ut_assert(finddev);
|
|
ut_assert(device_active(finddev));
|
|
ut_asserteq_str(testdev->name, finddev->name);
|
|
ut_asserteq_ptr(testdev, finddev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass_devices_get_by_name, DM_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
|
|
ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
|
|
ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA);
|