u-boot/cmd/i2c.c
Marek Vasut 05f84bd2ac cmd: i2c: Remove unused NEEDS_MANUAL_RELOC code bits
The last user of the NEEDS_MANUAL_RELOC has been removed in commit
26af162ac8 ("arch: m68k: Implement relocation")
Remove now unused NEEDS_MANUAL_RELOC code.

Signed-off-by: Marek Vasut <marek.vasut+renesas@mailbox.org>
2023-09-14 10:42:24 -04:00

2009 lines
47 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2009
* Sergey Kubushyn, himself, ksi@koi8.net
*
* Changes for unified multibus/multiadapter I2C support.
*
* (C) Copyright 2001
* Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
*/
/*
* I2C Functions similar to the standard memory functions.
*
* There are several parameters in many of the commands that bear further
* explanations:
*
* {i2c_chip} is the I2C chip address (the first byte sent on the bus).
* Each I2C chip on the bus has a unique address. On the I2C data bus,
* the address is the upper seven bits and the LSB is the "read/write"
* bit. Note that the {i2c_chip} address specified on the command
* line is not shifted up: e.g. a typical EEPROM memory chip may have
* an I2C address of 0x50, but the data put on the bus will be 0xA0
* for write and 0xA1 for read. This "non shifted" address notation
* matches at least half of the data sheets :-/.
*
* {addr} is the address (or offset) within the chip. Small memory
* chips have 8 bit addresses. Large memory chips have 16 bit
* addresses. Other memory chips have 9, 10, or 11 bit addresses.
* Many non-memory chips have multiple registers and {addr} is used
* as the register index. Some non-memory chips have only one register
* and therefore don't need any {addr} parameter.
*
* The default {addr} parameter is one byte (.1) which works well for
* memories and registers with 8 bits of address space.
*
* You can specify the length of the {addr} field with the optional .0,
* .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
* manipulating a single register device which doesn't use an address
* field, use "0.0" for the address and the ".0" length field will
* suppress the address in the I2C data stream. This also works for
* successive reads using the I2C auto-incrementing memory pointer.
*
* If you are manipulating a large memory with 2-byte addresses, use
* the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
*
* Then there are the unfortunate memory chips that spill the most
* significant 1, 2, or 3 bits of address into the chip address byte.
* This effectively makes one chip (logically) look like 2, 4, or
* 8 chips. This is handled (awkwardly) by #defining
* CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
* {addr} field (since .1 is the default, it doesn't actually have to
* be specified). Examples: given a memory chip at I2C chip address
* 0x50, the following would happen...
* i2c md 50 0 10 display 16 bytes starting at 0x000
* On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
* i2c md 50 100 10 display 16 bytes starting at 0x100
* On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
* i2c md 50 210 10 display 16 bytes starting at 0x210
* On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
* This is awfully ugly. It would be nice if someone would think up
* a better way of handling this.
*
* Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
*/
#include <common.h>
#include <bootretry.h>
#include <cli.h>
#include <command.h>
#include <console.h>
#include <dm.h>
#include <edid.h>
#include <errno.h>
#include <i2c.h>
#include <log.h>
#include <malloc.h>
#include <asm/byteorder.h>
#include <linux/compiler.h>
#include <linux/delay.h>
#include <u-boot/crc.h>
/* Display values from last command.
* Memory modify remembered values are different from display memory.
*/
static uint i2c_dp_last_chip;
static uint i2c_dp_last_addr;
static uint i2c_dp_last_alen;
static uint i2c_dp_last_length = 0x10;
static uint i2c_mm_last_chip;
static uint i2c_mm_last_addr;
static uint i2c_mm_last_alen;
/* If only one I2C bus is present, the list of devices to ignore when
* the probe command is issued is represented by a 1D array of addresses.
* When multiple buses are present, the list is an array of bus-address
* pairs. The following macros take care of this */
#if defined(CFG_SYS_I2C_NOPROBES)
#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY)
static struct
{
uchar bus;
uchar addr;
} i2c_no_probes[] = CFG_SYS_I2C_NOPROBES;
#define GET_BUS_NUM i2c_get_bus_num()
#define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b))
#define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a))
#define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr
#else /* single bus */
static uchar i2c_no_probes[] = CFG_SYS_I2C_NOPROBES;
#define GET_BUS_NUM 0
#define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */
#define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a))
#define NO_PROBE_ADDR(i) i2c_no_probes[(i)]
#endif /* CONFIG_IS_ENABLED(SYS_I2C_LEGACY) */
#endif
#define DISP_LINE_LEN 16
/*
* Default for driver model is to use the chip's existing address length.
* For legacy code, this is not stored, so we need to use a suitable
* default.
*/
#if CONFIG_IS_ENABLED(DM_I2C)
#define DEFAULT_ADDR_LEN (-1)
#else
#define DEFAULT_ADDR_LEN 1
#endif
#if CONFIG_IS_ENABLED(DM_I2C)
static struct udevice *i2c_cur_bus;
static int cmd_i2c_set_bus_num(unsigned int busnum)
{
struct udevice *bus;
int ret;
ret = uclass_get_device_by_seq(UCLASS_I2C, busnum, &bus);
if (ret) {
debug("%s: No bus %d\n", __func__, busnum);
return ret;
}
i2c_cur_bus = bus;
return 0;
}
static int i2c_get_cur_bus(struct udevice **busp)
{
#ifdef CONFIG_I2C_SET_DEFAULT_BUS_NUM
if (!i2c_cur_bus) {
if (cmd_i2c_set_bus_num(CONFIG_I2C_DEFAULT_BUS_NUMBER)) {
printf("Default I2C bus %d not found\n",
CONFIG_I2C_DEFAULT_BUS_NUMBER);
return -ENODEV;
}
}
#endif
if (!i2c_cur_bus) {
puts("No I2C bus selected\n");
return -ENODEV;
}
*busp = i2c_cur_bus;
return 0;
}
static int i2c_get_cur_bus_chip(uint chip_addr, struct udevice **devp)
{
struct udevice *bus;
int ret;
ret = i2c_get_cur_bus(&bus);
if (ret)
return ret;
return i2c_get_chip(bus, chip_addr, 1, devp);
}
#endif
/**
* i2c_init_board() - Board-specific I2C bus init
*
* This function is the default no-op implementation of I2C bus
* initialization. This function can be overridden by board-specific
* implementation if needed.
*/
__weak
void i2c_init_board(void)
{
}
/**
* get_alen() - Small parser helper function to get address length
*
* Returns the address length.
*/
static uint get_alen(char *arg, int default_len)
{
int j;
int alen;
alen = default_len;
for (j = 0; j < 8; j++) {
if (arg[j] == '.') {
alen = arg[j+1] - '0';
break;
} else if (arg[j] == '\0')
break;
}
return alen;
}
enum i2c_err_op {
I2C_ERR_READ,
I2C_ERR_WRITE,
};
static int i2c_report_err(int ret, enum i2c_err_op op)
{
printf("Error %s the chip: %d\n",
op == I2C_ERR_READ ? "reading" : "writing", ret);
return CMD_RET_FAILURE;
}
/**
* do_i2c_read() - Handle the "i2c read" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*
* Syntax:
* i2c read {i2c_chip} {devaddr}{.0, .1, .2} {len} {memaddr}
*/
static int do_i2c_read(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
uint chip;
uint devaddr, length;
int alen;
u_char *memaddr;
int ret;
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *dev;
#endif
if (argc != 5)
return CMD_RET_USAGE;
/*
* I2C chip address
*/
chip = hextoul(argv[1], NULL);
/*
* I2C data address within the chip. This can be 1 or
* 2 bytes long. Some day it might be 3 bytes long :-).
*/
devaddr = hextoul(argv[2], NULL);
alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
if (alen > 3)
return CMD_RET_USAGE;
/*
* Length is the number of objects, not number of bytes.
*/
length = hextoul(argv[3], NULL);
/*
* memaddr is the address where to store things in memory
*/
memaddr = (u_char *)hextoul(argv[4], NULL);
#if CONFIG_IS_ENABLED(DM_I2C)
ret = i2c_get_cur_bus_chip(chip, &dev);
if (!ret && alen != -1)
ret = i2c_set_chip_offset_len(dev, alen);
if (!ret)
ret = dm_i2c_read(dev, devaddr, memaddr, length);
#else
ret = i2c_read(chip, devaddr, alen, memaddr, length);
#endif
if (ret)
return i2c_report_err(ret, I2C_ERR_READ);
return 0;
}
static int do_i2c_write(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
uint chip;
uint devaddr, length;
int alen;
u_char *memaddr;
int ret;
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *dev;
struct dm_i2c_chip *i2c_chip;
#endif
if ((argc < 5) || (argc > 6))
return cmd_usage(cmdtp);
/*
* memaddr is the address where to store things in memory
*/
memaddr = (u_char *)hextoul(argv[1], NULL);
/*
* I2C chip address
*/
chip = hextoul(argv[2], NULL);
/*
* I2C data address within the chip. This can be 1 or
* 2 bytes long. Some day it might be 3 bytes long :-).
*/
devaddr = hextoul(argv[3], NULL);
alen = get_alen(argv[3], DEFAULT_ADDR_LEN);
if (alen > 3)
return cmd_usage(cmdtp);
/*
* Length is the number of bytes.
*/
length = hextoul(argv[4], NULL);
#if CONFIG_IS_ENABLED(DM_I2C)
ret = i2c_get_cur_bus_chip(chip, &dev);
if (!ret && alen != -1)
ret = i2c_set_chip_offset_len(dev, alen);
if (ret)
return i2c_report_err(ret, I2C_ERR_WRITE);
i2c_chip = dev_get_parent_plat(dev);
if (!i2c_chip)
return i2c_report_err(ret, I2C_ERR_WRITE);
#endif
if (argc == 6 && !strcmp(argv[5], "-s")) {
/*
* Write all bytes in a single I2C transaction. If the target
* device is an EEPROM, it is your responsibility to not cross
* a page boundary. No write delay upon completion, take this
* into account if linking commands.
*/
#if CONFIG_IS_ENABLED(DM_I2C)
i2c_chip->flags &= ~DM_I2C_CHIP_WR_ADDRESS;
ret = dm_i2c_write(dev, devaddr, memaddr, length);
#else
ret = i2c_write(chip, devaddr, alen, memaddr, length);
#endif
if (ret)
return i2c_report_err(ret, I2C_ERR_WRITE);
} else {
/*
* Repeated addressing - perform <length> separate
* write transactions of one byte each
*/
while (length-- > 0) {
#if CONFIG_IS_ENABLED(DM_I2C)
i2c_chip->flags |= DM_I2C_CHIP_WR_ADDRESS;
ret = dm_i2c_write(dev, devaddr++, memaddr++, 1);
#else
ret = i2c_write(chip, devaddr++, alen, memaddr++, 1);
#endif
if (ret)
return i2c_report_err(ret, I2C_ERR_WRITE);
/*
* No write delay with FRAM devices.
*/
#if !defined(CONFIG_SYS_I2C_FRAM)
udelay(11000);
#endif
}
}
return 0;
}
#if CONFIG_IS_ENABLED(DM_I2C)
static int do_i2c_flags(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
struct udevice *dev;
uint flags;
int chip;
int ret;
if (argc < 2)
return CMD_RET_USAGE;
chip = hextoul(argv[1], NULL);
ret = i2c_get_cur_bus_chip(chip, &dev);
if (ret)
return i2c_report_err(ret, I2C_ERR_READ);
if (argc > 2) {
flags = hextoul(argv[2], NULL);
ret = i2c_set_chip_flags(dev, flags);
} else {
ret = i2c_get_chip_flags(dev, &flags);
if (!ret)
printf("%x\n", flags);
}
if (ret)
return i2c_report_err(ret, I2C_ERR_READ);
return 0;
}
static int do_i2c_olen(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
struct udevice *dev;
uint olen;
int chip;
int ret;
if (argc < 2)
return CMD_RET_USAGE;
chip = hextoul(argv[1], NULL);
ret = i2c_get_cur_bus_chip(chip, &dev);
if (ret)
return i2c_report_err(ret, I2C_ERR_READ);
if (argc > 2) {
olen = hextoul(argv[2], NULL);
ret = i2c_set_chip_offset_len(dev, olen);
} else {
ret = i2c_get_chip_offset_len(dev);
if (ret >= 0) {
printf("%x\n", ret);
ret = 0;
}
}
if (ret)
return i2c_report_err(ret, I2C_ERR_READ);
return 0;
}
#endif
/**
* do_i2c_md() - Handle the "i2c md" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*
* Syntax:
* i2c md {i2c_chip} {addr}{.0, .1, .2} {len}
*/
static int do_i2c_md(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
uint chip;
uint addr, length;
int alen;
int j;
uint nbytes, linebytes;
int ret;
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *dev;
#endif
/* We use the last specified parameters, unless new ones are
* entered.
*/
chip = i2c_dp_last_chip;
addr = i2c_dp_last_addr;
alen = i2c_dp_last_alen;
length = i2c_dp_last_length;
if (argc < 3)
return CMD_RET_USAGE;
if ((flag & CMD_FLAG_REPEAT) == 0) {
/*
* New command specified.
*/
/*
* I2C chip address
*/
chip = hextoul(argv[1], NULL);
/*
* I2C data address within the chip. This can be 1 or
* 2 bytes long. Some day it might be 3 bytes long :-).
*/
addr = hextoul(argv[2], NULL);
alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
if (alen > 3)
return CMD_RET_USAGE;
/*
* If another parameter, it is the length to display.
* Length is the number of objects, not number of bytes.
*/
if (argc > 3)
length = hextoul(argv[3], NULL);
}
#if CONFIG_IS_ENABLED(DM_I2C)
ret = i2c_get_cur_bus_chip(chip, &dev);
if (!ret && alen != -1)
ret = i2c_set_chip_offset_len(dev, alen);
if (ret)
return i2c_report_err(ret, I2C_ERR_READ);
#endif
/*
* Print the lines.
*
* We buffer all read data, so we can make sure data is read only
* once.
*/
nbytes = length;
do {
unsigned char linebuf[DISP_LINE_LEN];
unsigned char *cp;
linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
#if CONFIG_IS_ENABLED(DM_I2C)
ret = dm_i2c_read(dev, addr, linebuf, linebytes);
#else
ret = i2c_read(chip, addr, alen, linebuf, linebytes);
#endif
if (ret)
return i2c_report_err(ret, I2C_ERR_READ);
else {
printf("%04x:", addr);
cp = linebuf;
for (j=0; j<linebytes; j++) {
printf(" %02x", *cp++);
addr++;
}
puts (" ");
cp = linebuf;
for (j=0; j<linebytes; j++) {
if ((*cp < 0x20) || (*cp > 0x7e))
puts (".");
else
printf("%c", *cp);
cp++;
}
putc ('\n');
}
nbytes -= linebytes;
} while (nbytes > 0);
i2c_dp_last_chip = chip;
i2c_dp_last_addr = addr;
i2c_dp_last_alen = alen;
i2c_dp_last_length = length;
return 0;
}
/**
* do_i2c_mw() - Handle the "i2c mw" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*
* Syntax:
* i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
*/
static int do_i2c_mw(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
uint chip;
ulong addr;
int alen;
uchar byte;
int count;
int ret;
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *dev;
#endif
if ((argc < 4) || (argc > 5))
return CMD_RET_USAGE;
/*
* Chip is always specified.
*/
chip = hextoul(argv[1], NULL);
/*
* Address is always specified.
*/
addr = hextoul(argv[2], NULL);
alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
if (alen > 3)
return CMD_RET_USAGE;
#if CONFIG_IS_ENABLED(DM_I2C)
ret = i2c_get_cur_bus_chip(chip, &dev);
if (!ret && alen != -1)
ret = i2c_set_chip_offset_len(dev, alen);
if (ret)
return i2c_report_err(ret, I2C_ERR_WRITE);
#endif
/*
* Value to write is always specified.
*/
byte = hextoul(argv[3], NULL);
/*
* Optional count
*/
if (argc == 5)
count = hextoul(argv[4], NULL);
else
count = 1;
while (count-- > 0) {
#if CONFIG_IS_ENABLED(DM_I2C)
ret = dm_i2c_write(dev, addr++, &byte, 1);
#else
ret = i2c_write(chip, addr++, alen, &byte, 1);
#endif
if (ret)
return i2c_report_err(ret, I2C_ERR_WRITE);
/*
* Wait for the write to complete. The write can take
* up to 10mSec (we allow a little more time).
*/
/*
* No write delay with FRAM devices.
*/
#if !defined(CONFIG_SYS_I2C_FRAM)
udelay(11000);
#endif
}
return 0;
}
/**
* do_i2c_crc() - Handle the "i2c crc32" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Calculate a CRC on memory
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*
* Syntax:
* i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count}
*/
static int do_i2c_crc(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
uint chip;
ulong addr;
int alen;
int count;
uchar byte;
ulong crc;
ulong err;
int ret = 0;
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *dev;
#endif
if (argc < 4)
return CMD_RET_USAGE;
/*
* Chip is always specified.
*/
chip = hextoul(argv[1], NULL);
/*
* Address is always specified.
*/
addr = hextoul(argv[2], NULL);
alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
if (alen > 3)
return CMD_RET_USAGE;
#if CONFIG_IS_ENABLED(DM_I2C)
ret = i2c_get_cur_bus_chip(chip, &dev);
if (!ret && alen != -1)
ret = i2c_set_chip_offset_len(dev, alen);
if (ret)
return i2c_report_err(ret, I2C_ERR_READ);
#endif
/*
* Count is always specified
*/
count = hextoul(argv[3], NULL);
printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
/*
* CRC a byte at a time. This is going to be slooow, but hey, the
* memories are small and slow too so hopefully nobody notices.
*/
crc = 0;
err = 0;
while (count-- > 0) {
#if CONFIG_IS_ENABLED(DM_I2C)
ret = dm_i2c_read(dev, addr, &byte, 1);
#else
ret = i2c_read(chip, addr, alen, &byte, 1);
#endif
if (ret)
err++;
crc = crc32(crc, &byte, 1);
addr++;
}
if (err > 0)
i2c_report_err(ret, I2C_ERR_READ);
else
printf ("%08lx\n", crc);
return 0;
}
/**
* mod_i2c_mem() - Handle the "i2c mm" and "i2c nm" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Modify memory.
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*
* Syntax:
* i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
* i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
*/
static int mod_i2c_mem(struct cmd_tbl *cmdtp, int incrflag, int flag, int argc,
char *const argv[])
{
uint chip;
ulong addr;
int alen;
ulong data;
int size = 1;
int nbytes;
int ret;
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *dev;
#endif
if (argc != 3)
return CMD_RET_USAGE;
bootretry_reset_cmd_timeout(); /* got a good command to get here */
/*
* We use the last specified parameters, unless new ones are
* entered.
*/
chip = i2c_mm_last_chip;
addr = i2c_mm_last_addr;
alen = i2c_mm_last_alen;
if ((flag & CMD_FLAG_REPEAT) == 0) {
/*
* New command specified. Check for a size specification.
* Defaults to byte if no or incorrect specification.
*/
size = cmd_get_data_size(argv[0], 1);
/*
* Chip is always specified.
*/
chip = hextoul(argv[1], NULL);
/*
* Address is always specified.
*/
addr = hextoul(argv[2], NULL);
alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
if (alen > 3)
return CMD_RET_USAGE;
}
#if CONFIG_IS_ENABLED(DM_I2C)
ret = i2c_get_cur_bus_chip(chip, &dev);
if (!ret && alen != -1)
ret = i2c_set_chip_offset_len(dev, alen);
if (ret)
return i2c_report_err(ret, I2C_ERR_WRITE);
#endif
/*
* Print the address, followed by value. Then accept input for
* the next value. A non-converted value exits.
*/
do {
printf("%08lx:", addr);
#if CONFIG_IS_ENABLED(DM_I2C)
ret = dm_i2c_read(dev, addr, (uchar *)&data, size);
#else
ret = i2c_read(chip, addr, alen, (uchar *)&data, size);
#endif
if (ret)
return i2c_report_err(ret, I2C_ERR_READ);
data = cpu_to_be32(data);
if (size == 1)
printf(" %02lx", (data >> 24) & 0x000000FF);
else if (size == 2)
printf(" %04lx", (data >> 16) & 0x0000FFFF);
else
printf(" %08lx", data);
nbytes = cli_readline(" ? ");
if (nbytes == 0) {
/*
* <CR> pressed as only input, don't modify current
* location and move to next.
*/
if (incrflag)
addr += size;
nbytes = size;
/* good enough to not time out */
bootretry_reset_cmd_timeout();
}
#ifdef CONFIG_BOOT_RETRY_TIME
else if (nbytes == -2)
break; /* timed out, exit the command */
#endif
else {
char *endp;
data = hextoul(console_buffer, &endp);
if (size == 1)
data = data << 24;
else if (size == 2)
data = data << 16;
data = be32_to_cpu(data);
nbytes = endp - console_buffer;
if (nbytes) {
/*
* good enough to not time out
*/
bootretry_reset_cmd_timeout();
#if CONFIG_IS_ENABLED(DM_I2C)
ret = dm_i2c_write(dev, addr, (uchar *)&data,
size);
#else
ret = i2c_write(chip, addr, alen,
(uchar *)&data, size);
#endif
if (ret)
return i2c_report_err(ret,
I2C_ERR_WRITE);
#if CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS > 0
udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
#endif
if (incrflag)
addr += size;
}
}
} while (nbytes);
i2c_mm_last_chip = chip;
i2c_mm_last_addr = addr;
i2c_mm_last_alen = alen;
return 0;
}
/**
* do_i2c_probe() - Handle the "i2c probe" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*
* Syntax:
* i2c probe {addr}
*
* Returns zero (success) if one or more I2C devices was found
*/
static int do_i2c_probe(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
int j;
int addr = -1;
int found = 0;
#if defined(CFG_SYS_I2C_NOPROBES)
int k, skip;
unsigned int bus = GET_BUS_NUM;
#endif /* NOPROBES */
int ret;
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *bus, *dev;
if (i2c_get_cur_bus(&bus))
return CMD_RET_FAILURE;
#endif
if (argc == 2)
addr = simple_strtol(argv[1], 0, 16);
puts ("Valid chip addresses:");
for (j = 0; j < 128; j++) {
if ((0 <= addr) && (j != addr))
continue;
#if defined(CFG_SYS_I2C_NOPROBES)
skip = 0;
for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
skip = 1;
break;
}
}
if (skip)
continue;
#endif
#if CONFIG_IS_ENABLED(DM_I2C)
ret = dm_i2c_probe(bus, j, 0, &dev);
#else
ret = i2c_probe(j);
#endif
if (ret == 0) {
printf(" %02X", j);
found++;
}
}
putc ('\n');
#if defined(CFG_SYS_I2C_NOPROBES)
puts ("Excluded chip addresses:");
for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
if (COMPARE_BUS(bus,k))
printf(" %02X", NO_PROBE_ADDR(k));
}
putc ('\n');
#endif
return (0 == found);
}
/**
* do_i2c_loop() - Handle the "i2c loop" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*
* Syntax:
* i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
* {length} - Number of bytes to read
* {delay} - A DECIMAL number and defaults to 1000 uSec
*/
static int do_i2c_loop(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
uint chip;
int alen;
uint addr;
uint length;
u_char bytes[16];
int delay;
int ret;
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *dev;
#endif
if (argc < 3)
return CMD_RET_USAGE;
/*
* Chip is always specified.
*/
chip = hextoul(argv[1], NULL);
/*
* Address is always specified.
*/
addr = hextoul(argv[2], NULL);
alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
if (alen > 3)
return CMD_RET_USAGE;
#if CONFIG_IS_ENABLED(DM_I2C)
ret = i2c_get_cur_bus_chip(chip, &dev);
if (!ret && alen != -1)
ret = i2c_set_chip_offset_len(dev, alen);
if (ret)
return i2c_report_err(ret, I2C_ERR_WRITE);
#endif
/*
* Length is the number of objects, not number of bytes.
*/
length = 1;
length = hextoul(argv[3], NULL);
if (length > sizeof(bytes))
length = sizeof(bytes);
/*
* The delay time (uSec) is optional.
*/
delay = 1000;
if (argc > 3)
delay = dectoul(argv[4], NULL);
/*
* Run the loop...
*/
while (1) {
#if CONFIG_IS_ENABLED(DM_I2C)
ret = dm_i2c_read(dev, addr, bytes, length);
#else
ret = i2c_read(chip, addr, alen, bytes, length);
#endif
if (ret)
i2c_report_err(ret, I2C_ERR_READ);
udelay(delay);
}
/* NOTREACHED */
return 0;
}
/*
* The SDRAM command is separately configured because many
* (most?) embedded boards don't use SDRAM DIMMs.
*
* FIXME: Document and probably move elsewhere!
*/
#if defined(CONFIG_CMD_SDRAM)
static void print_ddr2_tcyc (u_char const b)
{
printf ("%d.", (b >> 4) & 0x0F);
switch (b & 0x0F) {
case 0x0:
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x8:
case 0x9:
printf ("%d ns\n", b & 0x0F);
break;
case 0xA:
puts ("25 ns\n");
break;
case 0xB:
puts ("33 ns\n");
break;
case 0xC:
puts ("66 ns\n");
break;
case 0xD:
puts ("75 ns\n");
break;
default:
puts ("?? ns\n");
break;
}
}
static void decode_bits (u_char const b, char const *str[], int const do_once)
{
u_char mask;
for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
if (b & mask) {
puts (*str);
if (do_once)
return;
}
}
}
/*
* Syntax:
* i2c sdram {i2c_chip}
*/
static int do_sdram(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
enum { unknown, EDO, SDRAM, DDR, DDR2, DDR3, DDR4 } type;
uint chip;
u_char data[128];
u_char cksum;
int j, ret;
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *dev;
#endif
static const char *decode_CAS_DDR2[] = {
" TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
};
static const char *decode_CAS_default[] = {
" TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
};
static const char *decode_CS_WE_default[] = {
" TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
};
static const char *decode_byte21_default[] = {
" TBD (bit 7)\n",
" Redundant row address\n",
" Differential clock input\n",
" Registerd DQMB inputs\n",
" Buffered DQMB inputs\n",
" On-card PLL\n",
" Registered address/control lines\n",
" Buffered address/control lines\n"
};
static const char *decode_byte22_DDR2[] = {
" TBD (bit 7)\n",
" TBD (bit 6)\n",
" TBD (bit 5)\n",
" TBD (bit 4)\n",
" TBD (bit 3)\n",
" Supports partial array self refresh\n",
" Supports 50 ohm ODT\n",
" Supports weak driver\n"
};
static const char *decode_row_density_DDR2[] = {
"512 MiB", "256 MiB", "128 MiB", "16 GiB",
"8 GiB", "4 GiB", "2 GiB", "1 GiB"
};
static const char *decode_row_density_default[] = {
"512 MiB", "256 MiB", "128 MiB", "64 MiB",
"32 MiB", "16 MiB", "8 MiB", "4 MiB"
};
if (argc < 2)
return CMD_RET_USAGE;
/*
* Chip is always specified.
*/
chip = hextoul(argv[1], NULL);
#if CONFIG_IS_ENABLED(DM_I2C)
ret = i2c_get_cur_bus_chip(chip, &dev);
if (!ret)
ret = dm_i2c_read(dev, 0, data, sizeof(data));
#else
ret = i2c_read(chip, 0, 1, data, sizeof(data));
#endif
if (ret) {
puts ("No SDRAM Serial Presence Detect found.\n");
return 1;
}
cksum = 0;
for (j = 0; j < 63; j++) {
cksum += data[j];
}
if (cksum != data[63]) {
printf ("WARNING: Configuration data checksum failure:\n"
" is 0x%02x, calculated 0x%02x\n", data[63], cksum);
}
printf ("SPD data revision %d.%d\n",
(data[62] >> 4) & 0x0F, data[62] & 0x0F);
printf ("Bytes used 0x%02X\n", data[0]);
printf ("Serial memory size 0x%02X\n", 1 << data[1]);
puts ("Memory type ");
switch (data[2]) {
case 2:
type = EDO;
puts ("EDO\n");
break;
case 4:
type = SDRAM;
puts ("SDRAM\n");
break;
case 7:
type = DDR;
puts("DDR\n");
break;
case 8:
type = DDR2;
puts ("DDR2\n");
break;
case 11:
type = DDR3;
puts("DDR3\n");
break;
case 12:
type = DDR4;
puts("DDR4\n");
break;
default:
type = unknown;
puts ("unknown\n");
break;
}
puts ("Row address bits ");
if ((data[3] & 0x00F0) == 0)
printf ("%d\n", data[3] & 0x0F);
else
printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
puts ("Column address bits ");
if ((data[4] & 0x00F0) == 0)
printf ("%d\n", data[4] & 0x0F);
else
printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
switch (type) {
case DDR2:
printf ("Number of ranks %d\n",
(data[5] & 0x07) + 1);
break;
default:
printf ("Module rows %d\n", data[5]);
break;
}
switch (type) {
case DDR2:
printf ("Module data width %d bits\n", data[6]);
break;
default:
printf ("Module data width %d bits\n",
(data[7] << 8) | data[6]);
break;
}
puts ("Interface signal levels ");
switch(data[8]) {
case 0: puts ("TTL 5.0 V\n"); break;
case 1: puts ("LVTTL\n"); break;
case 2: puts ("HSTL 1.5 V\n"); break;
case 3: puts ("SSTL 3.3 V\n"); break;
case 4: puts ("SSTL 2.5 V\n"); break;
case 5: puts ("SSTL 1.8 V\n"); break;
default: puts ("unknown\n"); break;
}
switch (type) {
case DDR2:
printf ("SDRAM cycle time ");
print_ddr2_tcyc (data[9]);
break;
default:
printf ("SDRAM cycle time %d.%d ns\n",
(data[9] >> 4) & 0x0F, data[9] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("SDRAM access time 0.%d%d ns\n",
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
break;
default:
printf ("SDRAM access time %d.%d ns\n",
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
break;
}
puts ("EDC configuration ");
switch (data[11]) {
case 0: puts ("None\n"); break;
case 1: puts ("Parity\n"); break;
case 2: puts ("ECC\n"); break;
default: puts ("unknown\n"); break;
}
if ((data[12] & 0x80) == 0)
puts ("No self refresh, rate ");
else
puts ("Self refresh, rate ");
switch(data[12] & 0x7F) {
case 0: puts ("15.625 us\n"); break;
case 1: puts ("3.9 us\n"); break;
case 2: puts ("7.8 us\n"); break;
case 3: puts ("31.3 us\n"); break;
case 4: puts ("62.5 us\n"); break;
case 5: puts ("125 us\n"); break;
default: puts ("unknown\n"); break;
}
switch (type) {
case DDR2:
printf ("SDRAM width (primary) %d\n", data[13]);
break;
default:
printf ("SDRAM width (primary) %d\n", data[13] & 0x7F);
if ((data[13] & 0x80) != 0) {
printf (" (second bank) %d\n",
2 * (data[13] & 0x7F));
}
break;
}
switch (type) {
case DDR2:
if (data[14] != 0)
printf ("EDC width %d\n", data[14]);
break;
default:
if (data[14] != 0) {
printf ("EDC width %d\n",
data[14] & 0x7F);
if ((data[14] & 0x80) != 0) {
printf (" (second bank) %d\n",
2 * (data[14] & 0x7F));
}
}
break;
}
if (DDR2 != type) {
printf ("Min clock delay, back-to-back random column addresses "
"%d\n", data[15]);
}
puts ("Burst length(s) ");
if (data[16] & 0x80) puts (" Page");
if (data[16] & 0x08) puts (" 8");
if (data[16] & 0x04) puts (" 4");
if (data[16] & 0x02) puts (" 2");
if (data[16] & 0x01) puts (" 1");
putc ('\n');
printf ("Number of banks %d\n", data[17]);
switch (type) {
case DDR2:
puts ("CAS latency(s) ");
decode_bits (data[18], decode_CAS_DDR2, 0);
putc ('\n');
break;
default:
puts ("CAS latency(s) ");
decode_bits (data[18], decode_CAS_default, 0);
putc ('\n');
break;
}
if (DDR2 != type) {
puts ("CS latency(s) ");
decode_bits (data[19], decode_CS_WE_default, 0);
putc ('\n');
}
if (DDR2 != type) {
puts ("WE latency(s) ");
decode_bits (data[20], decode_CS_WE_default, 0);
putc ('\n');
}
switch (type) {
case DDR2:
puts ("Module attributes:\n");
if (data[21] & 0x80)
puts (" TBD (bit 7)\n");
if (data[21] & 0x40)
puts (" Analysis probe installed\n");
if (data[21] & 0x20)
puts (" TBD (bit 5)\n");
if (data[21] & 0x10)
puts (" FET switch external enable\n");
printf (" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
if (data[20] & 0x11) {
printf (" %d active registers on DIMM\n",
(data[21] & 0x03) + 1);
}
break;
default:
puts ("Module attributes:\n");
if (!data[21])
puts (" (none)\n");
else
decode_bits (data[21], decode_byte21_default, 0);
break;
}
switch (type) {
case DDR2:
decode_bits (data[22], decode_byte22_DDR2, 0);
break;
default:
puts ("Device attributes:\n");
if (data[22] & 0x80) puts (" TBD (bit 7)\n");
if (data[22] & 0x40) puts (" TBD (bit 6)\n");
if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
else puts (" Upper Vcc tolerance 10%\n");
if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
else puts (" Lower Vcc tolerance 10%\n");
if (data[22] & 0x08) puts (" Supports write1/read burst\n");
if (data[22] & 0x04) puts (" Supports precharge all\n");
if (data[22] & 0x02) puts (" Supports auto precharge\n");
if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
break;
}
switch (type) {
case DDR2:
printf ("SDRAM cycle time (2nd highest CAS latency) ");
print_ddr2_tcyc (data[23]);
break;
default:
printf ("SDRAM cycle time (2nd highest CAS latency) %d."
"%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("SDRAM access from clock (2nd highest CAS latency) 0."
"%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
break;
default:
printf ("SDRAM access from clock (2nd highest CAS latency) %d."
"%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("SDRAM cycle time (3rd highest CAS latency) ");
print_ddr2_tcyc (data[25]);
break;
default:
printf ("SDRAM cycle time (3rd highest CAS latency) %d."
"%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("SDRAM access from clock (3rd highest CAS latency) 0."
"%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
break;
default:
printf ("SDRAM access from clock (3rd highest CAS latency) %d."
"%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("Minimum row precharge %d.%02d ns\n",
(data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
break;
default:
printf ("Minimum row precharge %d ns\n", data[27]);
break;
}
switch (type) {
case DDR2:
printf ("Row active to row active min %d.%02d ns\n",
(data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
break;
default:
printf ("Row active to row active min %d ns\n", data[28]);
break;
}
switch (type) {
case DDR2:
printf ("RAS to CAS delay min %d.%02d ns\n",
(data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
break;
default:
printf ("RAS to CAS delay min %d ns\n", data[29]);
break;
}
printf ("Minimum RAS pulse width %d ns\n", data[30]);
switch (type) {
case DDR2:
puts ("Density of each row ");
decode_bits (data[31], decode_row_density_DDR2, 1);
putc ('\n');
break;
default:
puts ("Density of each row ");
decode_bits (data[31], decode_row_density_default, 1);
putc ('\n');
break;
}
switch (type) {
case DDR2:
puts ("Command and Address setup ");
if (data[32] >= 0xA0) {
printf ("1.%d%d ns\n",
((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
} else {
printf ("0.%d%d ns\n",
((data[32] >> 4) & 0x0F), data[32] & 0x0F);
}
break;
default:
printf ("Command and Address setup %c%d.%d ns\n",
(data[32] & 0x80) ? '-' : '+',
(data[32] >> 4) & 0x07, data[32] & 0x0F);
break;
}
switch (type) {
case DDR2:
puts ("Command and Address hold ");
if (data[33] >= 0xA0) {
printf ("1.%d%d ns\n",
((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
} else {
printf ("0.%d%d ns\n",
((data[33] >> 4) & 0x0F), data[33] & 0x0F);
}
break;
default:
printf ("Command and Address hold %c%d.%d ns\n",
(data[33] & 0x80) ? '-' : '+',
(data[33] >> 4) & 0x07, data[33] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("Data signal input setup 0.%d%d ns\n",
(data[34] >> 4) & 0x0F, data[34] & 0x0F);
break;
default:
printf ("Data signal input setup %c%d.%d ns\n",
(data[34] & 0x80) ? '-' : '+',
(data[34] >> 4) & 0x07, data[34] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("Data signal input hold 0.%d%d ns\n",
(data[35] >> 4) & 0x0F, data[35] & 0x0F);
break;
default:
printf ("Data signal input hold %c%d.%d ns\n",
(data[35] & 0x80) ? '-' : '+',
(data[35] >> 4) & 0x07, data[35] & 0x0F);
break;
}
puts ("Manufacturer's JEDEC ID ");
for (j = 64; j <= 71; j++)
printf ("%02X ", data[j]);
putc ('\n');
printf ("Manufacturing Location %02X\n", data[72]);
puts ("Manufacturer's Part Number ");
for (j = 73; j <= 90; j++)
printf ("%02X ", data[j]);
putc ('\n');
printf ("Revision Code %02X %02X\n", data[91], data[92]);
printf ("Manufacturing Date %02X %02X\n", data[93], data[94]);
puts ("Assembly Serial Number ");
for (j = 95; j <= 98; j++)
printf ("%02X ", data[j]);
putc ('\n');
if (DDR2 != type) {
printf ("Speed rating PC%d\n",
data[126] == 0x66 ? 66 : data[126]);
}
return 0;
}
#endif
/*
* Syntax:
* i2c edid {i2c_chip}
*/
#if defined(CONFIG_I2C_EDID)
int do_edid(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[])
{
uint chip;
struct edid1_info edid;
int ret;
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *dev;
#endif
if (argc < 2) {
cmd_usage(cmdtp);
return 1;
}
chip = hextoul(argv[1], NULL);
#if CONFIG_IS_ENABLED(DM_I2C)
ret = i2c_get_cur_bus_chip(chip, &dev);
if (!ret)
ret = dm_i2c_read(dev, 0, (uchar *)&edid, sizeof(edid));
#else
ret = i2c_read(chip, 0, 1, (uchar *)&edid, sizeof(edid));
#endif
if (ret)
return i2c_report_err(ret, I2C_ERR_READ);
if (edid_check_info(&edid)) {
puts("Content isn't valid EDID.\n");
return 1;
}
edid_print_info(&edid);
return 0;
}
#endif /* CONFIG_I2C_EDID */
#if CONFIG_IS_ENABLED(DM_I2C)
static void show_bus(struct udevice *bus)
{
struct udevice *dev;
printf("Bus %d:\t%s", dev_seq(bus), bus->name);
if (device_active(bus))
printf(" (active %d)", dev_seq(bus));
printf("\n");
for (device_find_first_child(bus, &dev);
dev;
device_find_next_child(&dev)) {
struct dm_i2c_chip *chip = dev_get_parent_plat(dev);
printf(" %02x: %s, offset len %x, flags %x\n",
chip->chip_addr, dev->name, chip->offset_len,
chip->flags);
}
}
#endif
/**
* do_i2c_show_bus() - Handle the "i2c bus" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero always.
*/
#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
static int do_i2c_show_bus(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
if (argc == 1) {
/* show all busses */
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *bus;
struct uclass *uc;
int ret;
ret = uclass_get(UCLASS_I2C, &uc);
if (ret)
return CMD_RET_FAILURE;
uclass_foreach_dev(bus, uc)
show_bus(bus);
#else
int i;
for (i = 0; i < CFG_SYS_NUM_I2C_BUSES; i++) {
printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
#ifndef CFG_SYS_I2C_DIRECT_BUS
int j;
for (j = 0; j < CFG_SYS_I2C_MAX_HOPS; j++) {
if (i2c_bus[i].next_hop[j].chip == 0)
break;
printf("->%s@0x%2x:%d",
i2c_bus[i].next_hop[j].mux.name,
i2c_bus[i].next_hop[j].chip,
i2c_bus[i].next_hop[j].channel);
}
#endif
printf("\n");
}
#endif
} else {
int i;
/* show specific bus */
i = dectoul(argv[1], NULL);
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *bus;
int ret;
ret = uclass_get_device_by_seq(UCLASS_I2C, i, &bus);
if (ret) {
printf("Invalid bus %d: err=%d\n", i, ret);
return CMD_RET_FAILURE;
}
show_bus(bus);
#else
if (i >= CFG_SYS_NUM_I2C_BUSES) {
printf("Invalid bus %d\n", i);
return -1;
}
printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
#ifndef CFG_SYS_I2C_DIRECT_BUS
int j;
for (j = 0; j < CFG_SYS_I2C_MAX_HOPS; j++) {
if (i2c_bus[i].next_hop[j].chip == 0)
break;
printf("->%s@0x%2x:%d",
i2c_bus[i].next_hop[j].mux.name,
i2c_bus[i].next_hop[j].chip,
i2c_bus[i].next_hop[j].channel);
}
#endif
printf("\n");
#endif
}
return 0;
}
#endif
/**
* do_i2c_bus_num() - Handle the "i2c dev" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*/
#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
static int do_i2c_bus_num(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
int ret = 0;
int bus_no;
if (argc == 1) {
/* querying current setting */
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *bus;
if (!i2c_get_cur_bus(&bus))
bus_no = dev_seq(bus);
else
bus_no = -1;
#else
bus_no = i2c_get_bus_num();
#endif
printf("Current bus is %d\n", bus_no);
} else {
bus_no = dectoul(argv[1], NULL);
#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY)
if (bus_no >= CFG_SYS_NUM_I2C_BUSES) {
printf("Invalid bus %d\n", bus_no);
return -1;
}
#endif
printf("Setting bus to %d\n", bus_no);
#if CONFIG_IS_ENABLED(DM_I2C)
ret = cmd_i2c_set_bus_num(bus_no);
#else
ret = i2c_set_bus_num(bus_no);
#endif
if (ret)
printf("Failure changing bus number (%d)\n", ret);
}
return ret ? CMD_RET_FAILURE : 0;
}
#endif /* CONFIG_IS_ENABLED(SYS_I2C_LEGACY) */
/**
* do_i2c_bus_speed() - Handle the "i2c speed" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*/
static int do_i2c_bus_speed(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
int speed, ret=0;
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *bus;
if (i2c_get_cur_bus(&bus))
return 1;
#endif
if (argc == 1) {
#if CONFIG_IS_ENABLED(DM_I2C)
speed = dm_i2c_get_bus_speed(bus);
#else
speed = i2c_get_bus_speed();
#endif
/* querying current speed */
printf("Current bus speed=%d\n", speed);
} else {
speed = dectoul(argv[1], NULL);
printf("Setting bus speed to %d Hz\n", speed);
#if CONFIG_IS_ENABLED(DM_I2C)
ret = dm_i2c_set_bus_speed(bus, speed);
#else
ret = i2c_set_bus_speed(speed);
#endif
if (ret)
printf("Failure changing bus speed (%d)\n", ret);
}
return ret ? CMD_RET_FAILURE : 0;
}
/**
* do_i2c_mm() - Handle the "i2c mm" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*/
static int do_i2c_mm(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
}
/**
* do_i2c_nm() - Handle the "i2c nm" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*/
static int do_i2c_nm(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
}
/**
* do_i2c_reset() - Handle the "i2c reset" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero always.
*/
static int do_i2c_reset(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *bus;
if (i2c_get_cur_bus(&bus))
return CMD_RET_FAILURE;
if (i2c_deblock(bus)) {
printf("Error: Not supported by the driver\n");
return CMD_RET_FAILURE;
}
#elif CONFIG_IS_ENABLED(SYS_I2C_LEGACY)
i2c_init(I2C_ADAP->speed, I2C_ADAP->slaveaddr);
#endif
return 0;
}
static struct cmd_tbl cmd_i2c_sub[] = {
#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
U_BOOT_CMD_MKENT(bus, 1, 1, do_i2c_show_bus, "", ""),
#endif
U_BOOT_CMD_MKENT(crc32, 3, 1, do_i2c_crc, "", ""),
#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
U_BOOT_CMD_MKENT(dev, 1, 1, do_i2c_bus_num, "", ""),
#endif
#if defined(CONFIG_I2C_EDID)
U_BOOT_CMD_MKENT(edid, 1, 1, do_edid, "", ""),
#endif /* CONFIG_I2C_EDID */
U_BOOT_CMD_MKENT(loop, 3, 1, do_i2c_loop, "", ""),
U_BOOT_CMD_MKENT(md, 3, 1, do_i2c_md, "", ""),
U_BOOT_CMD_MKENT(mm, 2, 1, do_i2c_mm, "", ""),
U_BOOT_CMD_MKENT(mw, 3, 1, do_i2c_mw, "", ""),
U_BOOT_CMD_MKENT(nm, 2, 1, do_i2c_nm, "", ""),
U_BOOT_CMD_MKENT(probe, 0, 1, do_i2c_probe, "", ""),
U_BOOT_CMD_MKENT(read, 5, 1, do_i2c_read, "", ""),
U_BOOT_CMD_MKENT(write, 6, 0, do_i2c_write, "", ""),
#if CONFIG_IS_ENABLED(DM_I2C)
U_BOOT_CMD_MKENT(flags, 2, 1, do_i2c_flags, "", ""),
U_BOOT_CMD_MKENT(olen, 2, 1, do_i2c_olen, "", ""),
#endif
U_BOOT_CMD_MKENT(reset, 0, 1, do_i2c_reset, "", ""),
#if defined(CONFIG_CMD_SDRAM)
U_BOOT_CMD_MKENT(sdram, 1, 1, do_sdram, "", ""),
#endif
U_BOOT_CMD_MKENT(speed, 1, 1, do_i2c_bus_speed, "", ""),
};
/**
* do_i2c() - Handle the "i2c" command-line command
* @cmdtp: Command data struct pointer
* @flag: Command flag
* @argc: Command-line argument count
* @argv: Array of command-line arguments
*
* Returns zero on success, CMD_RET_USAGE in case of misuse and negative
* on error.
*/
static int do_i2c(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[])
{
struct cmd_tbl *c;
if (argc < 2)
return CMD_RET_USAGE;
/* Strip off leading 'i2c' command argument */
argc--;
argv++;
c = find_cmd_tbl(argv[0], &cmd_i2c_sub[0], ARRAY_SIZE(cmd_i2c_sub));
if (c)
return c->cmd(cmdtp, flag, argc, argv);
else
return CMD_RET_USAGE;
}
/***************************************************/
#ifdef CONFIG_SYS_LONGHELP
static char i2c_help_text[] =
#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
"bus [muxtype:muxaddr:muxchannel] - show I2C bus info\n"
"i2c " /* That's the prefix for the crc32 command below. */
#endif
"crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
"i2c dev [dev] - show or set current I2C bus\n"
#endif
#if defined(CONFIG_I2C_EDID)
"i2c edid chip - print EDID configuration information\n"
#endif /* CONFIG_I2C_EDID */
"i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
"i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
"i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
"i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
"i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
"i2c probe [address] - test for and show device(s) on the I2C bus\n"
"i2c read chip address[.0, .1, .2] length memaddress - read to memory\n"
"i2c write memaddress chip address[.0, .1, .2] length [-s] - write memory\n"
" to I2C; the -s option selects bulk write in a single transaction\n"
#if CONFIG_IS_ENABLED(DM_I2C)
"i2c flags chip [flags] - set or get chip flags\n"
"i2c olen chip [offset_length] - set or get chip offset length\n"
#endif
"i2c reset - re-init the I2C Controller\n"
#if defined(CONFIG_CMD_SDRAM)
"i2c sdram chip - print SDRAM configuration information\n"
#endif
"i2c speed [speed] - show or set I2C bus speed";
#endif
U_BOOT_CMD(
i2c, 7, 1, do_i2c,
"I2C sub-system",
i2c_help_text
);