u-boot/arch/arm/mach-uniphier/dram_init.c
Masahiro Yamada 0f5bf09cf1 ARM: uniphier: correct spelling of "invalid"
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2017-02-23 08:37:56 +09:00

272 lines
5.4 KiB
C

/*
* Copyright (C) 2012-2015 Panasonic Corporation
* Copyright (C) 2015-2017 Socionext Inc.
* Author: Masahiro Yamada <yamada.masahiro@socionext.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <fdtdec.h>
#include <linux/errno.h>
#include <linux/sizes.h>
#include "init.h"
#include "sg-regs.h"
#include "soc-info.h"
DECLARE_GLOBAL_DATA_PTR;
struct uniphier_memif_data {
unsigned int soc_id;
unsigned long sparse_ch1_base;
int have_ch2;
};
static const struct uniphier_memif_data uniphier_memif_data[] = {
{
.soc_id = UNIPHIER_SLD3_ID,
.sparse_ch1_base = 0xc0000000,
/*
* In fact, SLD3 has DRAM ch2, but the memory regions for ch1
* and ch2 overlap, and host cannot get access to them at the
* same time. Hide the ch2 from U-Boot.
*/
},
{
.soc_id = UNIPHIER_LD4_ID,
.sparse_ch1_base = 0xc0000000,
},
{
.soc_id = UNIPHIER_PRO4_ID,
.sparse_ch1_base = 0xa0000000,
},
{
.soc_id = UNIPHIER_SLD8_ID,
.sparse_ch1_base = 0xc0000000,
},
{
.soc_id = UNIPHIER_PRO5_ID,
.sparse_ch1_base = 0xc0000000,
},
{
.soc_id = UNIPHIER_PXS2_ID,
.sparse_ch1_base = 0xc0000000,
.have_ch2 = 1,
},
{
.soc_id = UNIPHIER_LD6B_ID,
.sparse_ch1_base = 0xc0000000,
.have_ch2 = 1,
},
{
.soc_id = UNIPHIER_LD11_ID,
.sparse_ch1_base = 0xc0000000,
},
{
.soc_id = UNIPHIER_LD20_ID,
.sparse_ch1_base = 0xc0000000,
.have_ch2 = 1,
},
{
.soc_id = UNIPHIER_PXS3_ID,
.sparse_ch1_base = 0xc0000000,
.have_ch2 = 1,
},
};
UNIPHIER_DEFINE_SOCDATA_FUNC(uniphier_get_memif_data, uniphier_memif_data)
static int uniphier_memconf_decode(struct uniphier_dram_ch *dram_ch)
{
const struct uniphier_memif_data *data;
unsigned long size;
u32 val;
data = uniphier_get_memif_data();
if (!data) {
pr_err("unsupported SoC\n");
return -EINVAL;
}
val = readl(SG_MEMCONF);
/* set up ch0 */
dram_ch[0].base = CONFIG_SYS_SDRAM_BASE;
switch (val & SG_MEMCONF_CH0_SZ_MASK) {
case SG_MEMCONF_CH0_SZ_64M:
size = SZ_64M;
break;
case SG_MEMCONF_CH0_SZ_128M:
size = SZ_128M;
break;
case SG_MEMCONF_CH0_SZ_256M:
size = SZ_256M;
break;
case SG_MEMCONF_CH0_SZ_512M:
size = SZ_512M;
break;
case SG_MEMCONF_CH0_SZ_1G:
size = SZ_1G;
break;
default:
pr_err("error: invalid value is set to MEMCONF ch0 size\n");
return -EINVAL;
}
if ((val & SG_MEMCONF_CH0_NUM_MASK) == SG_MEMCONF_CH0_NUM_2)
size *= 2;
dram_ch[0].size = size;
/* set up ch1 */
dram_ch[1].base = dram_ch[0].base + size;
if (val & SG_MEMCONF_SPARSEMEM) {
if (dram_ch[1].base > data->sparse_ch1_base) {
pr_warn("Sparse mem is enabled, but ch0 and ch1 overlap\n");
pr_warn("Only ch0 is available\n");
dram_ch[1].base = 0;
return 0;
}
dram_ch[1].base = data->sparse_ch1_base;
}
switch (val & SG_MEMCONF_CH1_SZ_MASK) {
case SG_MEMCONF_CH1_SZ_64M:
size = SZ_64M;
break;
case SG_MEMCONF_CH1_SZ_128M:
size = SZ_128M;
break;
case SG_MEMCONF_CH1_SZ_256M:
size = SZ_256M;
break;
case SG_MEMCONF_CH1_SZ_512M:
size = SZ_512M;
break;
case SG_MEMCONF_CH1_SZ_1G:
size = SZ_1G;
break;
default:
pr_err("error: invalid value is set to MEMCONF ch1 size\n");
return -EINVAL;
}
if ((val & SG_MEMCONF_CH1_NUM_MASK) == SG_MEMCONF_CH1_NUM_2)
size *= 2;
dram_ch[1].size = size;
if (!data->have_ch2 || val & SG_MEMCONF_CH2_DISABLE)
return 0;
/* set up ch2 */
dram_ch[2].base = dram_ch[1].base + size;
switch (val & SG_MEMCONF_CH2_SZ_MASK) {
case SG_MEMCONF_CH2_SZ_64M:
size = SZ_64M;
break;
case SG_MEMCONF_CH2_SZ_128M:
size = SZ_128M;
break;
case SG_MEMCONF_CH2_SZ_256M:
size = SZ_256M;
break;
case SG_MEMCONF_CH2_SZ_512M:
size = SZ_512M;
break;
case SG_MEMCONF_CH2_SZ_1G:
size = SZ_1G;
break;
default:
pr_err("error: invalid value is set to MEMCONF ch2 size\n");
return -EINVAL;
}
if ((val & SG_MEMCONF_CH2_NUM_MASK) == SG_MEMCONF_CH2_NUM_2)
size *= 2;
dram_ch[2].size = size;
return 0;
}
int dram_init(void)
{
struct uniphier_dram_ch dram_ch[UNIPHIER_MAX_NR_DRAM_CH] = {};
int ret, i;
gd->ram_size = 0;
ret = uniphier_memconf_decode(dram_ch);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(dram_ch); i++) {
if (!dram_ch[i].size)
break;
/*
* U-Boot relocates itself to the tail of the memory region,
* but it does not expect sparse memory. We use the first
* contiguous chunk here.
*/
if (i > 0 &&
dram_ch[i - 1].base + dram_ch[i - 1].size < dram_ch[i].base)
break;
gd->ram_size += dram_ch[i].size;
}
return 0;
}
void dram_init_banksize(void)
{
struct uniphier_dram_ch dram_ch[UNIPHIER_MAX_NR_DRAM_CH] = {};
int i;
uniphier_memconf_decode(dram_ch);
for (i = 0; i < ARRAY_SIZE(dram_ch); i++) {
if (i >= ARRAY_SIZE(gd->bd->bi_dram))
break;
gd->bd->bi_dram[i].start = dram_ch[i].base;
gd->bd->bi_dram[i].size = dram_ch[i].size;
}
}
#ifdef CONFIG_OF_BOARD_SETUP
/*
* The DRAM PHY requires 64 byte scratch area in each DRAM channel
* for its dynamic PHY training feature.
*/
int ft_board_setup(void *fdt, bd_t *bd)
{
unsigned long rsv_addr;
const unsigned long rsv_size = 64;
int i, ret;
if (uniphier_get_soc_id() != UNIPHIER_LD20_ID)
return 0;
for (i = 0; i < ARRAY_SIZE(gd->bd->bi_dram); i++) {
rsv_addr = gd->bd->bi_dram[i].start + gd->bd->bi_dram[i].size;
rsv_addr -= rsv_size;
ret = fdt_add_mem_rsv(fdt, rsv_addr, rsv_size);
if (ret)
return -ENOSPC;
printf(" Reserved memory region for DRAM PHY training: addr=%lx size=%lx\n",
rsv_addr, rsv_size);
}
return 0;
}
#endif